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Electronic states in quasi-one-dimensional wires with nonuniform magnetic fields
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We have investigated the transmission of an electron in quasi-one-dimensional systems in the presence of
nonuniform magnetic fields. The subband energy and the wave function in a magnetic field, whose strength
varies parabolically in the transverse direction, are calculated. This model is expected to describe a composite
fermion in quantum wires. The parabolic magnetic field is found to increase the band-edge energies and modify
the probability distribution significantly. When a moderate negative offset magnetic field is added, the subband
energy takes a minimum value for a finite parabolic magnetic-field strength and the wave function of the lowest
subband is double peaked. We have calculated magnetic-field dependencies of the bend resistance and the Hall
resistance in a cross junction, in which the parabolic magnetic field is assumed. The positions in magnetic field
of the peak in the bend resistance due to ballistic transport and of the zero Hall resistance are shifted and
generally do not coincide as the parabolic field is imposed. We also examine the conductance of quantum wires
in the presence of random magnetic fields. The nonuniform magnetic fields lead to universal conductance
fluctuations in the metallic regime and to exponential decay of the conductance as the length is increased in the
localized regime. In contrast to the impurity scattering case, the localization length is found to be smaller for
larger average magnetic fields.

I INTRODUCTION nearv=3 and neaB=0 was much larger compared to the

Electron transport in nonuniform magnetic fields has attheoretically expected value off2. These observations sug-
tracted much attention in recent yeaishas been found that 9€St that the channel width for the CF's is narrower than that
random magnetic fields lead to the localization of electronid® the electrons. In wires defined by means of lateral deple-

states in quasi-one-dimensiorigliasi-10 systemg The lo- t|o_n, the carrier dengity decreases gra(_jual!y near the bound-
calization in two-dimensionai2D) systems in the presence 21€S _of the chgqnel in thg transversg dl_rect|on. Therefore, the
of the random magnetic field with zero mean value is nowCF will feel a finite effective magnetic field near the smooth
ghannel boundaries even whar is adjusted to be zero at
to the fractional quantum Hall state of the 2D electron gas aihe center of th? chann%_['. The varying effective maQ”et'C
the filling factor »=1. The theory by Halperin, Lee, and field may result in narrowing the_effectlve.chann.el W|dth for.
Read predicts neaw=1 the presence of a certain type of the CF. We examine the.elgctronlc states in quasi-1D wires in
Fermi liquid of composite fermionéCF's), which are elec- the presence of mggnetlcflelds that are parabolic in the trans-
trons with two magnetic flux quanta attached to each olverse direction. It is found that the transverse wave function

them. The effective magnetic field in the mean-field approxi-'RS, s;qo dn?:])é 'Qzﬁerggiesgagéth?n r;acggggg df-lvevli(rjé VLYre]ngLCUiE:lte
mation acting on the CF iAB=B—4w#ins/e, whereny is B H J '

. which the parabolic magnetic field is assumed. We show that
the density of the electrons. The flux quanta cancel out th'f"he magnetic fields at which the peak Ry takes place or
external magnetic fiel@ at v=3, leading to the appearance Ry=0 are shifted due to the parabolic magnetic field and
of the well-defined Fermi surfacelt has been argued that they do not coincide. The shift iB may thus be utilized to

fluctuations of the Chern-Simons gauge field from the meagjegyce the strength of the nonuniform effective magnetic
value may result in a partial breakdown of the Fermifig|d for the CF.
liquid.>* We then investigate the conductance of quasi-1D wires in
In this paper, we investigate effects of nonuniform mag-the presence of random magnetic fields. Because of the non-
netic fields on electronic states in quantum wires. We firS]oca”ty of quantum-mechanical propagation of an electron, a
consider a case, where the magnetic field is assumed to geak-localization correction to the conductivity emerges
nonuniform in the transverse direction, whereas it is uniformwhen the phase coherence length exceeds the length scale
in the longitudinal direction. The transport is hence antici-over which the magnetic field is uniforf?. Effects of a ran-
pated to be ballistic in this situation. Our calculation is re-dom magnetic field on the electronic states are expected to
lated to a recent experimentn which ballistic transport of  play an important role in the composite fermion theory of the
the CF has been investigated in narow crossed-wire jundractional quantum Hall staté¢:*® We study the effects of
tions. The amplitude of the dip in the bend resistaRgadue  the scattering from the random magnetic fields in a simple
to the CF was considerably large despite the fact that thenodel. The magnetic field is assumed to be randomly modu-
mean free path of the CF was an order of magnitude smalldated in the direction along the wire whereas it is uniform in
than that of the electrorslt was also foundthat the ratio of ~ the transverse direction. The behaviors of the localization
the widths of the negative resistance dip in magnetic fieldength and the conductance fluctuations are examined for
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different values of the average magnetic field. 10

