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We have investigated the transmission of an electron in quasi-one-dimensional systems in the presence of
nonuniform magnetic fields. The subband energy and the wave function in a magnetic field, whose strength
varies parabolically in the transverse direction, are calculated. This model is expected to describe a composite
fermion in quantum wires. The parabolic magnetic field is found to increase the band-edge energies and modify
the probability distribution significantly. When a moderate negative offset magnetic field is added, the subband
energy takes a minimum value for a finite parabolic magnetic-field strength and the wave function of the lowest
subband is double peaked. We have calculated magnetic-field dependencies of the bend resistance and the Hall
resistance in a cross junction, in which the parabolic magnetic field is assumed. The positions in magnetic field
of the peak in the bend resistance due to ballistic transport and of the zero Hall resistance are shifted and
generally do not coincide as the parabolic field is imposed. We also examine the conductance of quantum wires
in the presence of random magnetic fields. The nonuniform magnetic fields lead to universal conductance
fluctuations in the metallic regime and to exponential decay of the conductance as the length is increased in the
localized regime. In contrast to the impurity scattering case, the localization length is found to be smaller for
larger average magnetic fields.

I. INTRODUCTION

Electron transport in nonuniform magnetic fields has at-
tracted much attention in recent years.1 It has been found that
random magnetic fields lead to the localization of electronic
states in quasi-one-dimensional~quasi-1D! systems.2 The lo-
calization in two-dimensional~2D! systems in the presence
of the random magnetic field with zero mean value is now
under intensive investigation. The situtaion is closely related
to the fractional quantum Hall state of the 2D electron gas at
the filling factor n5 1

2. The theory by Halperin, Lee, and
Read3 predicts nearn5 1

2 the presence of a certain type of
Fermi liquid of composite fermions~CF’s!, which are elec-
trons with two magnetic flux quanta attached to each of
them. The effective magnetic field in the mean-field approxi-
mation acting on the CF isDB5B24p\ns /e, wherens is
the density of the electrons. The flux quanta cancel out the
external magnetic fieldB at n5 1

2, leading to the appearance
of the well-defined Fermi surface.3 It has been argued that
fluctuations of the Chern-Simons gauge field from the mean
value may result in a partial breakdown of the Fermi
liquid.3,4

In this paper, we investigate effects of nonuniform mag-
netic fields on electronic states in quantum wires. We first
consider a case, where the magnetic field is assumed to be
nonuniform in the transverse direction, whereas it is uniform
in the longitudinal direction. The transport is hence antici-
pated to be ballistic in this situation. Our calculation is re-
lated to a recent experiment,5 in which ballistic transport of
the CF has been investigated in narow crossed-wire junc-
tions. The amplitude of the dip in the bend resistanceRB due
to the CF was considerably large despite the fact that the
mean free path of the CF was an order of magnitude smaller
than that of the electrons.5 It was also found5 that the ratio of
the widths of the negative resistance dip in magnetic field

nearn5 1
2 and nearB50 was much larger compared to the

theoretically3 expected value ofA2. These observations sug-
gest that the channel width for the CF’s is narrower than that
for the electrons. In wires defined by means of lateral deple-
tion, the carrier density decreases gradually near the bound-
aries of the channel in the transverse direction. Therefore, the
CF will feel a finite effective magnetic field near the smooth
channel boundaries even whenDB is adjusted to be zero at
the center of the channel.6,7 The varying effective magnetic
field may result in narrowing the effective channel width for
the CF. We examine the electronic states in quasi-1D wires in
the presence of magnetic fields that are parabolic in the trans-
verse direction. It is found that the transverse wave function
is strongly influenced by the magnetic field. We calculate
RB and the Hall resistanceRH in a crossed-wire junction, in
which the parabolic magnetic field is assumed. We show that
the magnetic fields at which the peak inRB takes place or
RH50 are shifted due to the parabolic magnetic field and
they do not coincide. The shift inB may thus be utilized to
deduce the strength of the nonuniform effective magnetic
field for the CF.

