@AMS

AMERICAN MATHEMATICAL SOCIETY
www.ams.urg

Boundary Behavior of Generalized Analytic Functions

Author(s): Kenneth Hoffman

Source: Transactions of the American Mathematical Society, Vol. 87, No. 2 (Mar., 1958), PP-
447-466

Published by: American Mathematical Society

Stable URL: http://www.jstor.org/stable/1993110

Accessed: 30/11/2009 01:50

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher ?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit service that hel ps scholars, researchers, and students discover, use, and build upon a wide range of
content in atrusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Transactions of the American Mathematical Society.

http://www.jstor.org


http://www.jstor.org/stable/1993110?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams

BOUNDARY BEHAVIOR OF GENERALIZED
ANALYTIC FUNCTIONS

BY
KENNETH HOFFMAN

1. Introduction. Recently, Arens and Singer [3] have studied a generaliza-
tion of part of the theory of analytic functions in the unit disc, arising from a
study of summable functions on partially ordered, locally compact groups. It
is our purpose here to study the natural abstractions to this context of classi-
cal theorems such as Fatou’s general Dirichlet principle, Riesz’s theorem on
functions of Hardy's class H,, and Priwaloff’s theorem on the measure of the
set of boundary zeros of an analytic function. We shall also consider other
questions, such as the existence of Cauchy measures. We begin by summariz-
ing some of the Arens-Singer results.

Let G be a locally-compact abelian group, and let G, be a closed semi-
group in G, such that the interior of G, is dense on G, and generates the
group G. Let A be the set of all ckaracters of G, i.e., continuous homomor-
phisms of G, into the unit disc of the complex plane. We make A into a topo-
logical space, using the topology of uniform convergence on compact subsets
of G,. If T' is the (topological) character group of G, each element of I deter-
mines a homomorphism of G, into the disc, and the so determined (one-one)
embedding of I' in A is a homeomorphism of T" with a closed subset of A.

In the classical case, when G is the discrete group of integers and G, is
the semi-group of non-negative integers, the space A is the unit disc in the
plane and T is the unit circle.

There exists in A a polar decomposition, generalizing that in the unit disc.

THEOREM 1.1. Each element ¢ in A is expressible in the form
(1.11) ¢ = pa
where p is a non-negative element of A and o is in I'.

Of course, p is uniquely defined by p(x) = ] §'(x)| ; however, a is not gen-
erally unique. \

Consider the Banach algebra L;(G), the multiplication being the convolu-
tion

(r+0G) = [ fz = 9eay.

Let A, be the subalgebra of L;(G) consisting of those functions f for which
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f(x) =0 when x is not in G,. Let H(A4,) be the canonical space of complex
homomorphisms (regular maximal ideals) of the Banach algebra 4,. Each
element % of H(A,) is uniquely representable in the form

(1.21) W) = fa @) @)dx

for some { in A. Conversely, given any { in A, (1.21) determines an element %
in H(A4,).

THEOREM 1.3. The one-one correspondence determined by (1.21) is a homeo-
morphism of A and H(4,).

We thus identify A and H(A4:) and will refer to an element of A as a char-
acter of G4, a homomorphism of 4;, or a regular maximal ideal of 4;. With
this identification, each function f in 4, determines a continuous function f
on A by

(1.31) M=Gmmw

In the classical case, the representing functions f are those functions con-
tinuous on the disc A, analytic in the interior, such that the restriction of f
to I' has an absolutely convergent Fourier series.

The well-known maximum modulus principle of function theory takes
the following form, in general.

THEOREM 1.4. For the algebra A,, T is the Silov boundary of the space of
maximal ideals A. That is, for each element f of A1, the maximum modulus of the
representing function § is taken on the set T'; and T' is the unique minimal closed
set in A having this property.

Thus, by analogy with the classical case, we shall refer to A as the disc
and to I as the boundary of A.

We next state the generalization of the familiar Poisson boundary integral
representation.

THEOREM 1.5. For each point § of A, there is a regular Baire measure m;
on I such that for every f in A,

(1.51) ) = f Heyme(de).

We should perhaps remark that if p is a fixed non-negative element of A
and {=pa (1.1), then for any continuous function ¢

(1.52) f $(Byme(dp) = f $(aB)my(d6).
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The measures m; are not generally unique; however, if G{\UG;! =G, which is
the case, for instance, when G is linearly ordered and G is the set of elements
not less than the identity, each m; is unique.

Before specializing the group G, we list one further observation of the
Arens-Singer paper. If II is the closed half-plane Re (w)=0, each p in A
determines a continuous mapping of II into A. We map the complex number
w into the element p¥ defined by

exp w log p(x), p(x) # 0,
0, p(x) = 0.