II. ELECTRONIC STATES IN QUANTUM WIRES

Let us first consider a particle in narrow wires defined by
a parabolic confinement potentiaV(y)z(l/Z)mwéyz,
wherem is the effective mass of the particle. The effective
mass of the CF has been fodhdo increase drastically as
v— 3. Howeverm is assumed to be independent of magnetic o
fields throughout this paper. We also assume the presence of
a parabolic magnetic fielB(y) =Bo+ B,y?. In the semiclas-
sical approximation, the deviation of the carrier density from
the value at the center of the channel ©&n(y)
=(mi27w%?)V(y). Here, we have assumed the spin-polarized
2D density of states. Therefore, the effective magnetic field
for the CF may be approximated by the parabolic magnetic
field with B,=m?w3/he. This approximation is valf’ 0.0 0.5 1.0 15 2.0
when the length scale of the potential variation is larger than
the magnetic lengthlg=(%/eB)Y2 We have included
Bo=B—B;,, where B,,=4wfins/e. The Hamiltonian is
thus given as

FIG. 1. Threshold energy, of the lowest three subbands as a
function of B,. The values of3, for the solid, dotted, and dashed

eB, 2 p2 1 lines are 0, 1, and-1, respectively. The thin solid lines show results
= + 453 4 X4 2y,2. of the perturbation calculation.
The Schtdinger equation for a particle with the Fermi en- the magnetic fielgs, . We show the results whefy=—1,0,
ergy E is and 1, which correspond to cases for the CF when the filling
factor at the center of the channelis 3, v=3, andv<3,
d? 52 respectively. Equatiof2) is exactly solvabl® when 8,=0
- WJF (k+Bop+Bop”) +p*|@(p)=e¢(p), (2)  with the solutions0= (1+ B2)Y42n+1). The corrections to

thenth threshold energy up to the orderﬁﬁ are obtained as
where p=(mw /%)Yy, k=(TImwy)Yk, &=2Er/twy,
Bo=eBy/mwg, andﬁzzﬁe82/3m2w§. The wave function BoBo B3

is given in separable form aB(x,y)=e*¢(y). The effec- en=ept 1+ 32 Fai(n)+ (1+—Bzz)3,2F2(n)
tive potential for the particle incorporating the effect of the 0 0
magnetic field is ﬁglgg
- ﬁFg(n), (6)
Veit(1,p) = (1+ Bop+ B2p®) >+ p?. 3) (1+50)

Muller*? has investigated the effect of an antisymmetricwhere F,(n)=(3/2)(2n?+2n+1), F,(n)=(5/8)(4n°
magnetic field and found that the time-reversal symmetry ist+ 6n>+8n+3), and Fz(n)=(1/4)(34°+51n2+ 59N
broken. One can see in E@) that this symmetry is con- +21). The result of the perturbation calculation is shown in
served in our case as we consider the symmetric magnetkeig. 1 by thin solid lines. The subband edge is increased in
field. We expand the transverse wave functigip) in terms  energy by the magnetic field compared to the zero-field case.
of the solutions for Bo=pB,=0, i.e., ¢(p)=2c;¢;(p), This can be interpreted to mean that the effective channel
where ¢;(p) are the oscillator function. Then, Eq2) is  width for the CF gets narrower than that for the electrons due
reduced to a set of equations: to the varying magnetic field. WheB,8,<<0, both positive
and negative magnetic-field regions are present in the wire.
o A 2, 2 In this situation, the subband energy is found to take a mini-
; [(e—x"=2]=1)8;—=2xBolp)ji = Bolp?) mum value at finiteB, though the minimum value is still
larger than the subband energy in the absence of magnetic
—2kBA )1 —2BoBAp* i1 — BXp®)ji1c;=0, 4  field. The value ofk? is shown in Fig. 2 fore=6. At
Bo=B>=0, k2=e—(2n+1). We find numerically that the

where no= . 4
wave vector is either purely real or purely imagin&hand
% ) SO Imxﬁ=0. Magnetic depopulation of the subband takes
<Ps>jlzj Hj(P)PSHI(P)ejJ dp, 5 place Whenkﬁ=0.
N The transverse wave function of the lowest four subbands
with H;(p) being the Hermite polynomials. for e=6, By=0, andB,=0.5 is shown in Fig. 3. Although

