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Ab Initio Calculations of the Anisotropic Dielectric Tensor of GaAs=AlAs Superlattices
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The static dielectric properties of �001��GaAs�p=�AlAs�p superlattices have been calculated as a
function of their period p for 1 � p � 12, starting from density-functional theory. The interplay
between quantum confinement and local field effects is shown to be crucial. For light polarized in the
growth direction it leads to the otherwise surprising justification of the use of a classical effective
medium theory, even for the smallest periods. Only the inclusion of both contributions allows in
ab initio and in semiempirical calculations to reproduce the experimentally observed birefringence.
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The electronic states of heterostructures differ from
those of the constituent bulk materials, in particular due
to the confinement at the nanoscale level, and to the
reduction of symmetry, which can lead to a large optical
anisotropy [1]. Nonlinear effects are responsible for the
growing interest in superlattices (SL’s) [2], especially
GaAs based ones [3]. Both this nonlinearity and the
optical anisotropy of GaAs=oxidized-AlAs SL’s have
been exploited to generate optical frequency conversion
[4]. The GaAs=AlAs SL’s are hence prototypes for the
understanding of artificial structures, and their optical
properties have been thoroughly investigated both experi-
mentally [5] and theoretically [6] at frequencies close to
the optical gap. However, very little information is avail-
able concerning their static dielectric properties. First,
the refractive index n has not been measured, and it is
commonly estimated from the dielectric constants of
bulk GaAs and AlAs in the framework of the effective
medium approach [7]. This classical theory is expected to
fail for small period SL’s, where quantum confinement is
important. In fact, theoretical calculations have shown for
ultrathin �001��GaAs�p=�AlAs�p SL’s that the effective
medium model cannot explain the behavior of the dielec-
tric tensor for p � 3 [8]. However, the size limit at which
the classical approach breaks down is not known. Second,
the change in the refractive index with light polariza-
tion—the static birefringence 
n—has been measured
for �001��GaAs�p=�AlAs�p SL’s for p � 6, and a remark-
ably steep rise of the anisotropy with increasing p has
been observed [9]. Ab initio methods for ultrathin SL’s [8],
and a semiempirical approach for larger ones [10], could
not account for the observed value of the anisotropy nor
for its behavior as a function of p, even qualitatively.

The birefringence in perturbed semiconductors has
two contributions [11,12], namely, a dispersionless term
involving high energy gaps between valence and conduc-
tion bands, and a resonant term associated with the gaps
between the top valence and the first conduction bands. In
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the upper valence band. This symmetry-induced splitting
into heavy-hole (hh) and light-hole (lh) subbands is
of course an essential ingredient to explain the observed
birefringence, since the hh and lh states couple dif-
ferently to light polarization. However, if one assumes
a simple one-by-one correspondence between the SL-
perturbed transitions and, for example, the static bire-
fringence, there are some important experimental
observations which cannot be explained, in particular,
the finite value of the static birefringence for large SL
periods: since the relative contributions of the interfaces
vanish for increasing p, also the anisotropy vanishes in
the simplified picture of Fermi’s golden rule for one-
particle states, in which the macroscopic dielectric re-
sponse is a sum of independent-particle transitions.
Therefore, other features must play a crucial role, and
important contributions to the SL response are expected
from (i) the confinement effects on the gaps between
occupied and empty states, (ii) the transition from a
type-II to a type-I SL when the SL period increases
[13], and (iii) in addition to the possibility of complicated
many-body contributions, crystal local field effects
(LFE) [9]. In view of the qualitative disagreement be-
tween experiment and existing calculations [8,10], a clear
picture of the contribution of all these effects is crucial
for an understanding of the SL dielectric response.

We have therefore calculated the two principal compo-
nents of the static dielectric tensor, for light polarized in
plane, "?, and along the SL growth direction, "k, and the
birefringence of �001��GaAs�p=�AlAs�p SLs for barrier/
well periods 1 � p � 12. We have performed ab initio
calculations in the framework of the time-dependent
density-functional theory (TDDFT) [14], which includes
the LFE. The evolution of the dielectric tensor turns out
to depend strongly on the interplay between quantum
confinement and LFE. The anisotropy of the LFE is
shown to be the essential ingredient in both ab initio
and semiempirical calculations for the explanation of
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We first perform a ground-state calculation using DFT
in the local density approximation (LDA), using norm-
conserving pseudopotentials, a plane wave basis, and
neglecting the spin-orbit splitting. From the Kohn-
Sham wave functions �i, eigenvalues �i, and occupation
numbers fi, we construct the static independent-particle
(RPA) polarizability 	0:
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FIG. 1. Dielectric tensor calculated without ("NLF, upper
panel) and with ("LF, lower panel) LFE and their difference
(inset), as a function of the SL period p. Arrow: average of
bulk GaAs and AlAs dielectric constants, calculated without
LFE. Dotted (dashed) line: effective medium value of "? ("k).
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The RPA microscopic dielectric function is related to 	0

