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N O R M A L  A U T O M O R P H I S M S  O F  F R E E  S O L V A B L E  P R O - p - G R O U P S  

N .  S .  R o m a n o v s k i i *  UDC 512.5 

An automorphism of a profinite group is called normal if it leaves invariant all (closed) normal 

subgroups. An automorphism of an abstract group is called p-normal if it leaves invariant each 

normal subgroup of p-power, where p is prime. An inner automor?hism satisfies both of these 

conditions. Earlier, Romanovskii and Bolu~s [~] gave a description of normal automorphisms 

of a free solvable pro-p-group of derived length ~. That description implied, in particular, that 

the number of normal automorphisms in that group ezceeds the number of inner ones. Here we 

prove that each normal automorphism of a free solvable pro-p-group of derived lengih >_ 3 and a 

p-normal auiomorphism of an abstract flee solvable group of derived length >_ 2 are inner. 

An automorphism of a profinite group is said to be normal if all (closed) normal subgroups are left 

invaxiant by it. For abstract groups, distinction is made among normal automorphisms - -  keeping normal 

subgroups, f-normal automorphisms - -  keeping normal subgroups of finite index, and p-normal automor-  

pkisms - -  keeping normal subgroups of p-power, where p is prime. Obviously, an inner automorphism 

satisfies all the conditions mentioned. In [1], f -normal  automorphisms of a free solvable group of derived 

length > 2 were proved inner. In [2], normal automorphisms of a free solvable pro-p-group of derived length 

2 were described. Tha t  description impfied, in particular, that  the number of normal automorphisms in 

the group in question exceeds the number of inner ones. In [3], it was proved that ,  for p # 2, each normal 

automorphism of a free rank > 2 pro-p-group in the variety A/'2~ is inner. This supposition served as a 

basis for asserting that  a p-normal automorphism (p r 2) of an abstract free Jq'2.A-group of rank > 2 is 

inner. Here .A/'~ denotes the variety of nilpotent groups of class < 2 and .A denotes the variety of Abelian 

groups. In the present article, we prove the following two statements. 

T H E O R E M  1. Every normal automorphism of a free solvable pro-p-group of derived length > 3 is 

inner. 

T H E O R E M  2. Every p-normal automorphism of an abstract free solvable group of derived length >_ 2 

is inner. 

Obviously, Theorem 2 makes stronger the result by Roman'kov [1] of which we have mentioned above. 

1. P R E L I M I N A R Y  I N F O R M A T I O N  A N D  S T A T E M E N T S  

1.1. All necessary definitions and facts concerning varieties of profinite groups can be found in [3]. We 

adopt  the following notation. Let G be a (profinite) group; then a (closed) subgroup generated by the 

*Supported by RFFR grant No. 96-01-01948. 

Translated from Algebra i Logika, Vol. 36, No. 4, pp. 441-453, July-August, 1997. Original article submitted 
February 21, 1996. 

0002-5232/97/3604-0257 $18.00 (~) 1997 Plenum Publishing Corporation 257 



subset A will be denoted by (A); if z , y  E G, put z y = y-Xzy,  [z,~/] = z -Xy-Xzy.  If  A and B are subsets 

of G, denote by [A, B] a subgroup generated by all commutators  [a, b], where a E A and b G B. Write G ~ 

for a commuta to r  subgroup of G, G ('~) = [G ('~-~), G('~-I)], n _~ 2. I f  g G G, ~ s tands  for a conjugation by 

an element g, which is an inner au tomorphism of G. 

L E M M A  1. A normal  au tomorphism of a free solvable pro-p-group F of derived length _~ 3 induces 

an inner au tomorph i sm on the factor group F/F".  
P r o o f .  Let ~0 be a normal  au tomorphism of the group F.  The factor group ~' = F/[F t, F ~, F ~] is free 

in the variety Af2.A. of pro-p-groups. The  automorphism ~o induces a normal au tomorph i sm on tha t  group. 

By Lemma  2 in [3], every normal  au tomorphism of F induces an inner au tomorph i sm on F / F "  --- F/F" ,  

whence the lemma.  