For the CF, we obtai8,= 1 within the above-mentioned the magnetic field is zero at the center of the channel, the
approximation. However, we shall considés as a param- wave functions shifts towards the right-hand side due to Lor-
eter in the following discussion. In Fig. 1, the band-edgeentz force for the positive values &f, as obviously seen for
energies, i.eg,, for which x,=0, are plotted as a function of the lowest subband. In the parabolic magnetic field, Lorentz
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~ FIG. 2. Values of the real part of; as a function ofg,. The FIG. 4. Transverse wave function of the lowest subband for
imaginary part is zero. The values gf for the solid, dotted, and  djfferent values of8,. Curves are offset for clarity. Inset: The di-
dashed lines are 0, 0.5, and -0.5, respectively. rection of Lorentz force, indicated by the arrows, changes across the

) channel wherBy8,<0.
force gets stronger as the electron is pushed further away

from the center of the channel. The confinement is, however,
imposed because of the parabolic potential. Bg8,<0, the
magnetic field becomes zero ap=*(—pBy/38,)?
==+ pg. The direction of the Lorentz force is, therefore, re-
versed around the center of the channel and near the boun

aries. The variation of the wave function of the lowest mod o . :
eak position. WheiB8,>0.4, is nearly independent of
when B, is varied is shown in Fig. 4. FgB,<0, the prob- “peak p B2 Preak y Incep

A TR | . and gradually approaches zero as the wave vector is sup-
ability distribution around the center of the channel is shlftedB0 g y app P

. L DS pressed in the large magnetic field. For the lagige Ap is
to the negative direction g by the reversed magnetic field gajier than that in the zero magnetic field, indicating that

as illustrated in the inset of Fig. 4, creating a second peak ifyq orobapility distribution is squeezed by the magnetic field.
the vicinity of p=—py. The second peak corresponds to the

trajectories confined about the region wh@&¢x)=0 dis-
cussed by Mler.'? The two peaks become comparable in lIl. TRANSMISSION IN CROSS JUNCTIONS
amplitude whenBy,~ —0.5. The peak at negatiye eventu-
ally becomes dominant whe8y, is further decreased as the
magnetic field in the region where the particle is presen
becomes entirely negative.

The position of the peakspeaand the widthAp of the
wave function at 10% of the maximum are plotted in Fig. 5.
As the parabolic magnetic field is applied, the peak position
is significantly shifted even wheg, is small. The distribu-
on initially becomes broader due to the large shift of the

In relation to the experimenbf the negative bend resis-
éance phenomena of the CF, it should be mentioned that the
alculation in the previous section deals with the distribution
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FIG. 3. Transverse wave function of the lowest four subbands FIG. 5. Position of the peaks e and the width of the wave
for e=6, By=0, andB,=0.5. The imaginary part is zero for the function at 10% of the maximumlp as a function ofB, for
propagating modesn&=0 and J. Bo=0.0 (solid line), 0.5 (dotted ling, and —0.5 (dashed ling
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whereT, , Tg, andTg are the transmission probabilities into
the left, front, and right probes, respectively. We have em-
ployed the billiard modéP and the lattice Green’s-function
techniqué®'’ to calculate the transmission probabilities.