We then investigate the conductance of quasi-1D wires in
the presence of random magnetic fields. Because of the non-
locality of quantum-mechanical propagation of an electron, a
weak-localization correction to the conductivity emerges
when the phase coherence length exceeds the length scale
over which the magnetic field is uniform.8,9 Effects of a ran-
dom magnetic field on the electronic states are expected to
play an important role in the composite fermion theory of the
fractional quantum Hall states.3,4,10We study the effects of
the scattering from the random magnetic fields in a simple
model. The magnetic field is assumed to be randomly modu-
lated in the direction along the wire whereas it is uniform in
the transverse direction. The behaviors of the localization
length and the conductance fluctuations are examined for
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different values of the average magnetic field.

II. ELECTRONIC STATES IN QUANTUM WIRES

Let us first consider a particle in narrow wires defined by
a parabolic confinement potentialV(y)5(1/2)mv0

2y2,
wherem is the effective mass of the particle. The effective
mass of the CF has been found11 to increase drastically as
n→ 1

2. However,m is assumed to be independent of magnetic
fields throughout this paper. We also assume the presence of
a parabolic magnetic fieldB(y)5B01B2y

2. In the semiclas-
sical approximation, the deviation of the carrier density from
the value at the center of the channel isDn(y)
5(m/2p\2)V(y). Here, we have assumed the spin-polarized
2D density of states. Therefore, the effective magnetic field
for the CF may be approximated by the parabolic magnetic
field with B25m2v0

2/\e. This approximation is valid6,7

when the length scale of the potential variation is larger than
the magnetic lengthl B5(\/eB)1/2. We have included
B05B2B1/2, whereB1/254p\ns /e. The Hamiltonian is
thus given as

H5
1

2m S px1eB0y1
eB2
3

y3D 21 py
2

2m
1
1

2
mv0

2y2. ~1!

The Schro¨dinger equation for a particle with the Fermi en-
ergyEF is

F2
d2

dr2
1~k1b0r1b2r

3!21r2Gw~r!5«w~r!, ~2!

where r5(mv0 /\)
1/2y, k5(\/mv0)

1/2k, «52EF /\v0 ,
b05eB0 /mv0 , andb25\eB2 /3m

2v0
2 . The wave function

is given in separable form asC(x,y)5eikxw(y). The effec-
tive potential for the particle incorporating the effect of the
magnetic field is

Veff~k,r!5~k1b0r1b2r
3!21r2. ~3!

Müller12 has investigated the effect of an antisymmetric
magnetic field and found that the time-reversal symmetry is
broken. One can see in Eq.~3! that this symmetry is con-
served in our case as we consider the symmetric magnetic
field. We expand the transverse wave functionw(r) in terms
of the solutions for b05b250, i.e., w(r)5(cjf j (r),
where f j (r) are the oscillator function. Then, Eq.~2! is
reduced to a set of equations:

(
j

@~«2k222 j21!d j l22kb0^r& j l2b0
2^r2& j l

22kb2^r
3& j l22b0b2^r

4& j l2b2
2^r6& j l #cj50, ~4!

where

^rs& j l5E
2`

`

Hj~r!rsHl~r!e2r2 dr, ~5!

with Hj (r) being the Hermite polynomials.
For the CF, we obtainb25

1
3 within the above-mentioned

approximation. However, we shall considerb2 as a param-
eter in the following discussion. In Fig. 1, the band-edge
energies, i.e.,«n for whichkn50, are plotted as a function of

the magnetic fieldb2 . We show the results whenb0521, 0,
and 1, which correspond to cases for the CF when the filling
factor at the center of the channel isn. 1

2, n5 1
2, andn, 1

2,
respectively. Equation~2! is exactly solvable13 whenb250
with the solution«n

05(11b0
2)1/2(2n11). The corrections to

thenth threshold energy up to the order ofb2
2 are obtained as

«n5«n
01

b0b2

11b0
2F1~n!1

b2
2

~11b0
2!3/2

F2~n!