THEOREM 1.7. For each f in A,, the function J(p*+) is holomorphic for u
positive and continuous and bounded on all of 1.

(1.61) ww={

In those cases in which G is discrete, the above analytic functions are
almost periodic; however, no use will be made of that fact in this paper.

2. The influence of archimedean order. We now confine our attention to
those situations in which G is archimedean-linearly ordered (subgroup of the
additive group of real numbers) and G, is the set of elements not less than
zero. The topology of G is to be discrete. We shall treat the elements of G as
real numbers, in particular using > for the order relation in G.

When G is discrete, A possesses a point ¢, which we shall call the origin of
A, defined by

1, =0,

(2.01) ﬁm:%x>0

The measure on I associated with ¢, (1.5) is Haar measure. At times, we shall
write simply { =0 to mean {=¢{,. The origin plays a much more distinguished
role in general than it does in the classical situation. We shall not elaborate
much here on this distinguished nature of {. We might say that it is roughly
due to the fact that the “Taylor series” of an analytic function need not have
a first nonzero coefficient. ~

It will be convenient for our later purposes if we obtain at this point a
more precise picture of A. Note that the archimedean order of G guarantees
that no element of A different from {, ever assumes the value zero. This makes
the polar decomposition (1.1) unique. Also, if an element of A assumes the
value 1 at any point of G, other than the zero, it is identically 1 and is the
unit element of A. Thus, we shall write 0 <p<1 to mean 0<p(x) <1 for all
nonzero x in Gy.

THEOREM 2.1. If 0<p =1, there is a positive number r, 0 <r <1, such that
(2.11) p(x) = r=.
Conversely, if 0<r=1, (2.11) defines an element p of A. The correspondence
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determined by (2.11) between the real segment 0 <p <1 of A and the unit interval
(0, 1) is a homeomorphism.

Proof. Since p(y) =p(x)p(y —x) for x less than y, we see that p is monotone
decreasing. This monotonicity keeps p bounded near zero, from which it fol-
lows that p is continuous in the linear topology of G, and consequently that
p is of the form (2.11). The second statement of the theorem is obvious. A
typical neighborhood of po in A has the form

(2.12) U= {p;|px) —m(x)| <ei=1,---,n}.

Thus, it is clear that p is near po if and only if 7 is near 7,, which proves the
third statement.

In view of this theorem, we shall use the symbol p interchangeably for
the element of A and the number 7.

We recall the continuous mapping of the real line into I' defined in (1.61)
sending v into p®. Now (2.1) makes it clear that the image of the line under
this mapping is the same subgroup of I' for each 0 <p <1. We shall call this
subgroup A. As Arens and Singer showed [3, Theorem 7.2], A is a dense sub-
group of I'; also, A has Haar measure zero, unless G is the group of integers.
It is perhaps well to normalize our notation in A, defining A as the one-
parameter subgroup of I' consisting of the characters a,, defined for each real
v by

(2.13) ay(x) = e=,

The harmonic measures m,, p >0, determined by (1.5), are supported by
the subgroup A.

THEOREM 2.2. If 0<p <1, then for each bounded Baire function ¢ on T
1 0
(2.21) [ stmi@ = = [ o)t + o1
r ™ —0

Proof. The representation is proved in [3, Theorem 5.5]; the uniqueness
follows from the linear order of G, as remarked after (1.5).
Once again using (2.1), direct computation shows that

(2.22) [ s@maa) = [ " g(a)eu(o)ds,

where u = —log p and ¢, is the Cauchy density
(2.23) cu(v) = u[w(u? + v2)]-1

One useful conclusion from (2.23) is that the measures m,, 0<p <1, are mu-
tually absolutely continuous.
We conclude this section by exhibiting a local direct product decomposi-
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tion of the character group I'. The consequences (2.5 and 2.6) of this decom-
position will be extremely important to us later. Fix an element x, in Gy,
%070, and let Z be the compact subgroup of I' of those characters which
assume the value 1 at x,.

THEOREM 2.3. The character group T is locally isomorphic to the direct
product of the unit circle, Izl =1, and the subgroup Z.

Proof. By isomorphism, we of course mean topological isomorphism. Let
oo be in T', and select the unique number ¢ between 0 and 2w /x,, such that
ao(xo) =a(x0) (see 2.13). Let 8 be the element aye; * in Z. Consider the neigh-
borhood W of aq of the form

(2.31) W = {a; a(x) #= — ao(x)}.

