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Hidden symmetries of two-electron quantum dots in a magnetic field
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Using a classical and quantum-mechanical analysis, we show that a magnetic field gives rise to dynamical
symmetries of a three-dimensional axially symmetric two-electron quantum dot with a parabolic confinement.
These symmetries manifest themselves as near degeneracies in the quantum spectrum at specific values of the
magnetic field and are robust at any strength of the electron-electron interaction.
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A three-dimensional harmonic oscillator with frequencieswith a gaugeA=31BXxr=21B(—y,x,0). The confining po-
in rational ratios(RHO) and a Coulomb system are bench-tential is approximated by a 3D axially symmetric HO
marks for the hidden symmetries which account for the aCU(r)zm*[wS (x2+y2)+w§zz]/2, wherefiw, and#w, are
cidental degeneracies of their quantum spe(te®, e.g., Ref.  the energy scales of confinement in theirection and in the
1). Recent advances in nanotechnology create a remarkabjley plane, respectively. In contrast to a 2D description of the
opportunity to trace their dynamical interplay in mesoscopicQp, this approximation provides a consistent descriftizi
systems such as quantum dots, which confine a few electroRgrious experimental featurdsthe energy spectrum for
to a space of a few hundred nanometers. Indeed, competitiofina|| magnetic field, the value of the magnetic field for the
between a confining potential, approximated quite well byfjrst singlet-triplet transition, and the ratio of the lateral to
the harmonic oscillatofHO), and the repulsive electron- yertical extension of the dot. In the present analysis we ne-
electron interaction produces a rich variety of phenomengg|ect the spin interaction, since the corresponding energy is
for example, in a two-electron quantum d@D) under a  gmal| compared to the confinement and the Coulomb ener-
perpendicular magnetic fieltsee Refs. 2 and 3, and refer- gigg,
ences therein In fact, a two-electron QD becomes a testing Introducing the relative and center-of-ma&M) coordi-
ground for different quantum-mechanical approaéhesd natesr=r;—r,, R=1(r,+r,), the Hamiltonian(1) is sepa-
experimental techniques that could provide highly accuratgateq into the CM and relative-motion termd =Hcy,
data for this systerf’ _ _ +H,.2° The solution to the first term is well knowh.It

If the HO and the Coulomb potential are combined, mostypssesses all symmetries of the HO, since the Coulomb in-
of the symmetries are expected to be broken. Neverthelesgyaction enters the second term for the parabolic
in particular cases, the Coulomieplen system and the confinement? In the following we concentrate on the dy-
RHO may have common symmetries, as it was already Nozamics ofH,, . For our analysis it is convenient to use cy-
ticed a long time agd.The authors of Ref. 5 could not find, lindrical led di = ol B =0l k3
however, a physical application for this phenomenon. Thesé oHca_ scaled coor nates, p=pllo, ,p”_p” offt, 2

_ _ 112

symmetries were rediscovered in the analysis of laser-cooled@ Z!o, Pz=Plo/fi, wherelo=(%/uwo)~* is the character-
ions in a Paul trahand of the hydrogen atom in the gener- istic length of the confinement potential with the reduced
alized van der Waals potentialThe major aspect of the Massu=m*/2. The strength parameter of the Coulomb
present paper is to demonstrate that the hidden symmetriégPulsion goes over ta=2a/(%wolo). Although our con-
could be observed in a two-electron QD under a tunabléideration is general, for the demonstra_non we choose the
perpendicular magnetic field if the effective confinement poValuesfiwo~2.8 meV andw,=2.50, which are close to
tential is indeed the three-dimensioriaD) HO. To this aim  those obtained in our 3D analy3isf the experiment. For
we focus our analysis upon the nonlinear classical dynamicie effective massn* =0.067n, and the dielectric constant
of the system. At certain conditions the motion becomes in£ =12, which are typical for GaAs, the value=3. Hereaf-
tegrable and this indicates the existence of the symmetries #¢". for the sake of simplicity, we drop the tilde, i.e., for the

the quantum spectrum. scaled variablgs we use the same symbols as be_fore sgaling.
The Hamiltonian of a two-electron QD in a magnetic field ~ In these variables the Hamiltonian for the relative motion
reads takes the form(in units of i wg)
21 e |2 @ He 1[5 My, o~y M) -
H=j§=:1 Zm*(pj_EAj +U(I'j) +m, (1) h_th_Z pp+ p2+pz+wpp +wzz +r w m,
2
wherea=e?/4mege, . Here,e, m*, gy, ande, are the unit _
charge, effective electron mass, vacuum and relative dieleswhere r=(p?+2%)'? w=wl/w,, m=I,/k. Here, o,
tric constants of a semiconductor, respectively. For the per=eB/2m*c is the Larmor frequency anabpz(war wﬁ)“2

pendicular magnetic field we choose the vector potentials the effective confinement frequency in thecoordinate,
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(a)