2
b0
2b2

2

~11b0
2!3

F3~n!, ~6!

where F1(n)5(3/2)(2n212n11), F2(n)5(5/8)(4n3

16n218n13), and F3(n)5(1/4)(34n3151n2159n
121!. The result of the perturbation calculation is shown in
Fig. 1 by thin solid lines. The subband edge is increased in
energy by the magnetic field compared to the zero-field case.
This can be interpreted to mean that the effective channel
width for the CF gets narrower than that for the electrons due
to the varying magnetic field. Whenb0b2,0, both positive
and negative magnetic-field regions are present in the wire.
In this situation, the subband energy is found to take a mini-
mum value at finiteb2 though the minimum value is still
larger than the subband energy in the absence of magnetic
field. The value ofkn

2 is shown in Fig. 2 for«56. At
b05b250, kn

25«2(2n11). We find numerically that the
wave vector is either purely real or purely imaginary,14 and
so Imkn

250. Magnetic depopulation of the subband takes
place whenkn

250.
The transverse wave function of the lowest four subbands

for «56, b050, andb250.5 is shown in Fig. 3. Although
the magnetic field is zero at the center of the channel, the
wave functions shifts towards the right-hand side due to Lor-
entz force for the positive values ofkn as obviously seen for
the lowest subband. In the parabolic magnetic field, Lorentz

FIG. 1. Threshold energy«n of the lowest three subbands as a
function ofb2 . The values ofb0 for the solid, dotted, and dashed
lines are 0, 1, and21, respectively. The thin solid lines show results
of the perturbation calculation.
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force gets stronger as the electron is pushed further away
from the center of the channel. The confinement is, however,
imposed because of the parabolic potential. Forb0b2<0, the
magnetic field becomes zero atr56(2b0 /3b2)

1/2

56r0 . The direction of the Lorentz force is, therefore, re-
versed around the center of the channel and near the bound-
aries. The variation of the wave function of the lowest mode
whenb0 is varied is shown in Fig. 4. Forb0,0, the prob-
ability distribution around the center of the channel is shifted
to the negative direction ofr by the reversed magnetic field
as illustrated in the inset of Fig. 4, creating a second peak in
the vicinity of r52r0 . The second peak corresponds to the
trajectories confined about the region whereB(x)50 dis-
cussed by Mu¨ller.12 The two peaks become comparable in
amplitude whenb0;20.5. The peak at negativer eventu-
ally becomes dominant whenb0 is further decreased as the
magnetic field in the region where the particle is present
becomes entirely negative.

The position of the peaksrpeak and the widthDr of the
wave function at 10% of the maximum are plotted in Fig. 5.
As the parabolic magnetic field is applied, the peak position
is significantly shifted even whenb2 is small. The distribu-
tion initially becomes broader due to the large shift of the
peak position. Whenb2.0.4, rpeak is nearly independent of
b0 and gradually approaches zero as the wave vector is sup-
pressed in the large magnetic field. For the largeb2 , Dr is
smaller than that in the zero magnetic field, indicating that
the probability distribution is squeezed by the magnetic field.

III. TRANSMISSION IN CROSS JUNCTIONS

In relation to the experiment5 of the negative bend resis-
tance phenomena of the CF, it should be mentioned that the
calculation in the previous section deals with the distribution

FIG. 2. Values of the real part ofkn
2 as a function ofb2 . The

imaginary part is zero. The values ofb0 for the solid, dotted, and
dashed lines are 0, 0.5, and -0.5, respectively.

FIG. 3. Transverse wave function of the lowest four subbands
for «56, b050, andb250.5. The imaginary part is zero for the
propagating modes (n50 and 1!.

FIG. 4. Transverse wave function of the lowest subband for
different values ofb0 . Curves are offset for clarity. Inset: The di-
rection of Lorentz force, indicated by the arrows, changes across the
channel whenb0b2,0.

FIG. 5. Position of the peaksr peak and the width of the wave
function at 10% of the maximumDr as a function ofb2 for
b050.0 ~solid line!, 0.5 ~dotted line!, and20.5 ~dashed line!.
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of the injected carriers into the cross region. Ballistic trajec-
tories in the cross region are also altered by the varying
magnetic field. This will seriously affect the magnetic-field
dependence of the negative bend resistance. The localization
of trajectories about the line where the magnetic field is zero
may enhance the forward transmission in the cross geometry.
In this section, we investigate the four-terminal resistances in
narrow crossed-wire junctions in the presence of the nonuni-
form magnetic field.