Then there is a one-one correspondence between W and the product UXZ,
where U is the open subset of the circle obtained by deleting that ¢, such that
oy (x0) = —ao(x0). The correspondence is, of course, a<>(¢, 8) as outlined
above. That this is an algebraic isomorphism is obvious. We need only verify
that the topologies are the same. This fact is easy to see after one notes the
elementary fact (observed in the proof of (2.1)) that two values of ¢ are close
to one another if and only if the corresponding a.’s are close to one another
at some fixed x in G (or finitely many x's). The details are somewhat cumber-
some to write down, consequently, we omit them, realizing that the situation
is clear after a few moments thought.

Note that, according to the proof of (2.3), two direct product neighbor-
hoods will cover I'. It now follows that, except for a normalization, the Haar
measure of I is locally the product of the Lebesgue measure of the unit circle
and the Haar measure of Z [2, Theorem 2.3]. In the notation of (2.3), we
may thus state that for any bounded Baire function ¢ on T

(2.41) qub(a)da - K fz ) o(ad)ids,

where K is a constant of (measure) normalization.

THEOREM 2.5. Let S be a Borel set in T' and 0<p<1. If for each o in T,
Mpe(S) =0, then S has Haar measure zero.

Proof. Let ks be the characteristic function of the set S. Again with the
notation of (2.3), we may apply the Fubini theorem to (2.41) to conclude
that

(2.51) fwks(a)da = Kfzdﬂkas(azﬂ)dt.

Hence,
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(2.52) fwks(a)da =<K m:.x kas(a,ﬂ)dt =K m:x M(Sp),

where Sg=UX {6} and M is Lebesgue measure on the circle. According to
(1.52),

(2.53) m,,(Sp) = mpﬂ(S) = 0.
By (2.22),
(2.54) m,(Sp) = frks(aﬁ)m,,(da) = fwks(d,ﬁ)cu(v)dv.

As m,(Sg) =0 and ¢, is a positive kernel, it is clear that
(2.55) M(Ss) = f ks(a,B)dv = 0.
v

It follows from (2.52) that

(2.56) fwks(a)da =0,

and since two neighborhoods W will cover I', the Haar measure of S is zero.

This theorem is of course trivial in the classical case, in which each m;
is absolutely continuous with respect to Haar measure; however, in general
we know that the measures m; are mutually singular with Haar measure, be-
ing supported by translates of the one-parameter subgroup A, which has
Haar measure zero. Thus, (2.5) represents a useful cementing relation be-
tween the measures m;, {0, and Haar measure.

THEOREM 2.6. Let p be a non-negative element of A, and let p>0. Suppose
that the Baire function ¢ on T' has the property that for some fixed M and every
BinT

(2.61) f . | 6(aB) |Pm,(da) < M.
In other words, suppose that for the elements ¢ =pf, ¢ is uniformly bounded in

the norms Ly(my). Then ¢ is in L,(T).

Proof. In view of the mutual absolute continuity of the measures m,, as
implied by (2.21), we may assume p=¢"1. Then by (2.23),

(2.62) [ o) Imytaa) = [ | 6(ga) (1 + )220

—00

Using the local decomposition of (2.3), W=UXZ, we see that, since (1 +9?)!
is bounded away from zero on the interval U, the integrals
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(2.63) S lots)lras

must be uniformly bounded, say by N. As in (2.41),

(2.64) [ 16 i = [ as [ | o600 i

Since the group Z is compact, we have
(2.65) f | $(a) |?de < KN.
w

3. Analytic functions in the half-plane. We have seen (1.61) that there is
a natural continuous mapping of the half-plane Il = {Re (w)=0} into the
disc A, defined by sending w into e~. If g is an “analytic” function in the
interior of A, i.e., if g can be uniformly approximated on compact subsets of
the interior of A by functions f with f in 4,, then the function § defined by

(3.01) g(w) = g(e™)

is holomorphic (and almost periodic) in the interior of II (see 1.7). Further-
more, the Poisson-type boundary integrals defined by the harmonic measures
on I' are transformed via this mapping into boundary integrals on II involv-
ing the Cauchy density functions (2.22). Thus, the study of analytic functions
and/or boundary value problems in II will be very useful for a similar study
in the disc A. We shall therefore present some of the theory of analytic func-
tions in the half-plane, basing the discussion on the more familiar theory in
the classical unit disc. Most of these theorems in the half-plane are well-
known; however, 1 believe the Riesz theorem (3.9) is more general than
any to be found in the literature.

In this section, we denote the classical unit disc of the complex plane by
A and its boundary by T'y. Let ¢ be the conformal map of A, onto I (plus the
point at infinity) defined by

(3.02) 6(z) = (i + 2)/@G — 2).