Let G be a pro-p-group represented as a projective limit lint Gi of finite p-groups G, and let Z v be the 

ring of p-adic integers. Recall that  a group algebra of G over Z v is a (topological) algebra ZvG equal to the 

projective limit lint Zv[G~ ]. Denote by A(G)  the augmentat ion ideal of the ring ZvG , tha t  is, the kernel of 

the canonical homomorph i sm ZvG --* Zp. 

L E M M A  2. Let F be a free rank _~ 2 pro-p-group which is solvable of derived length 2, and A = F / F  t. 

Conjugation by elements in F equips F '  with the structure of a ZvA-module. Let ~o be an au tomorph i sm of 

F which induces an identi ty map  on A and assume that  there exists an element w E ZvA such tha t  t~o = tw 

for all t G F ~. Then w = 1 mod  A(A). 

The p r o o f  imitates tha t  of Lemma 4 in [3]. 

L E M M A  3. Let F be a free rank > 2 pro-p-group which is solvable of derived length 2. Then  any 

au tomorphism of F tha t  induces an identity map on the factor group F/F '  and on the subgroup F ~ is a 

conjugation by an element in F t . 

This fact was established in proving the main theorem in [2]. 

L E M M A  4. Let F be a free solvable pro-p-group of derived length k, k > 3, and let the au tomorph i sm 

~o of F induce an identi ty map  on the factor group F / F  (~-1) and on the subgroup F (~-2). Then ~o is an 

identity automorphism.  

P r o o f .  We follow the derivational route of an appropriate  s ta tement  for abs t rac t  groups in Shmel 'kin [4]. 

1.2. Let F be a free solvable pro-p-group of derived length k _> 2, with basis {z l ,  . . . ,  z,~}. Below we use 

the Magnus embedding, which now we are going to describe for the group given. Let A be a free solvable 

pro-p-group of derived length k - 1, with basis { a l , . . . ,  a,,}, and let Y = y~. ZvA ~ . . .  83 y,,. ZvA be a right 

free (topological) module over the ring ZvA, with basis { Y h . . . ,  V,,}. Consider a pro-p-group G, which is 

a natural  extension of an additive group of the module Y by A. Tha t  group can be t reated as the mat r ix  0) (o 0) 
group tha t  is, the group of matrices of the form , where a E A, 9 E Y. The  group 

Y 1 ' y 1 (o, 0) (o. 0) 
F is then identified with a subgroup in G, if we put z l  = , . . . ,  z,~ -- . (For more 

~/I 1 ~ , ,  1 

information, consult [5, 6].) 

In [6], we showed tha t  there exists a central series (finite for k -- 2 and infinite for k > 2). A -- A1 > 

A2 > . . .  such that  Ai/Ai+l ~- Z v, Ai = (a~)-A~+I (here a h - . - ,  a,, coincide with generators of the group 

A), n A, -- 1, and every neighborhood of unity of A contains a certain subgroup A,. The group algebra 

ZvA , as a topological Zv-module , is a free module with a basis flA consisting of elements of the form 

M = (al  - 1 ) ~ . . . ( a , ~  - 1) ~ ' ,  where 0 <_ a~ E Z. In particular, every element in ZvA has a unique 

presentation in the form of a series ~ "L~ �9 M, where ~fM E Z v. The weight of an element M is defined 
MENA 
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thus: w(M) : a l  + 2 a ~ + - . .  + 2r~-xa,n. Order elements in NA w.r.t,  their weights; elements of equal weight 

ate  ordered by successively comparing ct,,, a ,~_ t , - - - ,  ctl. The  weigh~ w(u) of a nonzero element u E ZpA is 

the min imum of weights of  elements M E flA, which do really occur in the expansion of u. Put  w(0) -- co. 