Consider a cross junction of straight wires shown in Fig.
6. We divide the crossed-wire junction into four regions and
assume the presence of a parabolic confinement potential

V~x,y!5H EFS 2yW D 2, uxu>uyu,

EFS 2xW D 2, uxu,uyu,
~7!

and a parabolic magnetic field

B~x,y!5HB01B2y
2, uxu>uyu,

B01B2x
2, uxu,uyu.

~8!

Here,W is the width of the wire at the Fermi energyEF . The
bend resistanceRB and the Hall resistanceRH in the sym-
metric cross junction are given in terms of the transmission
probabilities as

RB5
V2→3

I 1→4
5

h

2e2
TLTR2TF

2

~TL1TR!$~TF1TL!21~TF1TR!2%
,

~9!

RH5
V4→2

I 1→3
5

h

2e2
TR2TL

~TF1TL!21~TF1TR!2
, ~10!

whereTL , TF , andTR are the transmission probabilities into
the left, front, and right probes, respectively. We have em-
ployed the billiard model15 and the lattice Green’s-function
technique16,17 to calculate the transmission probabilities.

In the billiard model, the electrons are injected from a
lead into the cross region and the transmission probabilities
are obtained by counting the number of classical trajectories
absorbed by each lead. As we have shown in the prevoius
section, the probability distribution for the injection of the
carriers into the cross region cannot be easily obtained in the
presence of the parabolic potential and the nonuniform mag-
netic field. Therefore, we have assumed that the cross region
of the width and the lengthW is connected to uniform leads
of a square-well confinement potential andB50. This allows
us to use simple analytic distribution functions for the injec-
tion of the carriers. The abrupt change of the potential and
the magnetic field does not scatter the carriers in the classical
calculation, and so the results, at least qualitatively, do not
depend on this particular choice of the injection.15 Some of
the characteristic trajectories whenB0B2,0 are plotted in
Fig. 6. The curvesc and e indicate localized trajectories
around one of theB50 lines that correspond to the peak
near2r0 in Fig. 4, whereas the curveb represents the edge
state corresponding to the peak atr.0 in Fig. 4.

The transmission probabilities andRB are plotted as a
function of the offset magnetic fieldB0 in Figs. 7~a! and
7~b!, respectively. In the absence of the parabolic magnetic
field, the diameter of cyclotron orbits 2\kF /eB0 becomes
less than the width of the wire wheneWuB0u\kF.2, and so
TF'TL'0 andRB disappears in the high magnetic field.
With increasingB2 , the position of the maximum forward
transmission inB0 deviates from zero. However, this shift of
the forward transmission peak is less reflected in the shift of
the dip inRB . We find that a significant number of carriers
are backscattered nearB050 whenB2Þ0. The increase of
TB is effectively equivalent to reducing the number of trans-
mission channels. Consequently, the suppression of the am-
plitude of the dip inRB nearB050 is less pronounced. Nev-
ertheless, the dip inRB is shifted to negative values ofB0 as
B2 is increased. The vanishingRH takes place when
TL5TR . Therefore, the positions inB0 for the dip inRB and
for RH50 generally do not coincide.

We have also calculated the quantum-mechanical trans-
mission probabilities using the lattice Green’s-function tech-
nique. The cross junction is simulated by a square lattice and
the magnetic field is incorporated in the form of the Pierls’
phase factor in the nearest-neighbor hopping elements. The
vector potential that we have employed to describe the non-
uniform magnetic field is given in the Appendix. The results
of the fully quantum-mechanical calculation is shown in Fig.
8. In this calculation, the potential enegy outside the wire of
widthW is taken to be infinitely large. Similar to the classi-
cal calculation, the dip inRB shifts to lowerB0 as B2 is
increased. In high magnetic fields,RB becomes zero and
quantum Hall plateaus are developed inRH . It is again
found tht the dip inRB does not coincide with the vanishing
of RH .