In the billiard model, the electrons are injected from a
lead into the cross region and the transmission probabilities
are obtained by counting the number of classical trajectories
absorbed by each lead. As we have shown in the prevoius
section, the probability distribution for the injection of the
carriers into the cross region cannot be easily obtained in the
presence of the parabolic potential and the nonuniform mag-
netic field. Therefore, we have assumed that the cross region
of the width and the lengtkV is connected to uniform leads
of a square-well confinement potential @dek 0. This allows
us to use simple analytic distribution functions for the injec-
tion of the carriers. The abrupt change of the potential and
the magnetic field does not scatter the carriers in the classical
calculation, and so the results, at least qualitatively, do not
depend on this particular choice of the injectidrSome of
the characteristic trajectories wh&yB,<<0 are plotted in
Fig. 6. The curve and e indicate localized trajectories
] _ o o around one of th8=0 lines that correspond to the peak
_FIG. 6. Typl(_:al classical orbits |n_a _cross Jgnctlon in the para-near_po in Fig. 4, whereas the cunte represents the edge
bolic magnetic field Wh_eBOBZ_<O. Skipping orbit b), snake orbit state corresponding to the peakpat 0 in Fig. 4.

(10_an e), and traversing orbitg andd). Four leads are labeled The transmission probabilities ar are plotted as a
' function of the offset magnetic fiel®8, in Figs. 7a) and

of the injected carriers into the cross region. Ballistic trajec-7.(b)’ respectively. In the absence of the parabolic magnetic

Co : -~ field, the diameter of cyclotron orbitsz&r/eB, becomes
tories in the cross region are also altered by the varymgﬁI ' : ; F
magnetic field. This will seriously affect the magnetic-field esi;_hefghe V(\j"gth gf the wire V'ththlw ﬁ9|ﬁk':>2’ zatnd ?Old
dependence of the negative bend resistance. The Iocalizatigﬁw L~% and Rg diSappears in e nhigh magnetic neid.

of trajectories about the line where the magnetic field is zer th '”.C”?as'F‘ng' the position of the maximum forward
}&ansmssmn iB, deviates from zero. However, this shift of
{

2y/W

2x/W

may enhance the forward transmission in the cross geometr ¢ dt o Kis | flected in the shift of
In this section, we investigate the four-terminal resistances i € forward tranSmission peax IS 1ess refiected in the shitt o

narrow crossed-wire junctions in the presence of the nonuni- e dip inRg. We find that a significant numbgr of carriers
form magnetic field. are backscattered neBp=0 whenB,# 0. The increase of

Consider a cross junction of straight wires shown in Fig.TB is effectively equivalent to reducing the number of trans-

6. We divide the crossed-wire junction into four regions andMission channels. Consequently, the suppression of the am-

assume the presence of a parabolic confinement potential Plitude of the dip inRg nearB,=0 is less pronounced. Nev-
ertheless, the dip iRy is shifted to negative values &, as

2y\? B, is increased. The vanishindr, takes place when
EF(W R SENE T,.=Tg. Therefore, the positions iB, for the dip inRg and
V(X,y)= 5 (7)  for Ry=0 generally do not coincide. _
(_) IX|<ly] We have also calculated the quantum-mechanical trans-
F ' ' mission probabilities using the lattice Green’s-function tech-

nique. The cross junction is simulated by a square lattice and

the magnetic field is incorporated in the form of the Pierls’

phase factor in the nearest-neighbor hopping elements. The
(8  Vector potential that we have employed to describe the non-
Bo+Box?,  [x[<]yl. uniform magnetic field is given in the Appendix. The results
of the fully quantum-mechanical calculation is shown in Fig.
8. In this calculation, the potential enegy outside the wire of
nwidth W is taken to be infinitely large. Similar to the classi-
cal calculation, the dip irRg shifts to lowerBy as B, is
increased. In high magnetic fieldRg becomes zero and

and a parabolic magnetic field

Bo+Bay?,  [x[=lyl,
B(x,y)=

Here,W is the width of the wire at the Fermi ener§y . The
bend resistanc®g and the Hall resistancBy in the sym-
metric cross junction are given in terms of the transmissio
probabilities as

v h T To—T2 quantum Hall plateaus are developed Ry . It is again
Rs= 2-3 _ - LR 2F > found tht the dip inRg does not coincide with the vanishing
1.4 28 (TL+TRU(Te+ T+ (Te+Tr)%} of Ry.
© Our results show that the parabolic magnetic field in the

Vv h To—T junction of straight wires lead neither to the enhancement of
42 — '; L . (10  the peak amplitude ifRg nor to the broadening of the peak
13 28 (Tp+T)"+(Te+TR) in magnetic field, which have been observed in the