FIG. 1. Poincareurfaces of sectiorns=0, p,>0 of the relative _4
motion \=3, €=10, m=0) with: (@ w,/w,=5/2, (b) w,/w,
=2, and(¢) w,/w,=3/2. (b) indicates that for the ratiw,/w,
=2 the system is integrable. 2]
which depends through, on the magnetic field. In this way
the magnetic field can be used to control the effective lateralN 01
confinement frequency of the QD for a fixed value of the
vertical confinement, i.e., the ratio,/w,, . -2

Beside the energye&h), the z component of angular 0
momentuml, is also an integral of motion due to the axial
symmetry of the system. Therefore, the magnetic quantum
numberm is always a good quantum number. Since the FIG. 2. Typical trajectories{=10, m=1) of the relative mo-
Hamiltonian (2) is invariant under the reflection of the ori- tion atA=3 for w,/w,=1 (@), (b) and w,/w,=2 (c), (d) are
gin, the parityr is a good quantum number too. ;hown in cylindrical and prolate spheroidal coordinates, respec-

Although the motion inp is separated from the motion in 1vely-
the (p,z) plane, the problem is, in general, nonintegrable
since the Coulomb term couples tlpeand z coordinates.
Examination of the Poincargections by varying the param-
eter w,/w, (see Fig. 1 for examplgsin the interval

[Fig. 2(b)]. In this limit é—c such thatr=d§&/2 is finite,
n=cosd, and we obtain the spherical coordinate system.
Let us turn to the case,/w,=2 which occurs at the

- - "__ 210 . 2\1/2 _
(1/10,10) with a small step indicates that there are five intevalue of thg magnetic field = (w;/4 . wO). - In the pro
late spheroidal coordinates the motion is separated in the

grable cases. The trivial cases avg/w,—0 and w,/w N ;
~<, which correspond to 1D vertical and 2D circular QD's, iMit d—ee [Fig. 2d)]. In fact, atd—o: {1, 71 such
respectively. The nontrivial cases avg/w,=1/2,1,2. These that §,=d(¢—1), £,=d(1—7) are finite,—we obtain the
results hold for any strength of the Coulomb interaction andparabolic coordinate systeng(,&,,¢) whereg, ,=r=z. In
agree with the results for the Paul thgelow we discuss nesSe coordinates Hamiltonid#) has the form
the nontrivial cases only. The typical trajectories in cylindri-
cal coordinates are shown in Figga20. h=

The results obtained with the aid of the Poincauefaces &1+ &
of sections are invariant under the coordinate transformation.
On the other hand, the integrability is a necessary condition
for the existence of a coordinate system in which the motion
can be separated. In turn, the analogous quantum-mechanical

: nd the equationg; + &,)(h—¢€)=0 is separated into two
system would be characterized by a complete set of quantu Hecoupled equations fdk andé, variables, Simple manipu-

2

5 2 m</ 1 1
2(&1Pg, + 6P+ 5

&' &

~2
w
+5 (L&)

—o/m 3

numbers. lations define the separation constant
At the value w| = (02— 03)Y? the magnetic field gives P
rise to a spherical symmetryo(/w,=1) in the axially sym- o= az—BﬁpZZ, (4)

metric QD? In this case the Hamiltoniaf®) is separable in
(scaled spherical coordinategsee Eq.(7) in Ref. 8. The  which is a desired third integral of motion. Heag is thez
additional integral of motion is the square of the total angulatomponent of the Runge-Lenz vectar=pXI+\r/(2r),
momentum|?. The spherical coordinates are a particularwhich is a constant of motion for the pure Coulomb system
limit of the spheroidal(elliptic) coordinates well suited for (i.e., whenwp=wz=0).l The quantum-mechanical counter-
the analysis of the Coulomb systerfsee, e.g., Ref. 33  part of the integral of motion, Eq4), does not commute
Therefore, to search the separability for the other integrablevith the parity operator and we should expect the degeneracy
cases it is convenient to use the spheroidal coordinatesf quantum levels.