Our results show that the parabolic magnetic field in the
junction of straight wires lead neither to the enhancement of
the peak amplitude inRB nor to the broadening of the peak
in magnetic field, which have been observed in the

FIG. 6. Typical classical orbits in a cross junction in the para-
bolic magnetic field whenB0B2,0. Skipping orbit (b), snake orbit
(c and e!, and traversing orbit (a and d!. Four leads are labeled
1–4.
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experiment.5 It should be mentioned, however, that the car-
riers suffer from considerable scattering due to the abrupt
change of the magnetic field atuxu5uyu as we have not taken
into account the rounded geometry near the corners of the
junction. When the incident angle relative to theB50 line is
large, the carriers cannot be trapped by the snake orbit7,12 as
shown by the curvesa andd in Fig. 6. The presence of the
rounded geometry, and the resulting forward collimation ef-
fect, has been shown to be important for the quenching of the
low-field Hall resistance.15,16,18 If the width of the channel
widens gradually, as is the case in real samples, the guiding
of the trajectories and the forward collimation may be en-
hanced.

IV. LOCALIZATION AND CONDUCTANCE
FLUCTUATIONS IN RANDOM MAGNETIC FIELDS

Quantum interference of scattering from random poten-
tials, such as due to impurities19,20 and boundary
roughness,21 has been demonstrated to result in universal
conductance fluctuations and localization of electronic states.
The perturbation calculation22 in the weak disorder limit has
revealed that the magnitude of the conductance fluctuations
is universal and on the order ofe2/h. The exact amplitude of
the fluctuations depends on universality class for the symme-

try of systems. Compared to the zero-magnetic-field case, the
fluctuation is suppressed by 1/A2 ~if spin-orbit scattering is
absent! in the presence of a magnetic field as time-reversal
symmetry is broken. The localization effect is also sup-
pressed in magnetic fields.19,23The removal of time-reversal
symmetry has been shown to double the localization length
j in quasi-1D system in the absence of spin-orbit
interaction.24

We consider a quasi-1D wire with a uniform widthW in
the presence of a nonuniform magnetic fieldB(x) perpen-
dicular to the strip. For simplicity, the wire is decomposed
into a series of sections with an identical lengthD and the
magnetic field is assumed to be uniform in each section. The
magnetic field in sectionn is chosen asBn5Bav1dBn ,
wheredBn distributes uniformly within an interval to satisfy
\(eudBnu/m)/EF,D. To calculate the conductance of the
system, semi-infinite perfect leads withB(x)50(x,0 and
x.L! are attached to the ends of the disordered wire with the
total lengthL5nmaxD. We choose the gauge such that the
vector potentialA(x,y)5@0,Ay(x),0# is given as follows

Ay~x!55
0, x,0

Bn$x2~n21!D%1D(
i51

n21

Bi , ~n21!D,x,nD

D(
i51

nmax

Bi , x.L.

~11!

When the average magnetic fieldBav is not zero, finite wave-
guide segments are inserted between the disordered wire and
the perfect leads, in which the magnetic field is graded from

FIG. 7. ~a! Transmission probabilities and~b! bend resistance in
cross junction as a function of the strength of the uniform magnetic
field B0 calculated by classical model.

FIG. 8. Results of quantum-mechanical calculation of~a! bend
and ~b! Hall resistances in cross junction.
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Bav to zero. The dimensionless conductanceg of the system
is given by the Landauer formula

g5(
m,n

~vm /vn!Tmn , ~12!

wherevm is the velocity of the modem. The transmission
coefficientTmn is obtained from the Green’s function using a
method based on the one employed by Ando.17

We employ the tight-binding model with the site separa-
tion a. Each uniform magnetic-field section is represented by
M3N lattice sites. In the following simulations, we choose
the sample size to beM540 andN510. Two modes are
assumed to be occupied below the Fermi energy whenB50
(kFW/p52.7). The second subband is magnetically de-
pleted whenb5\(eBav/m)/EF50.65. We restrict the simu-
lation to a regime where the magnetic field is considerably
smaller than the depletion threshold. The correlation length
of the random magnetic field is thus smaller than the cyclo-
tron radius, and so electrons feel short-range disorder. We
have taken the average over 50 samples. The parameters are
chosen such thatlF /a'30 and the magnetic flux threading
through a unit cell is, at the maximum, 0.1% of the magnetic
flux quantumh/e, and so we expect that our conclusion
remains unchanged in the continuum limita→0.