If  u : )~ �9 M + -  -. ,  0 r A E Zp, and M is a min imal  e l ement  in flA occurring in the  expans ion  o f  u, then  

�9 M is called a lowest t erm o f  u in the expansion w.r.t ,  f lA. Note  that  if  M ~ (a l  - 1) a'  . . .  ( a ~  - 1) ~-, 

and L : (a l  - I)~'  . . .  (am - I)  ~ -  are two elements in fiA, then M L  = (al  - l )a '+~1  . .  �9 (am - I)  a~'+fl" -i- v, 

where w(v) > w ( M )  + w(L).  This follows immediately f rom the following: 

( z  - 1 ) ( y -  1) = ( y -  1 ) ( z -  1 ) +  ( [z ,  y] - 1 ) + ( y -  1)(It ,  y ] -  1)q- ( z  - 1 ) ( [z ,  y] - 1 ) §  ( y -  1 ) ( z -  1) ( [z ,  y ] -  1). (1) 

Throughout  this section, elements of  an additive group of the module Y are writ ten multiplicatively, 

tha t  is, instead of y l u l  + . . .  + y,,u,,, where u~ G ~pA, we write y ~ Z . . . y ~ .  A group algebra Z p r ,  if 

t reated as a Zp-module, is a free module with a basis f ly  consisting of elements of the form P = (yMl _ 

1)~, . . .  ( y ~ .  _ 1 ) ~ . . . . ( y L ,  _ 1 )~ , . . .  ( ~ ,  _ 1)~0, where M ,  L, e n ~ ,  0 < ~ ,  ~, e Z. Orde,  elements 

in f ly  by successively comparing the following parameters:  wl(P)  = ~1 + "'" + ~.  + "'" + "rl + "'" + %,  

w2(P) = ]31w(M,) q - . . . - k  ~rw(M,.)--k. . .-k'y1w(L1) q-" " -b 'Y ,W(L, ) ,  L , ,  7, ,  . . . ,  L1, 71, . . . ,  Mr, fir, . . . ,  M1, 

~t-  As a Z|,-basis fl of  the algebra ZpG, we choose the products M P ,  where M G flA and P G f ly .  An 

a tb i t ra ry  element t G ZpG has a unique presentation in the form of a series ~ u~Pi, where u, E ZpA and 

P~ G f ly .  I f  P0 is a minimal element in f ly ,  which does indeed occur in tha t  representation, then uoPo is 

called a lowest te rm of the element t in the expansion w.r.t, the basis f ly .  In turn, if a M  is a lowest term 

of u0 in its expansion w.r.t, the basis fiA, then a M P o  is called a lowest term of t in the expansion w.r.t. 

fl. A multiplication rule for the elements in Z3,G expanded in terms of fl can be unde~pinned by formula 

(1) and the following: 
(yM _ 1)(aj - 1) : 

(aj -- 1)(y M - 1) -b a jCyy  (~j-1) - 1) -b aiCy M - 1 ) ( y y  c ~ - I )  - 1) = 

(a i - 1)((V M -- I) + (9y (~-:) - i) + (yM _ l)(yy(~, -') _ i))+ 

(yy(aj-:) _ I) + (yM _ 1)(yy(-,-:) _ 1). (2) 

Denote by V,,, (resp., by W~) the collection of elements of ZvG in the expansion of which w.r.t, the 

basis f~y only those elements occur for which wt(P)  >_ rn (resp., w~(P) > 1). Formula (2) implies tha t  

the sets V,n and W~ ate two-sided ideals of the ring ZvG , and V,,V~ C V,n+r and W~W, C W~+, hold. Let 

I : wCM) = w2Cy M - i). Again from (2), we have (yM _ l)(a: -- I) : (a: -- 1)(yy -- 1) rood W~+: and (yM _ 
_ _  _ _  _ ( a x - l ) M  = 1)modV . Moreover, 1 -  -lmodW,+ . 

This yields the following: 

L E M M A  5. Let 1 r P : (yM, _ 1)a, . . .  (yM, _ 1)a. e f i r  and w~(P) : rn, w2(P ) : I. Then P(a~ - 

I) = (a,- 1)Pmod W,+, and V(a,-1) = (a,-1)P+a,(a,(y M' -1)a'-:(y}~ "-')~' -1)(y M' -I)~... ( Y ~ ' - -  
1 )= ,q_ . . . _ba , (yM~ _ 1 ) ~  M ~ . ,~  ~, M. 1)~,_ : ,  ( a , - l ) M .  1 ) ) n o d  (V,~ �9 - .  ( y . : :  - ~ " -  ~y~. - ty~. - V . ~ + :  + ~ W ~ + 2 ) .  