Then, of course, ¢ maps I'y onto the imaginary axis of II (plus the point at
infinity). Every Baire function f on the boundary of II gives rise to a Baire
function F on I'; by means of the composition

(3.03) F(0) = f(¢(e)).
Direct computation shows that the familiar Poisson kernels
(3.04) P,6) = (1 — r)[2xr(1 — 27 cos 0 + r:)]-l

are transformed by ¢ into the Cauchy densities
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(3.05) cu(v) = ulr(u? + )]

in the following sense (see, for instance, [7]). The function f in (3.03) is
summable with respect to the Cauchy density ¢; (3.05) exactly when F
(3.03) is summable on the circle I'y; and, when F is summable, the functions

(3.06) glu + iv) = fwf(v — Deu()dt
and
(3.07) G(rei) = 2WF 6 — HP,()dt

are related by
(308) G(2) = g(#(2)).

In (3.06), f(v) is (of course) actually f(7v).
The Dirichlet problem is one of the famous problems in the function the-
ory of the unit disc and has the following general solution [4, p. 152; 12, p. 54].

THEOREM 3.1. Let F be a real-valued summable function on I'g and define G
inside Ao, by (3.07). Then G is a harmonic function in Ao with the property that,
for almost every 0, G(2) tends to F(0) as z approaches e® along any path non-
tangential with T',.

Since ¢ (3.02) is conformal and maps sets of measure zero into sets of
(linear) measure zero, our remarks above combine with (3.1) to yield directly
the analogous result for the half-plane.

THEOREM 3.2. Let f be a real-valued (Baire) function on (— «, ) which is
summable with respect to the Cauchy density ¢,. If g is the function defined on
IT by (3.06), then g is a harmonic function in the interior of Il such that, for al-
most every v, g(w) tends to f(v) as w approaches iv along any path nontangential
with the imaginary axis of II.

We consider next Fatou’s theorem on bounded analytic functions, which
in Ay has the following form [4, p. 147].

THEOREM 3.3. Let G be a bounded function, analytic in the interior of A,.
Then, for almost every 0, the limit

(3.31) F(0) = limit G(re®)

exists, and (3.07) holds.

There is a similar result in II. If g is a bounded function, holomorphic in
the interior of II, and G is defined by (3.08), then G is a bounded analytic
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function in the interior of A, to which we may apply Fatou’s result. With G
represented as in (3.07), we define a function f via (3.03), and as before, (3.06)
will hold. We state our observations formally.

THEOREM 3.4. Let g be a bounded analytic function in the interior of the
half-plane II. Then, for almost every v, the limit

(3.41) f(v) = limit g(u + 1)
u=0

exists, and (3.06) holds.

We turn to a theorem which is somewhat more difficult to obtain in the
half-plane. Let H, ($>0) denote the class of functions G, analytic inside A,,
with the property that the functions

(3.51) G:(0) = G(re®)

are uniformly bounded in L,-norm. In 1923, F. Riesz [11] proved the follow-
ing [see also 12, p. 162].

THEOREM 3.6. If G is in H,(Ao), then for almost every 0, the limit (3.31)
exists and defines a function F in L,(T), such that the functions G, converge to
F in the Ly-norm. If p=1, then (3.07) holds.

This result includes the Fatou theorem (3.3) as a special case. We have
stated Fatou’s theorem separately since it is of independent interest, and
also since Riesz’s proof made use of (3.3) and a Blaschke product decomposi-
tion of functions in H,. In [8], Hille and Tamarkin proved an analogous result
for the class of analytic functions in the half-plane such that the Lebesgue
L,-norms of the function along lines parallel to the boundary are uniformly
bounded. This class is somewhat restricted, since any such function is con-
tinuous at infinity. We shall prove a Riesz-type theorem for a larger class of
functions than Hille and Tamarkin considered; nevertheless, certain ideas in
our proof are contained in their work.

Let H, (p>0) be the class of functions g, holomorphic for Re (w) 20 and
bounded on Re (w)=u,>0, such that the integrals

(3.71) f °al g(u + i) |?(1 + v?)~'do

are uniformly bounded for #>0. What we need to know is the following.

LemMA 3.8. If g is in H,, and the function G is defined in A, by (3.08), then
G is in Hy=H,(A). '

Proof. The proof will be similar to that of [8, Lemma 2.5]. Let C be a
circle, |z| =7, in A,. We wish to show that there exists a uniform bound for
the integrals
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(3.81) f 'IG,(a) |7do = (2mr)~ fc | G@2) |7 ] dz] .

