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Hidden symmetries of two-electron quantum dots in a magnetic field
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Using a classical and quantum-mechanical analysis, we show that a magnetic field gives rise to dynamical
symmetries of a three-dimensional axially symmetric two-electron quantum dot with a parabolic confinement.
These symmetries manifest themselves as near degeneracies in the quantum spectrum at specific values of the
magnetic field and are robust at any strength of the electron-electron interaction.
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A three-dimensional harmonic oscillator with frequenc
in rational ratios~RHO! and a Coulomb system are benc
marks for the hidden symmetries which account for the
cidental degeneracies of their quantum spectra~see, e.g., Ref.
1!. Recent advances in nanotechnology create a remark
opportunity to trace their dynamical interplay in mesosco
systems such as quantum dots, which confine a few elect
to a space of a few hundred nanometers. Indeed, compet
between a confining potential, approximated quite well
the harmonic oscillator~HO!, and the repulsive electron
electron interaction produces a rich variety of phenome
for example, in a two-electron quantum dot~QD! under a
perpendicular magnetic field~see Refs. 2 and 3, and refe
ences therein!. In fact, a two-electron QD becomes a testi
ground for different quantum-mechanical approaches2 and
experimental techniques that could provide highly accur
data for this system.3,4

If the HO and the Coulomb potential are combined, m
of the symmetries are expected to be broken. Neverthe
in particular cases, the Coulomb~Kepler! system and the
RHO may have common symmetries, as it was already
ticed a long time ago.5 The authors of Ref. 5 could not find
however, a physical application for this phenomenon. Th
symmetries were rediscovered in the analysis of laser-co
ions in a Paul trap6 and of the hydrogen atom in the gene
alized van der Waals potential.7 The major aspect of the
present paper is to demonstrate that the hidden symme
could be observed in a two-electron QD under a tuna
perpendicular magnetic field if the effective confinement p
tential is indeed the three-dimensional~3D! HO. To this aim
we focus our analysis upon the nonlinear classical dynam
of the system. At certain conditions the motion becomes
tegrable and this indicates the existence of the symmetrie
the quantum spectrum.

The Hamiltonian of a two-electron QD in a magnetic fie
reads

H5(
j 51

2 F 1

2m*
S pj2

e

c
A j D 2

1U~r j !G1
a

ur12r2u
, ~1!

wherea5e2/4p«0« r . Here,e, m* , «0, and« r are the unit
charge, effective electron mass, vacuum and relative die
tric constants of a semiconductor, respectively. For the p
pendicular magnetic field we choose the vector poten
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with a gaugeA5 1
2 B3r5 1

2 B(2y,x,0). The confining po-
tential is approximated by a 3D axially symmetric H
U(r )5m* @v0

2 (x21y2)1vz
2z2#/2, where\vz and\v0 are

the energy scales of confinement in thez direction and in the
x-y plane, respectively. In contrast to a 2D description of
QD, this approximation provides a consistent description8 of
various experimental features:9 the energy spectrum fo
small magnetic field, the value of the magnetic field for t
first singlet-triplet transition, and the ratio of the lateral
vertical extension of the dot. In the present analysis we
glect the spin interaction, since the corresponding energ
small compared to the confinement and the Coulomb e
gies.

Introducing the relative and center-of-mass~CM! coordi-
natesr5r12r2 , R5 1

2 (r11r2), the Hamiltonian~1! is sepa-
rated into the CM and relative-motion termsH5HCM
1H rel .

10 The solution to the first term is well known.11 It
possesses all symmetries of the HO, since the Coulomb
teraction enters the second term for the parabo
confinement.12 In the following we concentrate on the dy
namics ofH rel . For our analysis it is convenient to use c
lindrical scaled coordinates, r̃5r/ l 0 , p̃r5prl 0 /\, z̃

5z/ l 0 , p̃z5pzl 0 /\, wherel 05(\/mv0)1/2 is the character-
istic length of the confinement potential with the reduc
massm5m* /2. The strength parametera of the Coulomb
repulsion goes over tol52a/(\v0l 0). Although our con-
sideration is general, for the demonstration we choose
values \v0'2.8 meV andvz52.5v0 which are close to
those obtained in our 3D analysis8 of the experiment.9 For
the effective massm* 50.067me and the dielectric constan
«512, which are typical for GaAs, the valuel53. Hereaf-
ter, for the sake of simplicity, we drop the tilde, i.e., for th
scaled variables we use the same symbols as before sca

In these variables the Hamiltonian for the relative moti
takes the form~in units of \v0)

h[
H rel

\v0
5

1

2 S pr
21

m2

r2
1pz

21ṽr
2r21ṽz

2z21
l

r D 2ṽLm,

~2!

where r 5(r21z2)1/2, ṽ[v/v0 , m5 l z /\. Here, vL

5eB/2m* c is the Larmor frequency andvr5(vL
21v0

2)1/2

is the effective confinement frequency in ther coordinate,
©2003 The American Physical Society05-1
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which depends throughvL on the magnetic field. In this way
the magnetic field can be used to control the effective lat
confinement frequency of the QD for a fixed value of t
vertical confinement, i.e., the ratiovz /vr .