Ry
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try of systems. Compared to the zero-magnetic-field case, the
0.2 ! ! ! fluctuation is suppressed by\zﬁ (if spin-orbit scattering is

-2 -1 0 1 2 absenk in the presence of a magnetic field as time-reversal

eWB,/Tik; symmetry is broken. The localization effect is also sup-

pressed in magnetic field$23The removal of time-reversal
symmetry has been shown to double the localization length
% in quasi-1D system in the absence of spin-orbit
nteraction?*

We consider a quasi-1D wire with a uniform widt in

. . the presence of a nonuniform magnetic fi@¢x) perpen-
gxpenmenf’. It should t_)e mentioned, h.owever, that the car- icular to the strip. For simplicity, the wire is decomposed
riers suffer from conslderable scattering due to the abrupl to a series of sections with an identical lend@hand the
_change of the magnetic field g =|y| as we have not taken magnetic field is assumed to be uniform in each section. The
into account the rounded geometry near the corners of th tic field i ti is ch B —B.+ 5B
junction. When the incident angle relative to tRe=0 line is Wﬁggegg cli?strigzjtzgculr(\)i;grrfl ngﬁiennai in?e_rvglvto santi,sfy
large, the carriers cannot be trapped by the snake’dftis " y

L fi(e|6B,|/m)/EE<A. To calculate the conductance of the
shown by the curvea andd in I:'g: 6. The presence O.f the s;ss'lem?|se2ni-i';1ﬁnite perfect leads wiB(x)=0(x<0 and
rounded geometry, and the resulting forward collimation ef'x> L) are attached to the ends of the disordered wire with the
fect, has been shown to be important for the quenching of th?otal lenathL = n We choose th h that th
low-field Hall resistancé>'%*81f the width of the channel gin-- AmaxD' N ¢ the gauge SUC” atthe
widens gradually, as is the case in real samples, the guidin\éector potential(x,y) =[0Ay(x),0] is given as follows

of the trajectories and the forward collimation may be en-

FIG. 7. (a) Transmission probabilities arid) bend resistance in
cross junction as a function of the strength of the uniform magneti
field B, calculated by classical model.

hanced. (0, x<O
n-1
IV. LOCALIZATION AND CONDUCTANCE Bu{x—(n—1)D}+D >, B;, (n—1)D<x<nD
FLUCTUATIONS IN RANDOM MAGNETIC FIELDS Ay(X)=< =1
n
Quantum interference of scattering from random poten- D§X B x>L
tials, such as due to impuritts® and boundary S

roughnes$! has been demonstrated to result in universal
conductance fluctuations and localization of electronic states.
The perturbation calculatiéfin the weak disorder limit has (11)
revealed that the magnitude of the conductance fluctuationd/hen the average magnetic fiddg, is not zero, finite wave-

is universal and on the order ef/h. The exact amplitude of guide segments are inserted between the disordered wire and
the fluctuations depends on universality class for the symmethe perfect leads, in which the magnetic field is graded from
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B,y to zero. The dimensionless conductaugcef the system
is given by the Landauer formula

QZE (vm/vn) Tran, (12

whereuv, is the velocity of the moden. The transmission
coefficientT,,,, is obtained from the Green’s function using a
method based on the one employed by Ahto.

We employ the tight-binding model with the site separa-
tion a. Each uniform magnetic-field section is represented by
M XN lattice sites. In the following simulations, we choose
the sample size to b =40 andN=10. Two modes are
assumed to be occupied below the Fermi energy vBre
(keW/=2.7). The second subband is magnetically de-
pleted whenB=7(eB,,/m)/Er=0.65. We restrict the simu-
lation to a regime where the magnetic field is considerably
smaller than the depletion threshold. The correlation length
of the random magnetic field is thus smaller than the cyclo-

Y. TAKAGAKI AND K. PLOOG

A=0.1
p=0.2

0 5000

10000
L/

15000

tron radius, and so electrons feel short-range disorder. We FIG. 9. Average conductance d4p(g)] as a function of the
have taken the average over 50 samples. The parameters ue thL ‘f th 9 Th o] 9 & he localizati
hosen such that /a~30 and the magnetic flux threading ‘=9t b Of the wire. The verticle bars indicate the localization
¢ . F . 9 0 g. lengths. In the inset, the localization lengtfs plotted as a function

through a unit cell is, at the maximum, 0.1% of the magnetic; average magnetic fiel=%(eBy,/m)/Er for A=0.1

flux quantum h/e, ar)d SO we _expect .th:’.it our conclusion (circles and 0.15(triangle.

remains unchanged in the continuum lirait- 0.