(&€, m,¢), whereé=(r,+r,)/d and p=(r,—r,)/d. In the Due to the separability of the motion in the parabolic
prolate spheroidal coordinates, =[p®+ (z+d)?]*?, r,=r. coordinate system, the eigenfunctions of the corresponding
The parameted e (0°) is the distance between two foci of Schralinger equation can be expressed in the far)

the coordinate systenfwith the origin at one of thejn  =f;(&;)f,(&,)€'™?, where the functiond; are solutions of

In the limit d—0 the motion is separated whes,/w,=1  the equations
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‘ (f dfj) - m2+;§§3 2(et+w/m)é
= [l vl LS ETw M)E;
dg;\%ldg) 4l g 45 LTS
+N—(—1)2c|f;=0, j=1.2. (5)

Equation(5) can be solved numerically and the eigenener-
gies and eigenvalues ofare determined iteratively by vary-
ing simultaneouslye and c until the functionsf; fuffill the
boundary conditionsfj~§}m"2, &df;/dé&=|m[f;/2 for &;
—0 andf;—0 for §—. Letn; andn, be the nodal quan-
tum numbers of the function;, and f,, respectively. Note
that Egs.(5) are coupled by the constants of motion and,
therefore, both functions depend on all three quantum num-
bers f,,n,,m). However, the simple product of these func-
tions has no definite parity. Since——re{&{—¢&,,4

— &, 0— ¢+ )}, the even-odd eigenfunctions are con-
structed as

eim<p

()= T D Mg

=(=)MEED )] )

where N=n;+n, and k=|n;—n,|. These states are the
eigenfunctions oh, |,, |c|, and the parity operator. Foc|
>0 the eigenstate®) appear in doublets of different parity
and, therefore, of a different total spin. For0 in Egs.(5)
f,=f, and, obviously, only the states with parity=
(—1)™ exist.

For the magnetic fields]'= (42— w3)Y? we obtain the
ratio w,/w,=1/2. The Hamiltoniar(2) expressed in theb-
late spheroidal coordinates {={z?+[p+d]2Y2 r,=r) is
separated fom=0 (at d—»). For m#0 the termm?/p? :
and, consequently, Hamiltonig®) is not separated in these P

| b)
coordinates. Note, fon=0 the case®&,/w,=1/2 and 2 are //2 3/2 1 OJZ/OJP 2/3 ( 1)/2
1

energy

P
equivalent if we exchange thp and z coordinates and, o5 1 1 I 1
hence, the additional integral of motion|s,— w2z°p|. For 0 1 2 3 4 5
m+#0 we use the procedure described in Ref. 6 and obtain | /mg

the following integral of motion:

FIG. 3. The lowest eigenenergies of Hamiltoni&) (in units
C= [(ap_z)gzzp)2+ ai+4m23)§r 2]1/2, 7) hwp) atw,/wyg=2.5and\=3 as functio_ns_ o_f the ratic»L{wo for:

(a) all m; (b) m=0. The upper energy limit is chosen high enough
wherea, anda,, are thep and ¢ components of the Runge- to amplify the shell structure of th.e spectrum. Thg integrable cases:
Lenz vector, respectively. Due to existence of three indeper?z/@,=2, 1, and 1/2 are indicated by vertical dotted lines
dent integrals of motiorh, m, andc, which are in involution,  (@1/®o=0.75,21/2, and\24, respectively
the dynamics fom+0, although nonseparable, is integrable. ., _ _ _ _
The further analysis fom=0 is similar to the previous one 3Aw{p® is the only nondiagonal part df in the eigenbasis
and we omit it here. of h*. The eigenenergies of Hamiltonia®) (see Fig. 3

Let us denote byn* Hamiltonian(2) for a specific value have been calculated with the use of the bd6)sand the

of the magnetic field when the system becomes separablgpherical basis in the intervals<iv, <1.5 and the 1.5 o,