Beside the energy (e[h), the z component of angula
momentuml z is also an integral of motion due to the axi
symmetry of the system. Therefore, the magnetic quan
number m is always a good quantum number. Since t
Hamiltonian ~2! is invariant under the reflection of the or
gin, the parityp is a good quantum number too.

Although the motion inw is separated from the motion i
the (r,z) plane, the problem is, in general, nonintegrab
since the Coulomb term couples ther and z coordinates.
Examination of the Poincare´ sections by varying the param
eter vz /vr ~see Fig. 1 for examples! in the interval
(1/10,10) with a small step indicates that there are five in
grable cases. The trivial cases arevz /vr→0 and vz /vr

→`, which correspond to 1D vertical and 2D circular QD
respectively. The nontrivial cases arevz /vr51/2,1,2. These
results hold for any strength of the Coulomb interaction a
agree with the results for the Paul trap.6 Below we discuss
the nontrivial cases only. The typical trajectories in cylind
cal coordinates are shown in Figs. 2~a, c!.

The results obtained with the aid of the Poincare´ surfaces
of sections are invariant under the coordinate transformat
On the other hand, the integrability is a necessary condi
for the existence of a coordinate system in which the mot
can be separated. In turn, the analogous quantum-mecha
system would be characterized by a complete set of quan
numbers.

At the valuevL85(vz
22v0

2)1/2 the magnetic field gives
rise to a spherical symmetry (vz /vr51) in the axially sym-
metric QD.8 In this case the Hamiltonian~2! is separable in
~scaled! spherical coordinates@see Eq.~7! in Ref. 8#. The
additional integral of motion is the square of the total angu
momentum l2. The spherical coordinates are a particu
limit of the spheroidal~elliptic! coordinates well suited fo
the analysis of the Coulomb systems~see, e.g., Ref. 13!.
Therefore, to search the separability for the other integra
cases it is convenient to use the spheroidal coordin
(j,h,w), where j5(r 11r 2)/d and h5(r 12r 2)/d. In the
prolate spheroidal coordinatesr 15@r21(z1d)2#1/2, r 25r .
The parameterdP(0,̀ ) is the distance between two foci o
the coordinate system~with the origin at one of them!.
In the limit d→0 the motion is separated whenvz /vr51

FIG. 1. Poincare´ surfaces of sectionsz50, pz.0 of the relative
motion (l53, e510, m50) with: ~a! vz /vr55/2, ~b! vz /vr

52, and ~c! vz /vr53/2. ~b! indicates that for the ratiovz /vr

52 the system is integrable.
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@Fig. 2~b!#. In this limit j→` such thatr 5dj/2 is finite,
h5cosq, and we obtain the spherical coordinate system

Let us turn to the casevz /vr52 which occurs at the
value of the magnetic fieldvL95(vz

2/42v0
2)1/2. In the pro-

late spheroidal coordinates the motion is separated in
limit d→` @Fig. 2~d!#. In fact, atd→`: j→1, h→1 such
that j15d(j21), j25d(12h) are finite,—we obtain the
parabolic coordinate system (j1 ,j2 ,w) wherej1,25r 6z. In
these coordinates Hamiltonian~2! has the form

h5
1

j11j2
F2~j1pj1

2 1j2pj2

2 !1
m2

2 S 1

j1
1

1

j2
D

1
ṽz

2

8
~j1

31j2
3!1lG2ṽL9m ~3!

and the equation (j11j2)(h2e)50 is separated into two
decoupled equations forj1 andj2 variables. Simple manipu
lations define the separation constant

c5az2ṽr
2r2z, ~4!

which is a desired third integral of motion. Hereaz is thez
component of the Runge-Lenz vectora5p3 l1lr /(2r ),
which is a constant of motion for the pure Coulomb syst
~i.e., whenvr5vz50).1 The quantum-mechanical counte
part of the integral of motion, Eq.~4!, does not commute
with the parity operator and we should expect the degene
of quantum levels.