Each line Re (w) =5 in II maps into A, as a circle T, tangent to I'y at z2=1.
Choose b small enough that C lies in the interior of I'y. Now let I, be the circle
in A, concentric with I', but of radius 1/# less. A theorem of Gabriel [5]
states that, as | G| ? is subharmonic inside I', and continuous on T, we must
have

(3.82) [le@Pblal = [ 6@l e

o] r,
whenever # is large enough that C lies inside I',. We would like the same
inequality with I', in place of I',; however, we must somehow avoid the diffi-

culty presented by the fact that G is not continuous (necessarily) on I',. The
obvious thing to attempt is to show that

(3.83) | limitf | G@) || ds| =f | G@)|?| dz] .
n— o I‘” Iy
Now TI', corresponds (via 3.02) to a circle C, in IT which is centered on the

positive real axis. As # increases, one real intercept of C, approaches zero,
and the other tends to infinity. We are interested in the integrals

680 [ le@ka=2f |gwll1+ulla].
Since n

689 [ [c@llal =2 g6+l +82+ra,
we shall prove (3.83) if we show that

limit f | g(w) |7| 1 + w? || dw|

(3.86) O 3
= f | g(b + i0) |P[(1 + B)? + v2]-1dv.

Let £>0, and choose T such that
T
(3.87) f | 46 4 iv) [°[(1 + 8)* + v?] 1o
-T
differs in magnitude from the right-hand member of (3.86) by less than /2.

When # is sufficiently large, the circle C, will possess two sub-arcs which lie
in the strip —T=<Im (w) =T. Let v, be the one of these two arcs which is
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nearer the imaginary axis. As | g| is, by hypothesis, bounded for Re (w) =5,
the presence of the function |1+w?|~! in the right side of (3.84) guarantees
that when T is sufficiently large

(3.88) f | g@) || 1 + w? || dw| < /4.
Cn—n

Assume that T has been chosen large enough that (for all sufficiently large )

condition (3.88) is satisfied. Now all we need show is that for large # the inte-

gral

(3.89) [ el 1+ wtl] awy

differs from (3.87) by less than ¢/4. But, this follows immediately from the
fact that the integrand of (3.89) is uniformly continuous for w=2b-1y,
—T=v=T, and the fact that the points w=#u+14v on v, are tending uni-
formly to the points (b+1v).

To review, we have established (3.83). In view of (3.82), and the fact that
g is of class H,, the integrals (3.81) are uniformly bounded, which tells us
that the function G is of class H, in A,.

The lemma (3.8) leads us, by our familiar pattern, to the desired Riesz-
type theorem for the half-plane.

THEOREM 3.9. Let g be in H,(II). Then, for almost every v, the limit (3.41)
exists, and the functions g.(v) =g(u-1v) converge to the function f in the L,-
norm of the measure (1+v2)~dv. If p=1, then (3.06) holds.

As the final result of this section, we state the half-plane analogue of a
theorem of Priwaloff [9] concerning analytic functions in the disc A,. Pri-
waloff showed that if an analytic function in the open unit disc has nontan-
gential boundary values vanishing on a set of positive measure, the analytic
function is identically zero. We obtain directly for the half-plane the follow-
ing.

THEOREM 3.91. Let g be an analytic function in the half-plane Re (w)=0
such that for each v in the set S
(3.92) limit g(w) = 0
w=1r
as w approaches 1w along any path nontangential with the imaginary axis. If S
has positive measure, then g is identically zero.

We shall be primarily interested in this result when g is represented in the
form (3.06). In this case, the fulfillment of the first hypothesis of (3.91) is
guaranteed by (3.2).

4. Boundary value problems in A. We direct our attention now to bound-
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ary value problems in the disc A. Every bounded Baire function F on the
boundary I' gives rise to a function G inside A by means of

(4.01) Glpa) = fr Fa8)my(ds).

In the classical case, (4.01) becomes the familiar Poisson formula (3.07). In
this case, there is no point in restricting oneself to bounded Baire functions,
as F may be any summable function on the circle; however, in the general
setting, one must consider only functions F which are summable with respect
to each m;. Accordingly, we introduce the following notation. Let £3C; be the
class of Baire functions on I', summable with respect to all the harmonic meas-
ures m; with 0<|{| <1. Those functions in £3¢; which are in addition Haar
summable will be said to be of class £1, i.e., £1= £3MNL;. The classes £3¢,
and £, are defined similarly.

In the classical theory, it is also true that the function G is continuous for
]; I <1, since each my; is absolutely continuous with respect to the Haar
measure of I' and has a continuous Radon-Nikodym derivative. This is a
unique property of the classical situation, as in all other cases there exist F’s
which give rise to totally discontinuous functions G. As an example of this,
we offer for F the characteristic function of the one-parameter subgroup A
(§2). The associated G has the value zero at the origin, and for p#0,

1, a €A,
0, @ € A.