by " � 1	 v	0. The macroscopic dielectric tensor "M
measured in optical experiments, contains the contribu-
tions of both macroscopic and microscopic variations of
the potentials as a response to the applied macroscopic
field. These can be either calculated explicitly, as done in
density-functional perturbation theory [15], or, as we do
in the present work, expressed in the reciprocal lattice (G)
space:
"M � lim
q!0

1

"	1
G�G0�0�q�

� lim
q!0
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For an applied (G0 � 0) field, microscopic (G;G0 � 0)

variations of the response contribute to "M through the
matrix inversion, to be precise, through the off-diagonal
elements of ": these transition-mixing contributions [the
last term of Eq. (2)] are the LFE [16].

The upper panel of Fig. 1 shows the components of the
dielectric tensor as a function of the SL period p, calcu-
lated in RPA and neglecting LFE. First, " is essentially
increasing with increasing p, since the gaps between
occupied and empty states decrease due to a decrease of
confinement. Second, for large SL periods, " tends to the
average of the bulk dielectric constants of GaAs and
AlAs calculated without LFE (arrow in Fig. 1). This
occurs for both polarizations, so that the birefringence
tends to zero, consistently with the fact that the weight of
the contributions of the interfaces relative to the weight of
bulk states vanishes for increasing p. Third, "? is always
closer to the average value than "k for p > 2, as on
average the gap is smaller for light polarized in plane
rather than in the growth direction. In other words, the
confinement is rather ‘‘seen’’ in growth than in the in-
plane direction, making the birefringence slightly posi-
tive at those p. The lower panel of Fig. 1 shows the same
quantities calculated including LFE. As usual, LFE de-
crease the absolute value of the dielectric tensor compo-
nents. The decrease of " is found to be more effective for
"k than for "?, showing that the wing elements "0;G and
"G;0 are particularly sensitive to the presence of the
interfaces (the body "G1;G2�0 does not contain the q
dependence if q ! 0) [17]. In the growth direction,
when the SL period increases, the increasingly negative
contribution of the LFE cancels the rise of the first term
in Eq. (2) containing the independent-particle transitions
(see the inset in Fig. 1). Therefore, "k is always close to
the effective medium value estimated with the theoretical
bulk constants calculated including LFE, "	1

k
� �"	1

GaAs 

"	1
AlAs�=2 (dashed line). Contrastingly, in the in-plane di-

rection, the direct effect of the confinement on the in-
dependent transitions is found to be larger than its effect
on the LFE. The latter are found to be almost constant
with the period (see the inset of Fig. 1), and the slope of
the linear behavior of "? remains therefore unchanged.
Consequently, the effective medium value "? � �"GaAs 

"AlAs�=2 (dotted line) is reached only very slowly at an
extrapolated period p ’ 20.

The anisotropy of the LFE has now important conse-
quences on the calculated birefringence reported in Fig. 2
as a function of the well width, together with the experi-
mental results (circles).Without LFE (empty squares) one
obtains an anisotropy much smaller than in experiment
and vanishing in the limit of large SL periods, thus
confirming the results of Ref. [10]: the measured aniso-
tropy does not come directly from an anisotropy of the
independent transitions [18]. The inclusion of the LFE
(filled squares) drastically changes the behavior of
the birefringence, whose amplitude increases now up to
216803-2
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the effective medium value 
n ’ 0:05 estimated from the
RPA "GaAs and "AlAs (shaded region representing our
numerical convergence error on the RPA plateau value).
Therefore LFE are sufficient to qualitatively explain the
experimentally observed birefringence.