It has been suggested that all states in two dimensions are
localized in a random magnetic field with zero average.2 Ac-
cording to the random-matirx theory, the conductance of an
Nc-channel elastic scattering system is obtained as25

g5(
i51

Nc 4

cosh~n i !11
, ~13!

where n i52L/j i . When the localization is strong, where
1!n1!n2!•••!nN , we expect g}exp(2n1)
}exp(22L/j). The average conductance exp(^ ln(g)&) is
plotted in Fig. 9 as a function of the lengthL of the wire.
After the initial rapid decay, the conductance decreases with
a single exponential decay constant as the length becomes
longer than the localization lengthj. The localization is ob-
viously enhanced asD is increased. Analytical calculations
using the random-matrix theory24 and numerical simulations
assuming random impurities19,23 indicate thatj increases
with increasing magnetic field. However, the localization
length deduced from the slope becomes smaller whenB av is
increased as shown in the inset of Fig. 9. Therefore, the
effect of the random magnetic field becomes significant as
Bav deviates from zero. This may be partly due to a reduction
of the elastic mean free pathl e in higher magnetic fields23

since j'Ncl e ~Ref. 26!. It is suggested thatdB is not an
appropriate parameter to measure the disorder for different
values ofBav.

The root-mean-square deviation of the conductance is
shown in Fig. 10. In the weak disorder regime, the amplitude
of the fluctuations is found to be universal atDg50.3–0.4
~corresponding to the conductance fluctuations;0.7e2/h),
in agreement with the perturbation calculation for impurity
scattering in the absence of a magnetic field. The fluctuation
is reduced when the average conductance becomes consider-
ably smaller in the localized regime. Because of the limited
number of samples, it is not clear if the suppression of the

fluctuations due to breaking time-reversal symmetry takes
place in the present simulation. We find that the distribution
of ln(g) is well described by a Guassian. The variance of
ln(g) is plotted in Fig. 11. It has been suggested that the
variance of ln(g) in general disordered systems is given in
the limiting case as var@ ln(g)#}(L/ l e)

g with g52 or 1 for
L! l e or L@ l e , respectively.

27 However, we findg}1.8,
which is in between the two limiting values, over the entire
range ofL irrespective ofD andBav.

V. CONCLUSIONS

In conclusion, we have calculated the electronic subbands
in quantum wires in the presence of parabolic magnetic

FIG. 9. Average conductance exp@ ln(g)# as a function of the
length L of the wire. The verticle bars indicate the localization
lengths. In the inset, the localization lengthj is plotted as a function
of the average magnetic fieldb5\(eBav/m)/EF for D50.1
~circles! and 0.15~triangle!.

FIG. 10. Root-mean-square deviation of the conductance,
Dg5@(g2^g&)2#1/2, as a function of the lengthL of the wire.
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fields. For a parameter expected to be relevant to the com-
posite fermions~i.e., b2'

1
3), the probability distribution is

squeezed in the transverse direction and the threshold energy
is increased compared to the zero-magnetic-field value.
These findings indicate that the effective channel width for
the composite fermions is narrower than that for the elec-
trons if the simple model of the varying effective magnetic
field we have employed here is reasonable. If the quantized
conductance of the composite fermions is observed, the shift
in the threshold energy due to the unbalanced magnetic field
will be of significant importance. When a negative offset
magnetic field is imposed, the wave function can have two
peaks: one near the channel boundary and the other near the
boundary between positive and negative magnetic field re-
gions. As the double peak does not appear when a positive
offset is added, the magnetoresistance of the composite fer-
mions in narrow wires is expected to be asymmetric with
respect ton5 1

2. We have confirmed this by the classical and
the quantum-mechanical calculations of the four-terminal re-
sistances in a crossed-wire junction. It is indicated that the
shape of the negative bend resistance dip is modified in the
presence of the parabolic magnetic field. The deviations of
the positions of the dip of the bend resistance and the van-
ishing Hall resistance in magnetic field can be utilized to
probe the varing effective magnetic field for the composite
fermions. In addition to the nonuniform magnetic field due to
variation of carrier density in confined systems, the compos-
ite fermion experiences random magnetic fields due to the
Chern-Simons gauge field. We have numerically calculated
the conductance of quasi-one-dimensional wires in the pres-
ence of one-dimensional random magnetic fields. The effect
of the fluctuation of the magnetic field becomes significant as
the average magnetic field is increased.
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APPENDIX

We compute the quantum transmission probabilities using
the lattice Green’s-function technique. We simulate the
sample by a square lattice with the site separationa. The
Schrödinger equation is reduced to a tight-binding Hamil-
tonian for a square lattice with nearest-neighbor interactions:

H5( « i u i &^ i u1(
n.n.