In view of the inequality ||G,||:<|| Fl|:, one can see that for any F such that
|| F||:=0, either G is discontinuous or identically zero. One can see from these
remarks that boundary-value problems in A will present some new and inter-
esting questions.

In order to see that things are not completely bizarre, we prove the fol-
lowing two theorems.

(4.02) Glpa) = {

THEOREM 4.1. If the function F in (4.01) is continuous, then G, equipped
with F as boundary values, is continuous on all of A.

Proof. The function F can be uniformly approximated by “trigonometric
. polynomials” ‘
(4.11) Pla) = 2 M(, @).
k=1

This follows from the Stone-Weierstrass theorem (see also [10, p. 160]).
Hence it will suffice to prove the theorem for functions P (4.11). Each such
P is of the form P =j+h, where f and % are in 4, (§1), where f corresponds to
the x; greater than or equal to zero and % to the negatives of the remaining
x. The result follows immediately from (1.5).
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THEOREM 4.2. Let F be in £3¢; and for li’] >0 define G by (4.01). Then for
0<p<1, G is continuous as a function of p.

Proof. The proof is immediate from the representation (2.22) and the fact
that the segment 0 <p <1 is homeomorphic to the unit interval (2.1).

We now wish to show that the harmonic measures m, behave like ap-
proximate identities in £;. The following lemma will be needed.

LemMA 4.3. Let U be a neighborhood of 1 in T'. Then limit,—y m, (U") =0.

Proof. Let F be a non-negative continuous function such that F(1)=0
and F(a)=1 on U’. Then, using (4.1),

limit m,(U’) < limit G,(1) = F(1) = 0.
p=1

THEOREM 4.4. Let F be in the class £1. If G is defined by (4.01), then
limit,—; || F—G,||:=0.

Proof. The L;-norm involved is that of Haar measure. From (4.01), and
the fact that m,(T") =1, we see that

(4.41) 17 = Gl s [ || = il map).

Let ¢ be positive. As F is in L;(T'), there is a neighborhood U of 1 such that
B in U implies || F— Fg||;<t/2. By Lemma 4.3, we have m,(U’) <t/4|| Fl|,, for
sufficiently large p. For such p,

@1 [F=Glis [1IF = Blmas) + [ |IF = Fdlmtas),
U v’

and each of these integrals is less than ¢/2; hence, we are done.

As our last item of business in this section we shall present an extension
to the disc A of the Dirichlet principle (3.1). Now obviously we cannot hope
for a result which is completely analogous to Fatou’s general solution of the
Dirichlet problem, for we have no definition of harmonicity; what should
harmonic function mean in A? Any definition of harmonic function would
certainly require the function to be continuous, and in view of the fact that
(4.01) does not always define a continuous function in A, we shall have diffi-
culty in obtaining a useful definition. For the present, we disregard the word
“harmonic” and state the following Dirichlet-type principle.

THEOREM 4.5. Let F be in £3¢,. Then (4.01) defines a function G in 0<|¢|
<1 with this property: the set S, of characters o such that limit,-, G(pa) = F(a),
has mg-measure zero for 0= I ¢ | <1.

Proof. Fix ¢ inA, ¢ 0. We wish to show that m;(S) =0. As the measures
m, are mutually absolutely continuous (§2), we may assume {=e¢"'. Con-
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sider the mapping ¢ of the half-plane Re (w) 20 into A defined by

(4.51) o(w) = Be™.
Define the function f on the imaginary axis of the half-plane by
(4.52) f(iv) = F(Be~*) = (F 0 ¢) (i),

and (see 3.05) let

(4.53) glu+ ) = fwf(it)c,,(t — v)dt.

Now (4.53) is meaningful, as one can see by (2.2) that g=Gjg 0 ¢. By the repre-
sentation of elements p in A (2.1),
(4.54) limit G(pBe~) = F(Be*)

p=1
if and only if
(4.55) limit g(u + 4v) = f(4v).

u=0
Notice that, since each G, is a Baire function, continuous as a function of p
(4.2), S is a Borel set. If kg is the characteristic function of S,

(4.56) fr ks(a)my(de) = f " ks(Be=")cx(0) db.

By (3.2), the Dirichlet theorem for the half-plane, (4.55) holds for almost
every v. Thus, the equivalence of (4.54) and (4.55) tells us that the right-hand
member of (4.56) is zero, i.e., m;(S) =0. All that remains to be shown is that
the Haar measure of S is zero. This is immediate from (2.5).