It has been suggested that all states in two dimensions aftictuations due to breaking time-reversal symmetry takes
localized in a random magpnetic field with zero averé@ce:- place in the present simulation. We find that the distribution
cording to the random-matirx theory, the conductance of a®f In(g) is well described by a Guassian. The variance of
N.-channel elastic scattering system is obtaineéd as In(g) is plotted in Fig. 11. It has been suggested that the
variance of Inf)) in general disordered systems is given in
the limiting case as vain(g) o (L/l¢)Y with y=2 or 1 for
L<l, or L>I,, respectively’ However, we findyx=1.8,
which is in between the two limiting values, over the entire
where v;=2L/¢. When the localization is strong, where range ofL irrespective ofA andB,,.
1<y <<k <y, we expect  gecexp(—vy)
cexp(—2L/€). The average conductance edp(g))) is
plotted in Fig. 9 as a function of the lengthof the wire. In conclusion, we have calculated the electronic subbands

After the initial rapid decay, the conductance decreases witl, quantum wires in the presence of parabolic magnetic
a single exponential decay constant as the length becomes

longer than the localization length The localization is ob-
viously enhanced a4 is increased. Analytical calculations
using the random-matrix thed®/and numerical simulations
assuming random impuritits?® indicate that¢ increases
with increasing magnetic field. However, the localization
length deduced from the slope becomes smaller vihgris
increased as shown in the inset of Fig. 9. Therefore, the S
effect of the random magnetic field becomes significant as ;' ;
B,y deviates from zero. This may be partly due to a reduction 02 hi
of the elastic mean free path in higher magnetic fields
since é~N.l. (Ref. 26. It is suggested thadB is not an
appropriate parameter to measure the disorder for different
values ofB,,.

The root-mean-square deviation of the conductance is
shown in Fig. 10. In the weak disorder regime, the amplitude
of the fluctuations is found to be universal &f=0.3-0.4 S

Nc

g=2>,

=1

4

coshiv)+1’ (13

V. CONCLUSIONS

0.4 T T T

A=0.1

0.3

Ag

0.1

E_
-

(corresponding to the conductance fluctuation8.7e?/h), 0.0 L L L
in agreement with the perturbation calculation for impurity 0 5000 10000 15000
scattering in the absence of a magnetic field. The fluctuation L

is reduced when the average conductance becomes consider-
ably smaller in the localized regime. Because of the limited FIG. 10. Root-mean-square deviation of the conductance,
number of samples, it is not clear if the suppression of the\g=[(g—{(g))?]*? as a function of the length of the wire.
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APPENDIX

We compute the quantum transmission probabilities using
the lattice Green’s-function technique. We simulate the
sample by a square lattice with the site separatioriThe
Schralinger equation is reduced to a tight-binding Hamil-
tonian for a square lattice with nearest-neighbor interactions:

H=> 8i|i><i|+%_uij|i><”, (A1)

var[ln(g)]

where the on-site energy at the site (m,n) is g;=—4t
with t=—#2/2ma?. In the presence of the magnetic field,
the hopping elements;; are given by

U”:tex;{—ieJ'AdI/ﬁ). (A2)

The required elements of the Green'’s function are calculated
LA, using the recursive technique based on the Dyson equation:

G=Gy+GoVG=Gy+GVGy, A3
FIG. 11. Variance of Ing) as a function of the length of the 0 0 0 Go (A3)
wire. The fluctuation increases as Mafg)Jo<L” with y~1.8. where the Green’s functio@ of a system in the presence of

a perturbatiorV is related to the Green'’s functidg, in the

fields. For a parameter expected to be relevant to the conysence o¥. In the perfect lead, the wave functiog(q) of
posite fermions(i.e., B,~3), the probability distribution is  he nth mode is given by