"

i.e., forof =w(, | or o/ (for m=0). Then for an arbi- <5, respectively. The radial parts of the spherical eigenfunc-

trary value ofw we can write tions andfnllnz,m, as well as the corresponding factors in
- _ the matrix element$zpi|p2|¢j>, are evaluated numerically.
h=h*+31Awlp?— Ao m, (8  The complete spectrum of the two-electron QFlg. 3a)]

o o shows the accumulation of levels with different quantum
where Aw’=0’—0f?, Ao =0 —of, and the term numbers into well pronounced bands at strong magnetic
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field. There is no obvious manifestation of the symmetriesable form+0. Note that shells are similar to the spherical
discussed above. In fact, the effects of symmetries are showsase.

up for separatedh manifolds only[Fig. 3(b)]. The symmetries may be detected by studying the conduc-
For noninteracting electrons.&0), the energy levels of tance of two-electron QD’s at low temperatures. In particu-
the QD are Fock-Darwin levelg, lar, atw| in the excited states there is the onset of a singlet-
_ _ _ triplet degeneracy related to crossings of the eigenstéjes
€=w,(2n,+|m|+1)+ w (N, +3)— o m. (9)  with |c|>0 [see Fig. 8)]. The total spinS alternates be-

For rational ratios ofw,/w, the energy levels Eq9) are tween 1 and O and the a_ddmo_n of a second ele_ctron with a
degenerate. It is simply the spectrum of the RHO in theSPIN"UP or spin-down orientation to the QD will cost the

L~ . same energy. At zero magnetic fiddd=0 two electrons oc-
external fieldw m. For instance, at,/w,=2 we havee

~ ~ cupy the same state with=0. At w| it becomes favorable
=w(N+[m|/2+ 1)~ w{m. The quantum numbeN=n,  for one electron to flip its spin. The electron reconfigures the
+n,=n;+n,=0,1,2 ... andeachm manifold consists of charge and polarizes the two-electron QD leading to a Kondo
the shells characterized by this quantum number. Since thgpe effectt® i.e., to the increase of the conductance at low
eigenenergies of the terkicy with the corresponding quan- temperatures. The enhancement of the conductance in QD’s
tum numbers are determined by E8) as well, the shells in  qye to the singlet-triplet degeneracy induced by the magnetic
the total spectrum of the QD are not affected. field has been discussed in Refs. 154fbf review see Ref.
The Coulomb interaction destroys the general symmetryig). According to Ref. 18, when the system is tuned to the
of the 3D HO. However, the magnetic field can recover symyegeneracy point the differential conductamdédV would
metries that are common for the RHO and Coulomb systemsxhibit a peak at zero bias. The increase of the strength of the
At a relatively low value of the magnetic field (for our  magnetic field removes the degeneracy and the peak will
parameter8~2.4 T) we reveal the first manifestation of the split onto two peaks reflecting the single-particle spacing be-
hidden symmetries. This symmetry is determined by the intween singlet-triplet states. It should be noted, however, that
tegral of motion, Eq(4). It results in the appearance of shells this prediction is obtained in Ref. 18 within a schematic
at eachm-manifold[Fig. 3(b)]. There are exact crossings and model where single-particle levels and the magnetic field are
repulsions between levels of different and of the same parityadjustable parameters. In addition, the electron-electron in-
respectively, in each shell. The near degeneracy of the quareraction is assumed to be weak. According to our analysis
tum spectrum is reminiscent of a striking degeneracy obthe onset of the singlet-triplet degeneracy holds at any
served for the RHO or pure Coulomb systems. At higherstrength of the electron-electron interaction in QD’s. We sug-
values of the magnetic field, (B~7.5 T), the dynamical gest the mechanism, related to the hidden symmetries, re-
spherical symmetry appears, sinéebecomes an additional sponsible for the occurrence of this degeneracy in two-
integral of motion. This symmetry manifests itself as theelectron 3D QD's at a certain value of the magnetic field.
attraction between levels with different orbital quantum Summarizing, we have shown that the axially symmetric
numbers and the same parifyig. 3b)]. In contrast to spec- 3D quantum dot with two electrons exhibits hidden symme-
tra of pure Coulomb systems or of the RHO, there are ndries at certain values of the magnetic field. In particular, due
crossings between eigenstates of the subset characterized foythese symmetries the onset of a singlet-triplet degeneracy
a given quantum numben, since the accidental degeneracy in excited states is found when the magnetic field value is
is removed. Although the symmetry is recovered at veryw; .
strong magnetic field|” (B~15.9 T) due to the appearance  We are thankful to Jan-M. Rost for valuable discussions
of the integral of motion, Eq(7), the dynamics is nonsepa- and constructive suggestions.
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