To understand more in detail the origin of the LFE in
terms of mixing of transitions, we consider ‘‘all’’ the
conduction bands, i.e., those necessary to achieve con-
vergence, as possible final states for the transitions in
Eq. (1), but we restrict the initial states to the v first
valence bands, for the SL period p � 3 and p � 8
(Fig. 3). Note that in order to scale the results, the abscissa
axis is shown as v � ip, i being an integer. The behavior
of the birefringence for all the SL periods is similar to the
two examples presented here: the lowest bands do not
contribute, and when the LFE are neglected, the large
positive contribution arising from bands 4p to 6p is al-
most completely canceled by the bands between 7p and
8p. Also in the LFE (difference between circles and
squares in Fig. 3) the contributions of the bands cancel
and even change the sign of these effects; their contribu-
tion is dominated by the bands 7p to 8p and finally
becomes positive. A similar analysis of the contributions
of the conduction bands shows that the birefringence is
dominated by the anisotropy of the LFE involving tran-
sitions to the lowest conduction bands. The cancellation
effects are important, in fact, a calculation involving only
the highest valence and lowest conduction bands yields a
FIG. 2. Static birefringence for �GaAs�p=�AlAs�p SL’s as a
function of p. Circles: experiment from Ref. [9]. Empty (filled)
squares: RPA calculations without (with) LFE. Triangles: RPA
calculations including LFE and modeled many-body (MB)
effects. Diamonds: semiempirical approach with LFE. Shaded
region: RPA effective medium value.
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contribution of LFE which is overestimated by about a
factor of 10. The observed anisotropy can hence not be
explained in a simple model including few transitions.

The calculated plateau in Fig. 2 has a higher value than
the experimental one. This is a consequence of the well-
known error of the local density and RPA approximations
on the dielectric constants of bulk materials [15]. To go
beyond the RPA, we have checked the inclusion of
exchange-correlation effects within the adiabatic local
density approximation (TDLDA) [19]. These effects are
known to significantly change the dielectric constants of
bulk semiconductors: consistently with earlier results
[16,20], we find that the TDLDA bulk dielectric constants
of both constituent materials increase by as much as 7%
with respect to the RPA ones. However, the changes
completely cancel out in the birefringence, and both the
plateau value and the slope with which it is reached
remain unchanged. A direct inclusion in ab initio calcu-
lations of further many-body effects is today out of reach.
We have therefore used the fact that the Slater-Koster
contact interaction model [21] describes well the exci-
tonic effects in simple semiconductors. Generalizing this
model for the case of an anisotropic material, it turns out
that the full dielectric constants "k and "? are approxi-
mately proportional to their RPA counterparts "RPA

k
and

"RPA? , with factors �k and �? which are essentially in-
dependent of p. �k and �? can be fitted using, in the
plateau region, the calculated and the measured ". The
static birefringence can then be obtained for all p’s, as
shown by the triangles in Fig. 2: the quantitative agree-
ment with experiment is now greatly improved. It should,
however, again be stressed that only the inclusion of LFE
allows one to obtain the correct qualitative behavior of
the birefringence and the classical limit.

Finally, one might wonder about the influence of details
of the band structure, as the nature of the gap (the
transition from a type-II to a type-I SL occurs earlier
in the ab initio calculation than in experiments). This
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FIG. 3. Contribution to the birefringence of the valence bands
for p � 3 (filled symbols) and p � 8 (empty symbols). Circles:
contributions with LFE; squares: contributions without LFE.
The dashed line is a guide to the eyes for the p � 3 SL
with LFE.
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feature, as well as the width of the gap and the bulk
dielectric constants are instead correctly reproduced, by
construction, in the semiempirical approach used in
Ref. [10], which, in the Fermi’s golden rule framework,
had not been able to explain the increasing birefringence.
We have therefore used in Eq. (1) the semiempirical
electronic band structure for medium to large SL periods.
Including now LFE (diamonds in Fig. 2), the results
perfectly agree with the experiment for the value of the
plateau. This is important, since it shows that the semi-
empirical approach works very well at large SL periods, if
the dominant contributions (here the LFE) are included.
Instead, in the semiempirical approach the plateau is
reached too early, since the semiempirical potentials
do not give enough flexibility to the interface
electronic states. For a more detailed comparison and
before including further many-body effects in the
ab initio calculations, it would be worthwhile to perform
birefringence measurements such as those in Ref. [9] on
smaller period SL’s with well characterized interfaces,
and, in particular, to extend the experiment to lower
temperatures.

In conclusion, we have calculated the dielectric proper-
ties of �001��GaAs�p=�AlAs�p SL’s as a function of the
period and compared them to the results of the effective
medium theory: the use of the latter is found to be
justified in the growth direction even for small periods.
In the in-plane direction, however, quantum confinement
effects are dominant. Local field effects are responsible
for the observed overall behavior of the anisotropy, while
further many-body effects lead only to quantitative cor-
rections. The classical limit of the birefringence is
reached for a period of p � 12: any (semiempirical or
ab initio) approach determining the macroscopic dielec-
tric tensor must hence include local field effects beyond
Fermi’s golden rule and one-electron transitions in order
to explain the well-width dependence of the macroscopic
dielectric tensor and its anisotropy. The same effects are
found within the ab initio (both RPA and TDLDA) and
the semiempirical approaches.
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