Due to the separability of the motion in the parabo
coordinate system, the eigenfunctions of the correspond
Schrödinger equation can be expressed in the formc(r )
5 f 1(j1) f 2(j2)eimw, where the functionsf j are solutions of
the equations

FIG. 2. Typical trajectories (e510, m51) of the relative mo-
tion at l53 for vz /vr51 ~a!, ~b! and vz /vr52 ~c!, ~d! are
shown in cylindrical and prolate spheroidal coordinates, resp
tively.
5-2



er
-

-

d
um
c-

n-

e

y

e

,

ta

-
e

le

b
nc-
in

.

m
etic

gh
ses:
es

RAPID COMMUNICATIONS

HIDDEN SYMMETRIES OF TWO-ELECTRON QUANTUM . . . PHYSICAL REVIEW B67, 041305~R! ~2003!
d

dj j
S j j

d f j

dj j
D2

1

4
Fm2

j j
1

ṽz
2

4
j j

322~e1ṽL9m!j j

1l2~21! j2cG f j50, j 51,2. ~5!

Equation~5! can be solved numerically and the eigenen
gies and eigenvalues ofc are determined iteratively by vary
ing simultaneouslye and c until the functionsf j fulfill the
boundary conditions:f j;j j

umu/2 , j jd f j /dj j5umu f j /2 for j j

→0 andf j→0 for j j→`. Let n1 andn2 be the nodal quan
tum numbers of the functionsf 1 and f 2, respectively. Note
that Eqs.~5! are coupled by the constants of motion an
therefore, both functions depend on all three quantum n
bers (n1 ,n2 ,m). However, the simple product of these fun
tions has no definite parity. Sincer→2r⇔$j1→j2 ,j2
→j1 ,w→w1p%, the even-odd eigenfunctions are co
structed as

cN,k,m
(6) ~r !5

eimw

A2
@ f n1

(n2 ,m)
~j1! f n2

(n1 ,m)
~j2!

6~21!mf n2

(n1 ,m)
~j1! f n1

(n2 ,m)
~j2!#, ~6!

where N5n11n2 and k5un12n2u. These states are th
eigenfunctions ofh, l z , ucu, and the parity operator. Forucu
.0 the eigenstates~6! appear in doublets of different parit
and, therefore, of a different total spin. Forc50 in Eqs.~5!
f 15 f 2 and, obviously, only the states with parityp5
(21)m exist.

For the magnetic fieldvL-[(4vz
22v0

2)1/2 we obtain the
ratio vz /vr51/2. The Hamiltonian~2! expressed in theob-
late spheroidal coordinates (r 15$z21@r1d#2%1/2, r 25r ) is
separated form50 ~at d→`). For mÞ0 the termm2/r2

and, consequently, Hamiltonian~2! is not separated in thes
coordinates. Note, form50 the casesvz /vr51/2 and 2 are
equivalent if we exchange ther and z coordinates and
hence, the additional integral of motion isuar2ṽz

2z2ru. For
mÞ0 we use the procedure described in Ref. 6 and ob
the following integral of motion:

C5@~ar2ṽz
2z2r!21aw

214m2ṽz
2r 2#1/2, ~7!

wherear andaw are ther andw components of the Runge
Lenz vector, respectively. Due to existence of three indep
dent integrals of motion,h, m, andc, which are in involution,
the dynamics formÞ0, although nonseparable, is integrab
The further analysis form50 is similar to the previous one
and we omit it here.

Let us denote byh* Hamiltonian~2! for a specific value
of the magnetic field when the system becomes separa
i.e., for vL* 5vL8 , vL9 or vL- ~for m50). Then for an arbi-
trary value ofvL we can write

h5h* 1 1
2 DṽL

2r22DṽLm, ~8!

where DṽL
25ṽL

22ṽL*
2 , DṽL5ṽL2ṽL* , and the term
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2r2 is the only nondiagonal part ofh in the eigenbasis
of h* . The eigenenergies of Hamiltonian~2! ~see Fig. 3!
have been calculated with the use of the basis~6! and the
spherical basis in the intervals 0<ṽL<1.5 and the 1.5<ṽL
<5, respectively. The radial parts of the spherical eigenfu
tions andf n1 ,n2 ,m , as well as the corresponding factors

the matrix elementŝc i ur2uc j&, are evaluated numerically
The complete spectrum of the two-electron QD@Fig. 3~a!#
shows the accumulation of levels with different quantu
numbers into well pronounced bands at strong magn

FIG. 3. The lowest eigenenergies of Hamiltonian~2! ~in units
\v0) at vz /v052.5 andl53 as functions of the ratiovL /v0 for:
~a! all m; ~b! m50. The upper energy limit is chosen high enou
to amplify the shell structure of the spectrum. The integrable ca
vz /vr52, 1, and 1/2 are indicated by vertical dotted lin
(vL /v050.75, A21/2, andA24, respectively!.
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field. There is no obvious manifestation of the symmetr
discussed above. In fact, the effects of symmetries are sh
up for separatedm manifolds only@Fig. 3~b!#.