We remark that, if Fis in L,(I") for some p =1, the Lebesgue dominating
convergence principle guarantees that

limit [|F — G|, = 0.
p=1

5. The generalized Riesz theorem. In this section, we shall establish in
A a generalization of the classical theorem of F. Riesz (3.6), and consider some
of its consequences.

If >0, let H,=H,(A) denote the class of functions G, analytic (§3) in
the interior of A, with the property that for some fixed po, 0<po<1, the
integrals

(5.01) [ 166a8) [pmantaa)

are bounded, uniformly in p and 8. This class is independent of p.
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THEOREM 5.1. Let G be in the class Hy. Then
(5.11) F(a) = limit G(pa)

p=1
exists, except on a set which has my-measure zero for 0 = [; I <1. The function F
is in £, (§4), and

(5.12) limit || F — G|[}, = 0.
p=1

If p21, G is representable as the harmonic integral of F (4.01).

Proof. The proof proceeds in a manner entirely analogous to that of (4.5),
upon applying the Riesz-type theorem in the half-plane (which we established
in (3.9)) to the functions g(w)=Gs(e~*). Two points in the procedure are
worthy of illumination. First, the functions g in the half-plane are bounded
on Re (w)=5>0, since this region corresponds to the closed subdisc of A
defined by || <e*. Second, the Haar summability of | F|? and the conver-
gence of G, to F in the Haar L,-norm are guaranteed by Theorem (2.6).

As a special case of this theorem, we obtain the generalization of Fatou’s
Theorem (3.3).

COROLLARY 5.2.(Y) Let G be a bounded analytic function in the interior of A.
Then the limit (5.31) exists, except on a set which has mg-measure gero for
0= |§' | <1, and G is representable in the form (4.01).

In the classical situation, the case p=1 of the Riesz theorem is of special
interest. Theorem (3.6) with p=1 is rather easily shown to be equivalent to
the following.

THEOREM 5.3. Let p be a bounded (Radon) Borel measure on the unit circle,
| 2| =1. If the Fourier-Stieltjes coefficients

(5.31) an) = f " g inay (dp)

are zero for n <0, then p is absolutely continuous with respect to Lebesgue meas-
ure.

A modern proof of (5.3) has been given by Helson [6]. A comparable result
in our present context would, of course, be desirable. No similar result has
yet been obtained. Perhaps the direct generalization of (5.3) would be the
following. If u is a bounded Borel measure on T such that the Fourier-Stieltjes
coefficients

(5.32) (@) = f (%, @)-u(da)

() A proof of Fatou's theorem in this context has been found independently by J. Wermer.
His proof is virtually identical with that presented here.
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are zero when x is not in G, then u is absolutely continuous with respect to
the Haar measure of I'. However, this statement is false, as shown by the
following example, which was provided by R. Arens. For each continuous
function ¢, define

(5.33) frqb(a)p(da) = qub(e‘“)(l — it)"%dt.

Then p is an analytic measure, i.e., u(x) =0 for x not in G4, whereas (except
in the classical case) u is mutually singular with Haar measure, being sup-
ported by the one-parameter subgroup A (§2). Perhaps if one assumes that
u is (as a functional) a weak limit of absolutely continuous measures, or that
each convolution u=*m, is absolutely continuous, a conclusion like that of
(5.3) will be valid. The answer remains unknown.

6. Further results on boundary values of analytic functions. An object
worthy of much study is the Banach algebra 4, of functions continuous on
all of the disc A and analytic in its interior. We are not prepared to discuss
the structure (or ideal theory) of the algebra 4, but we should observe the
following.

THEOREM 6.1. If F is a continuous function on I and G is defined by (4.01),
then a necessary and sufficient condition that G (with boundary values F) be
in A 1s that for each x not in G

(6.11) F(z) = f (%, &)~F(a)do = 0.

Proof. The necessity is clear. For the sufficiency, all that we must demon-
strate is that F can be approximated uniformly on I' by functions % with %
in 4;=L:(G;). To show this, let £>0, and find a continuous function ¢ on T’
such that

(6.12) ¢ « F — Fllo <t

By the Plancherel theorem, A=¢F is in L;(G;) and its Fourier transform
(1.31) is ¢ = F; hence, we are done.

It was shown by Arens and Singer [3, 8.2] that if G belongs to 4, and if
G vanishes on an open subset of I', then G is identically zero. In another paper
[1], Arens established the more general result that for G in 4

(6.13) fr log | G(a) | my(da) > —

provided G is not identically zero. Consequently, the set of points of the
boundary I at which G(a) =0 must have m;-measure’zero. We prove a similar
result, where G is not assumed to have continuous boundary values.