Ui j u i &^ j u, ~A1!

where the on-site energy at the sitei5(m,n) is « i524t
with t52\2/2ma2. In the presence of the magnetic field,
the hopping elementsUi j are given by

Ui j5texpS 2 ieE A dl/\ D . ~A2!

The required elements of the Green’s function are calculated
using the recursive technique based on the Dyson equation:

G5G01G0VG5G01GVG0 , ~A3!

where the Green’s functionG of a system in the presence of
a perturbationV is related to the Green’s functionG0 in the
absence ofV. In the perfect lead, the wave functionun(q) of
thenth mode is given by

un~q!5Cnexp~ ieAqa/\!sin@npq/~M11!#, ~A4!

whereM is the number of the sites in the transverse direc-
tion, i.e.,W5(M11)a. We have assumed the presence of a
constant vector potentialA5(0,A,0). The normalization co-
efficientCn is

Cn5FM2 1
1

2
ReS 12ei2pnM/~M11!

12e2 i2pn/~M11! D G1/2. ~A5!

The wave vectorkn in the x direction is given by

2t@12cos$np/~M11!%#12t@12cos~kna!#5EF .
~A6!

The velocity of the modem is given asnm5sin(kma).
In the remainder of this Appendix, we describe the vector

potentialA that we have employed in our simulation of the
cross junction. The parabolic magnetic field in the symmetric
cross junction given by Eq.~8! can be represented by the
vector potential:

A~x,y!5H ~2 1
2B0y2 1

4 B2y
3, 12B0x1 1

4B2xy
2,0!, uxu>uyu

~2 1
2B0y2 1

4B2x
2y, 12B0x1 1

4B2x
3,0!, uxu,uyu.

~A7!

Generally, the transmission coefficients are obtained from the
Green’s function. However, the relation between the trans-
mission coefficients and the Green’s function is not simple in
the presence of the magnetic field. Moreover, one needs to
know the Green’s function of semi-infinite leads, in which
the vector potential is given by Eq.~20!, for the recursive
calculation. This is obviously not easily calculated. In the
absence of the magnetic field, the transmission coefficients
are simply given as a projection of the Green’s function onto
the transverse wave function. Therefore, we terminate the

FIG. 11. Variance of ln(g) as a function of the lengthL of the
wire. The fluctuation increases as var@ ln(g)#}Lg with g'1.8.
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cross junction by semi-infinite leads, in whichB50. Con-
trary to the classical case, the abrupt change of the magnetic
field results in quantum-mechanical reflection. To suppress
the scattering at the interface, we insert waveguide sections
between the cross junction and theB50 leads, in which the
magnetic field is graded from the value in the cross junction
to zero. In the following, we focus on the vector potential in
the lead 3 in Fig. 6. The vector potential in other leads is
similarly obtained. We assume that the magnetic field de-
creases linearly in the lead with the lengthl attached to the
cross junction atx5d, i.e., B(x,y)5(B2y

21B0)(d1 l
2x)/ l . The vector potential to describe this magnetic field is

A~x,y!5F2S 12B01
1

4
B2y

2D y d1 l2x

l
,

2S 12B01
1

4
B2y

2D y x~x22d22l !1d2

2l
,0G

~d<x<d1 l !. ~A8!

One finds that the vector potential in the zero-magnetic-field
lead is not zero and is given as

A~x,y!5F0,S 12B01
1

4
B2y

2D S d1
l

2D ,0G ~x>d1 l !.

~A9!

The wave function of thenth mode in the semi-infinite lead,
which is necessary to calculate the Green’s function, is given
using the Gauge transformation as

Cn~x,y!5expF2 i
e

\ S d1
l

2D S 12B01
1

12
B2y

2D yGeiknxun~y!

~x>d1 l !, ~A10!

whereeiknxun(y) is the wave function whenA50.
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