L E M M A  6. If  w e A(G)  and the element w(z :  - 1) is divided in Z~G on the left by Zl - 1, then w is 

also divided on the left by Zl - 1. 

P r o o f .  Since z :  - 1 : a:y~ - 1 = (ax - 1) + (y: - 1) + (a:  - t ) (y :  - 1), this and  L e m m a  5 imply tha t  

if 0 r t ~ Z~,G and ~ : ~ uiP~ + t:,  where wl(P~) : . . .  : w~(P,) = m, w2(P~) : . . . .  w2(P~) : l, and 
i : 1  
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t l  ~ V , . + 1  + (V,= n W ~ + 1 ) ,  t h e n  

- 1)  =  (al - 1 ) P .  
i=xr (3) 

(=x - -  (al - moo v +l + ( v , .  n w , + l ) .  
i = l  

Assume t h a t  the conclusion of  the l emma  is untrue,  t ha t  is, w is not  divided on the left by  z :  - 1. 

Subs t i tu t ing  ax - 1 = (zx - 1)~/~ -x + (yi  "I - 1) produces  a representa t ion z0 = ( z l  - 1)wx + w2, where w~ is 

expressed only in te rms  of  those elements of  the basis fl in the expansion of  which the  fac tor  a l  - 1 does 

no t  occur.  According to  (3), the element t02 canno t  be divided either on the left or on the r ight  by z l  - 1. 

W i t h o u t  loss o f  8eneredity, we m a y  assume tha t  w = w2. Let uP be a lowest t e rm in the  expansion of  w 

w.r.t ,  the basis f l y .  Let w l ( P )  = m and  oJ2(P) = l. I f  P ~ 1, choose all elements P -- t>1, P2 , . . . ,  P~ G fly 

which do really occur  in the expansion of  vJ w.r.t ,  f l y ,  for which o~l(P~) = m and  ~2(P/)  = 1. We have 
t" 

w = ~ u ~ P / +  uT', where 0 ~ u~ E ZpA, w' E V,,,+I + (V,,, f3 Wl+1). To be specific, let/>1 < P2 < . - -  < P , .  
i = 1  

Below, we consider three cases. 

(1) First assume t h a t  k >_ 3 and some element u~ 0 (1 <_/0 ~ r)  does not  lie in Zp. Let u~ 0 = u '  + u" ,  

where u '  q Zp and  u"  E A(A) .  By (3), then,  the element u"(a: - 1) is divided on the left by  a :  - 1. The  

group  A has derived length k - 1, and  by induct ion  on k, we can state  t ha t  the element  u "  is divided in Z1,A 
on the  left by  a l  - 1. This  contradicts  the above-envisaged condi t ion tha t  the e lement  w can be expressed 

only in terms of  those elements of  fl in the expansion of  which the factor  a l  - 1 does not  occur.  

(2) Next assume tha t  P ~ 1 and  either k _> 3, u l , . . . , u r  E Zp, or k --- 2, t h a t  is, A is Abel ian.  Let 

P ,  = P ' ( y ~  - 1) #s, where P '  can have only those factors  y~f - 1 which are less t h a n  Z/~ - 1. I t  follows f rom 

L e m m a  5 tha t  the max ima l  element Q G f ly ,  which occurs in the expansion of  ( ~  u~P~)(z: - 1) w.r.t.  
i = 1  

the basis f ly  and  satisfies w i (Q)  = m and  w2(Q) = l + 1, is equal to  P ' ( 9 ,  L - 1 ) ~ - : ( v !  . ~ - I )L  - 1). In  the 

expansion ment ioned,  t ha t  element occurs with coefficient ~ufal .  If  Q occurs  in the expansion of  ~n' with 

coefficient v E ZpA, then,  in the expansion of  w ( z :  - 1), it will occur  with coefficient f lu id1 + v (a l  - 1), 

by  L e m m a 5  again. Let w ( z l -  1) = ( z : - l ) h .  Then  h E V,~. Since z : -  1 -- a : -  l m o d V 1 ,  we have 

( z :  - 1)h - (a l  - 1 ) h m o d  V, ,+: .  This means tha t  the element f l u i d :  + v (a l  - 1) is divided in Z~,A on the 

left by a l  - 1, which contradic ts  the assumptions.  