For noninteracting electrons (l50), the energy levels o
the QD are Fock-Darwin levels,11

e5ṽr~2nr1umu11!1ṽz~nz1
1
2 !2ṽLm. ~9!

For rational ratios ofvz /vr the energy levels Eq.~9! are
degenerate. It is simply the spectrum of the RHO in
external fieldṽLm. For instance, atvz /vr52 we havee

5ṽz(N1umu/211)2ṽL9m. The quantum numberN5nr

1nz5n11n250,1,2, . . . andeachm manifold consists of
the shells characterized by this quantum number. Since
eigenenergies of the termHCM with the corresponding quan
tum numbers are determined by Eq.~9! as well, the shells in
the total spectrum of the QD are not affected.

The Coulomb interaction destroys the general symme
of the 3D HO. However, the magnetic field can recover sy
metries that are common for the RHO and Coulomb syste
At a relatively low value of the magnetic fieldvL9 ~for our
parametersB'2.4 T) we reveal the first manifestation of th
hidden symmetries. This symmetry is determined by the
tegral of motion, Eq.~4!. It results in the appearance of she
at eachm-manifold@Fig. 3~b!#. There are exact crossings an
repulsions between levels of different and of the same pa
respectively, in each shell. The near degeneracy of the q
tum spectrum is reminiscent of a striking degeneracy
served for the RHO or pure Coulomb systems. At high
values of the magnetic fieldvL8 (B'7.5 T), the dynamical
spherical symmetry appears, sincel2 becomes an additiona
integral of motion. This symmetry manifests itself as t
attraction between levels with different orbital quantu
numbers and the same parity@Fig. 3~b!#. In contrast to spec-
tra of pure Coulomb systems or of the RHO, there are
crossings between eigenstates of the subset characteriz
a given quantum numberm, since the accidental degenera
is removed. Although the symmetry is recovered at v
strong magnetic fieldvL- (B'15.9 T) due to the appearanc
of the integral of motion, Eq.~7!, the dynamics is nonsepa
og

04130
s
n

e

he

y
-
s.

-

y,
n-
-
r

o
by

y

rable formÞ0. Note that shells are similar to the spheric
case.

The symmetries may be detected by studying the cond
tance of two-electron QD’s at low temperatures. In partic
lar, atvL9 in the excited states there is the onset of a sing
triplet degeneracy related to crossings of the eigenstates~6!
with ucu.0 @see Fig. 3~b!#. The total spinS alternates be-
tween 1 and 0 and the addition of a second electron wit
spin-up or spin-down orientation to the QD will cost th
same energy. At zero magnetic fieldB50 two electrons oc-
cupy the same state withS50. At vL9 it becomes favorable
for one electron to flip its spin. The electron reconfigures
charge and polarizes the two-electron QD leading to a Ko
type effect,14 i.e., to the increase of the conductance at lo
temperatures. The enhancement of the conductance in Q
due to the singlet-triplet degeneracy induced by the magn
field has been discussed in Refs. 15–17~for review see Ref.
18!. According to Ref. 18, when the system is tuned to t
degeneracy point the differential conductancedI/dV would
exhibit a peak at zero bias. The increase of the strength o
magnetic field removes the degeneracy and the peak
split onto two peaks reflecting the single-particle spacing
tween singlet-triplet states. It should be noted, however,
this prediction is obtained in Ref. 18 within a schema
model where single-particle levels and the magnetic field
adjustable parameters. In addition, the electron-electron
teraction is assumed to be weak. According to our analy
the onset of the singlet-triplet degeneracy holds at a
strength of the electron-electron interaction in QD’s. We su
gest the mechanism, related to the hidden symmetries
sponsible for the occurrence of this degeneracy in tw
electron 3D QD’s at a certain value of the magnetic field

Summarizing, we have shown that the axially symmet
3D quantum dot with two electrons exhibits hidden symm
tries at certain values of the magnetic field. In particular, d
to these symmetries the onset of a singlet-triplet degene
in excited states is found when the magnetic field value
vL9 .

We are thankful to Jan-M. Rost for valuable discussio
and constructive suggestions.
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