squeezed in the transverse direction and the threshold energy

is increased compared to the zero-magnetic-field value. u,(q)=C.explieAgaz)siinmq/(M+1)], (A4)
These findings indicate that the effective channel width for ) ) ) )
the composite fermions is narrower than that for the elecWhereM is the number of the sites in the transverse direc-
trons if the simple model of the varying effective magnetiction. i-e.W=(M+1)a. We have assumed the presence of a
field we have employed here is reasonable. If the quantizeBOnstant vector potentié=(0,A,0). The normalization co-
conductance of the composite fermions is observed, the shigfficientC is
in the threshold energy due to the unbalanced magnetic field

will be of significant importance. When a negative offset C :[
magnetic field is imposed, the wave function can have two "
peaks: one near the channel boundary and the other near tkf,
boundary between positive and negative magnetic field re-
gions._As the double peak does_ not appear when a ppsitive 2t[1—cogna/(M+1)}]+2t[1—cogk,a)]=Ef .

offset is added, the magnetoresistance of the composite fer- (A6)
mions in narrow wires is expected to be asymmetric with

respect tov= 1. We have confirmed this by the classical and The velocity of the moden is given asvy,=sin(ka).

the quantum-mechanical calculations of the four-terminal re- In the remainder of this Appendix, we describe the vector
sistances in a crossed-wire junction. It is indicated that théotentialA that we have employed in our simulation of the
shape of the negative bend resistance dip is modified in théross junction. The parabolic magnetic field in the symmetric
presence of the parabolic magnetic field. The deviations oross junction given by Eq@8) can be represented by the
the positions of the dip of the bend resistance and the variector potential:

ishing Hall resistance in magnetic field can be utilized to

probe the varing effective magnetic field for the composite (= 3Boy— 3 Boy®,3Box+ Boxy?,0), [x[=]y|
fermions. In addition to the nonuniform magnetic field due toAX,Y)=
variation of carrier density in confined systems, the compos-

ite fermion experiences random magnetic fields due to the (A7)
Chern-Simons gauge field. We have numerically calculate . - .

the conductance of quasi-one-dimensional wires in the preggenerfally, the_transm|SS|on coeff|C|en.ts are obtained from the
ence of one-dimensional random magnetic fields. The effec(t;reens function. However, the relation between the trans-

of the fluctuation of the magnetic field becomes significant agnission coefficients and the Qrgen’s function is not simple in
the average magnetic field is increased. the presence of the magnetic field. Moreover, one needs to

know the Green’s function of semi-infinite leads, in which
ACKNOWLEDGMENT the vector potgntial is given by EchO)., for the recursive
calculation. This is obviously not easily calculated. In the
This work was supported in part by the Bundesministe-absence of the magnetic field, the transmission coefficients
rium fur Forschung und Technologie of the Federal Republicare simply given as a projection of the Green’s function onto
of Germany. the transverse wave function. Therefore, we terminate the

1/2

(A5)

M 1 1_ei277r‘lM/(M+l)

fie wave vectok,, in the x direction is given by

(— 3Boy— iBox?y, 3Box+1Box3,0), [x|<ly].
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cross junction by semi-infinite leads, in whi&=0. Con-  One finds that the vector potential in the zero-magnetic-field
trary to the classical case, the abrupt change of the magnetiead is not zero and is given as

field results in quantum-mechanical reflection. To suppress

the scattering at the interface, we insert waveguide sections

between the cross junction and tBe=0 leads, in which the 1 1 ) [
magnetic field is graded from the value in the cross junction A(X,y)=|0,[5Bo+ 7 Boy” || d+5],0)  (x=d+1).
to zero. In the following, we focus on the vector potential in (A9)

the lead 3 in Fig. 6. The vector potential in other leads is
similarly obtained. We assume that the magnetic field de-
creases linearly in the lead with the lendthttached to the The wave function of th@th mode in the semi-infinite lead,

cross junction atx=d, ie., B(x,y)=(Bay’+Bg)(d+|  which is necessary to calculate the Green’s function, is given
—X)/I. The vector potential to describe this magnetic field isysing the Gauge transformation as

|- Lo )y 21 (1,
X, = | A > ] € i
y 20T Ry YT \Ifn(x,y)=exp[—ig(d+§)(580+1—282y2>y e“rup(y)
N X(x—2d—2l)+d? 0
-3 0+Z 2yl ly o] , (x=d+1), (A10)

(dsx=d+1). (A8)  wheree**u,(y) is the wave function wheA=0.
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