(3) Consider the last case where P = 1, k = 2, and 0 ~ u G A(A) .  Dist inguish in w a c o m p o n e n t  of  

degree 1, t ha t  is, t ha t  par t  of  v which is expressed in terms of  elements of  f ly  of  the form yM _ 1. Let 

w ( z x - 1 )  = ( z l - 1 ) h .  T h e n  h - u+z mod W~, where z is a degree 1 componen t  of  the element h. T h e  ensuing 

congruences will be taken modulo  V~ + (al  - 1)ZpG. We have w ( z i  - 1) - (u + v ) ( ( a :  - 1) + a l ( y l  - 1)) =_ 

_ _ _ - ~. ( ~ , - 1 ) ~ ,  _ 1 ) + .  " v(al 1 ) + u ( y l - 1 ) ;  (z l  1)h_-- (Yl 1)u. I fv  = vl(y/M'-I)+..., then v(al- 1)_--__ ~1t9,, 
by (2). In this case ~ltyi," '" ( , ,-1)~r - 1) - ~ . . .  -~ U(y  I -- 1) -- (~1 - 1)u. The  lef t -hand side of  the  la t ter  has a 

canonical  expansion w.r.t ,  f ly .  I f  we want  to expand the r ight -hand side via (2), then no e lements  of  the 

form 9 ~ , - : ) M  _ 1 in i2y are likely to appear ,  since u ~ Zp(a2,. . . ,a, ,) .  Therefore,  v : 0, and  we are led 

to the congruence u ( y :  - 1) _= (!/1 - 1)u. Reduce the r ight -hand side to the canonical  form. Let a M  be a 

lowest te rm of u in its expansion w.r.t ,  flA and M = (as - 1 )a~ . . .  (an - 1) a~. P rom (2), we have 

(Yl - I)M - M(yl - I) =_ a~.a~(a2 - l)a=-:(a3 - l)a' ... (a,, - l)a'(yt '-: - I) +... 

o~nan(o. 2 -- 1) c~` . .. (a~_ 1 -- l)u"-' (a. -- 1)a'-:(y~ '"-I - 1) -- 

a2(a2 -- 1)~'-:(a3 - I) ~'---(a,~ - l)a'(y~ "-: -- I) +.-- 
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an (a~  - 1) a '  . . .  (a~_~ - 1 ) a " - ' ( a n  - 1 ) a ' -X(y~  " - ~ -  1 )+  

M ( a 2 ( y ~  ~ - I  - I )  + - ' -  + a ,~ (y~ ' -~  - 1)). 

I t  follows tha t ,  in the  expans ion  of (y~ - 1)u - u(y l  - 1) w.r. t ,  f], the  coefficients a t  e lements  of  the  basis  

(ax - 1 ) ( ~ ' - X ( a 3 -  1 ) a '  . . .  (a,~ - 1 ) a ' ( y ~  ~ - x -  1 ) , . . . ,  (a~ - 1)~ '  . . .  ( a n - 1 -  1) a ' - ;  (a~ -- 1 ) a ' - X ( y ~  " - ~ )  are  

a a ~ , . . . ,  ac~,,, respect ively.  In  par t icular ,  (Yx - 1)u - u(yx - 1) ~ O. T h e  l e m m a  is proved.  

C O R O L L A R Y .  Suppose  w ~ Z~,G, and for any  na tu ra l  m,  the e lement  w(z~  - 1) "~ is d iv ided on the  

left by  (z~ - 1) '~. T h e n  w G Zn(Zl  ). 

P r o o f .  I f  an  e lement  w is not  in Zp(z~) ,  then  it has a presenta t ion  in the  fo rm w = a0  + a ~ ( z x  - 

1) + . . .  + a ,~(z~ - 1) "~ + (Zl - 1)'~u, where a~ ~ Z n, u ~ A(G) ,  and  u is not  d ivided on the  left  by 

z l  - 1. Let  w(z~ - 1) '~+~ : (Zl - 1)'~+~v. Then  (z~ - 1) '~u(z~ - 1) '~+~ = (z~ - 1)'~+1v ~, where  

~)! - -  ~) - -  r O - -  ( X l ( ~  1 - -  1 )  . . . . .  ~r -- I ) "L  We have u(z~ - I)  "~+~ = (zx - l )v ' .  I f  m + 1 _> 2, 

then  v '  ~ A(G) ,  since otherwise  vO(Zl - 1) ~ A ( G )  ~, where v = v0 + Vl, 0 ~ v0 ~ Z~, Vl ~ A ( G ) .  By 

L e m m a  6, then,  v ~ is divided on the right by z l  - 1. I f  we continue the  a r g u m e n t  we come to the  equa l i ty  

u(z~ - 1) = (z~ - 1)v" for some element  v" .  By L e m m a  6, u is divided on the  left by z~ - 1, which 

cont rad ic t s  the  condi t ion imposed  on u. The  corollary is proved.  

2. P R O O F  O F  T H E O R E M  1 

2.1. I t  suffices to prove the  theorem for the case where a free solvable p ro-p-group  has  finite rank.  Indeed,  

let F be  a free solvable p ro-p-group  of derived length > 3, with an a rb i t r a ry  basis  X .  Let { X j / j  E 3"} 

be the  collection of all finite subsets  of  X ,  consisting of  a t  least two elements.  Consider  the canonica l  

h o m o m o r p h i s m s  rj  : F --4 Fj  = (Xj / .  By definition, z r j  : z ,  if z E X j ,  and z r j  : 1 if z E X \ X j .  Let  

be a n o r m a l  a u t o m o r p h i s m  of  F .  Then  the restr ict ion of  ~0rj to Fj wi]] be a n o r m a l  a u t o m o r p h i s m  of  the  

g roup  F j .  Assume  tha t ,  for each j ,  t ha t  a u t o m o r p h i s m  is inner and equals ~ ,  where  f j  E F j .  There fo re ,  if 

f is a s a tu r a t i on  poin t  of  the  set { f j  / j E J} ,  then ~o : / .  

2.2. Assume  t h a t  a free solvable pro-p-group  F of der ived 

Let  A = F / F  (~-1) and  a l , . . . ,  a~ be canonical  images in A 

A is a free solvable p ro -p -g roup  of  derived length k - 1, 

a u t o m o r p h i s m  of  F .  For k = 3 by L e m m a  1 and  for k 

length k > 3 has finite basis X = { z l , . . . ,  z,~}. 

of  the e lements  a~l , . . .  , 2~t , respect ively.  T h e n  

with basis { a l , . . . , a ~ } .  Let  ~o be  a n o r m a l  

_> 4 by the  induct ive  hypothesis ,  then ,  t h a t  

a u t o m o r p h i s m  induces an  inner a u t o m o r p h i s m  on the group  A. The  ~o modified to  an  inner a u t o m o r p h i s m  

induces an  iden t i ty  m a p  on A. Conjuga t ion  by e lements  in F equips F (k- l )  with the  s t ruc ture  of  a Z n A -  

module .  T h e  a u t o m o r p h i s m  ~ preserves submodules  of  t ha t  module.  Therefore ,  if t is a nontr iv ia l  e l ement  

of  F ( k - 1 ) ,  t h e n  = where  e ZpA.  Let m Se a natura l  n u m b e r  and  (t(a  - = t(a  - 

e Z , A .  S ince  - = - 1) = t (al - 1) and  the  Z , A - s u S m o d u l e  g e n e r a t e d  by  is 

free, we have  w ( a l  - 1) '~ = (a l  - 1)'~v. For any na tu ra l  m,  therefore,  the e lement  zo(al - 1) '~ is d iv ided  in 

Z p A  on the  left by (a l  - 1) m. By the corollary to L e m m a  6, we have w E Zp(a i ) .  Likewise we can  asser t  

t h a t  w E Zp(a~_), whence zv E Zp. If  we app ly  L e m m a  2 to a free solvable p ro -p -g roup  F (k-2) of  der ived  

length 2 we ob ta in  w = 1. By L e m m a  3, the restr ict ion of ~0 to F (k-2) is a con juga t ion  by some e lement  in 

F (k - l ) .  Modifying the  ~o again  makes  it act  identically on F (k-2). By  L e m m a  4, then,  the a u t o m o r p h i s m  

~0 is an  iden t i ty  map .  T h e o r e m  1 is proved. 
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3. P R O O F  O F  T H E O R E M  2 

Let P be an abstract  free solvable group of derived length k ~ 2, with basis X ,  and let ~a be a p-normal 

automorphism of P .  We break up the proof into a number of stages. 

3.1. Theorem 2 reduces to the case of a group of finite rank. Indeed, if Z l , . . . ,  z,n are distinct elements 

in X ,  rn ~_ 2, then there exist z m + 1 , . . . , z n  E X such that  ( z l , . . . , z m ) ~ a  ~ ( z l , . . . , z f , ) .  Represent 

the group ( z l , . . . ,  z,,) as the factor group P / H ,  where H is a normal subgroup of P ,  generated by all 

elements z E X \ { Z l , . . . ,  z,,~. In view of tha t  representation, ~o induces a p-normal automorphism on 

the group ( z l , . . . ,  z,~). Assume that  this automorphism is a conjugation by some element in P / H ,  letting 

f (f E (ZI,..., Z~)) be a representative of the corresponding coset w . r . t . H .  Pu t  ~b = ~a/-I .  We claim that  

~b is an identity automorphism. By construction, ~b acts identically on the elements z l , . . . ,  zm. Let z E X.  

By the above argument,  for some e lement /1  ( f l  G P) ,  the restriction of ~ to ( z l , . . . ,  z,,, z) coincides with 

/1. The e l ement /1  then centralizes a subgroup (Zl , . . . ,  z,n). It is trivial to mention that  the central;~.er of 

that  subgroup is equal to 1 for rr~ ~_ 2. Consequently, z ~  = 1 and ~o : / .  
Thus, let X = { z l , . . . ,  z,,~ be a finite set and F be a completion of the group F in the pro-p-topology. 

Then F is a free solvable pro-p-group of derived length k, with basis X,  and F is embedded in F .  The 

automorphism ~o is uniquely extended to a normal automorphism of the pro-p-group F ,  which we denote 

by ~. 

3.2. Let k = 2. The group A = iw/Ft is a free Abelian pro-p-group with basis { a l , . . .  ,a~}, where 

a~ denotes the canonical image of an element z~ in A. The group A = P /P~  is an abstract  subgroup of 

A, generated by elements a l , . . .  ,a~. Recall that  F t can be treated as a topological ZpA-module, and Pt 

- -  as an abstract  ZA-module.  Let r be a nontrivial element of pt .  Then r : ~to, where to G ZA. The 

description of normal automorphisms of a free solvable pro-p-group of derived length 2 (see [2]) implies 

that  w = I rood A(A), and if w G A, then ~ is an inner automorphism of F.  In our case, the element w 

is invertible in the ring ZA, whence to = •  where a G A. The congruence to ---- I rood A(A) yields the 

equality to = a. If ~ = / ,  where / E F, then / --- a mod F I. 

3.3. Let k ~ 2. Prom the preceding subsection (for k : 2) and Theorem 1 (for k ~ 3), it follows that  

is an inner automorphism of F.  Let ~ = / ,  where f E F.  By 3.2, an element f modulo F t is comparable 

with some element of F .  We prove that  f E P.  By induction, assume that  / modulo F (k - l )  is comparable 

with some element in P.  This allows us to reduce our problem to the case where f G F (~- 1). 

Further, with the notat ion used in 1.2, consider the Magnus embedding for a group F ,  introduced 

therein. Recall that  the group F(~-1) is identified with an additive subgroup of the ZpA-module Y. 

Let ~" be an abstract  Z.4-module (With .4 = p / p ( k - 1 ) ) ,  generated by Yl,-..,Y,~. By [5], the element 

V~ul+" .+V,u.~ o f Y  (resp., of i2)  lies in F ~-1 (resp., in pr  and only if (a~-1)u1-{-- . - -{-(a , -  1)u,~ = 0. 

Let f = y~ul + ""  + !l~,u,~. If a is an arbitrary element of .4 and h an element of F whose projection 

onto A is equal to a, then a - l ( a ~ - l )  = a - ~ / a / - ~  = / ( a  - 1). Since a - ~ ( a ~ - l )  G p (~- l ) ,  we have 

u l ( a -  1), . . . ,  u ,~ (a -  1) 6 Z.4. If we succeed in proving that this implies U l , . . . ,  u,, G Z.4, it will foUow that  

f E F(~-~) and ~o is an inner automorphism of the group F.  For the proof of the theorem to be completed, 

we are thus left to validate the following: 

L E M M A  7. Let P be an abstract free solvable group of derived length/~ _> 1, with basis { Z l , . . . ,  z,,}, 

and let F be its pro-p-completion. If 0 ~ u G ZpF, and for any / ~ F,  u ( / -  1) G Z-~, then u 6 Z F .  

P r o o f .  Let k = 1, that  is, P and F are Abelian. The map z~ ---* 1, z2 ~ z2 , . . . , z ,~  --* z ,  yields 

endomorphisms of the rings Z F  and ZpF, whose kernels are the ideals z P .  (z l  - 1) and Z p F - ( z t  - 1), 

respectively. It foUows that  Z F  ~ Z~F .  (Zl - 1) = Z F - ( z x  - 1). Since u(z~ - 1) 6 Z F ,  there exists an 
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element u' 6 Z~ 6 such that  u(zt  - 1) = u'(zx - 1). Then u = u' 6 Z~'. Note that  in the argument above, 

use has not been made of / r  being of finite rank. 

Let k > 2 and 1 ~ b 6 /~(t-1). The element u ( b -  1) lies in Z F ,  and so it has a representation 

u ( b -  1) = fxvx + "'" + fray,,, where fi are dements of F ,  representatives of distinct cosets w.r.t, the 

subgroup /~(k- t )  0 ~ vl 6 Z F  (~-*). We prove that  u = f t u t  + "'" + f ,  tu, ,  for some ui 6 ZpF (~-t). To 

( A 0 ) .  Let { U j / j E J }  do this, again we consider the Magnus embedding of the group F in G = Y 1 

be the collection of open normal subgroups of A, forming the base of neighborhoods of unity. Put  Aj = 

and Gj = ( Aj 0 ) where 1 ~ i s a  free ZpAj-module with basis {~/~J), ,~/0)}. The canonical A/Uj  
]~ I . ' "'" 

homomorphism A --* Aj and the map ~]1 " - +  Y~J),-'', Yn " - *  Y(J) determine a homomorphism ~-j : G --* Gj. 

Let Fj : Frj .  Then F j / F  (~- t )  is a finite p-group. The homomorphism ~'j induces a homomorphism of 

group algebras ZpF --, ZpFj, which we denote by the same symbol r i .  If the element u does not have 

the requited representation, then, for some index j 6 J ,  we have urj = hlwl  + . . .  + htwh where h/ 
m( ~-t ) Z1,F(k- 1), are dements  of Fj ,  representatives of distinct cosets w.r.t, t he  subgroup . y  , 0 # wi 6 

and, for instance, the coset h t F  (~- t )  is distinct from the cosets flT"j- F(k-1) , . . . , fmT"i .  F (k- t ) .  We also 

assume that  c : brj # 1. The group algebra ZpF (k- t )  has no zero divisors, and so wi(c - 1) # 1. Then 

hlW,(c - 1) + - - -  + htwl(c - 1) # (flvl)~'j + " "  + (fr,,v,n)rj : (u(b - 1))rj. We are led to a contradiction. 

Thus, there exist elements ui 6 ZpF (k-O such that u = f t u t  + - - -  + / m u m .  For any uontrivial element 

b 6/~(~-*), we have u(b - 1) 6 Z/~(~-1), whence u/(b - 1) 6 Z F  (~-t). Since i ~(k-*) is Abellan, u/ 6 Z F .  

This proves the lemma, which completes the proof of Theorem 2. 
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