THEOREM 6.2. Let G be an analytic function in the interior of A which is
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representable in the form (4.01) (that is, G is in Hi). If for some §, 0= | ¢ I <1,
the boundary value function F vanishes on a set of positive my-measure, then G is
identically zero.

Proof. Suppose F vanishes on a set of positive m,g-measure, p>0. We may
assume p=e¢-1. Define the analytic function g in the half-plane II by g(w)
=G(Bev), and define f on the imaginary axis of II by f(it) = F(8e~*). Then
¢ has the form (3.06). Furthermore, the representation (2.21) of 7, shows that
f vanishes on a set of positive linear measure. It follows from the classical
Priwaloff theorem (3.91) that g is identically zero. Hence, for each w, G(Be™)
=0. The elements B¢~ form a dense subset of A (§2), and as G is continuous,
G is identically zero.

If F vanishes on a set of positive Haar measure, we see from (2.5) that
F vanishes on a set of positive m;-measure for some { =¢~'8. This completes
the proof.

We conclude our discussion by considering the Cauchy measures, so im-
portant in classical analysis. On the unit circle, there not only exist harmonic
(Poisson) measures m, such that

(6.31) Joo) = [ Jtayma(a8)

for functions f in A;=Ly(G4), but there also exist Cauchy measures

(6.32) co(d8) = e[2m(e® — p)]~1do

such that

(6.33) Joo) = [ Jat)en@p)

for f in Ay, while if £(0) =0,

(6.34) fr [f(aB) ]¢,(B) = O.

This amounts to saying that the measures ¢, have Fourier-Stieltjes transforms
mﬂ(x)’ x é O,

6.35 K =

( ) (@) {0, x> 0.

It is convenient to describe (6.35) by saying that ¢, is an analytic contraction
of m,. We inquire whether “Cauchy” measures exist in general setting, and
to this end we prove the following.

THEOREM 6.4. Let u be a real, bounded, Borel measure on T which 1s sym-
metric, i.e., w(E~Y) =u(E). If p is mutually singular with Haar measure, and if

(6.41) u(0) = f Pn(«floz) # 0,
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then u has no analytic contraction.

Proof. Suppose v is an analytic contraction of u. Let v =»,4;, where »,
and »; are real measures. Since u is real and symmetric, 7 is real-valued and
symmetric, i.e., G(—x) =%(x). Since u(x) =»(x) for x <0,

~

o~ b 0’
(6.42) %,(x) = {’2‘ gg)) zi .

As v, is uniquely determined by its Fourier-Stieltjes transform, and since the

Haar measure m, has the transform

0, x#0,
(6.43) o(x) = {

1, =0,

we must have
(6.44) v = 1/2[u + u(0)mo].

Thus, u is absolutely continuous with respect to v,. Let I,ul be the total varia-
tion of u, etc. By the mutual singularity of m, and u

(6.45) Lv.| =1/72[| | + |2(0)] -m].

Now, let »;=g-»,+»' be the Lebesgue decomposition of »; relative to »,. Let
A and B be the Borel sets exhibiting the mutual singularity of », and »’, and
let k4 be the characteristic function of A. Consider the function

(6.46) h = fea(1 + ig)7,

where f is the bounded Baire function such that u=f-»,. A routine computa-
tion shows that u="h» (note that % is bounded). Let C be a Borel set of Haar
measure 1 such that I /4] (C)=0. Now select a sequence of real-valued “trig-
onometric polynomials” P, (see proof of 4.1), such that

(6.47) limit fr | ko(@) — Pa(@)| | v (da) = o.

In view of (6.45),

(6.480) | f | e(a) — Pola) | u(de)| = f | Eo(@) = Pule) | | 3] (de).

Consequently,

(6.481) 13313 fr | ke(@) — Pa(a) | u(da) = 0.

The polynomials P,, being real-valued, can be expressed in the form P,
=a,+p.+ P, where a, is a real constant and p, is of the form



1958] GENERALIZED ANALYTIC FUNCTIONS 465

kn
pn(e) = ?:‘,1 \i(%), e) (x; > 0).

Since ¥ (x) =0 for x>0, and » is an analytic contraction of u,

(6.482) f Pu(a)v(da) = f [an + pa()]o(da) = f [an + £a(0) Ju(da).

Qur assumptions about the set C tell us that

(6.483) [ re@utaa) = o,

so that (6.481)

(6.484) I,i,?iit fr P,(a)p(da) = 0.

Since u is a real measure

(6.485) l’iir_n.it Re [ fr [an + p,.(a)ju(da)] = 0.

Thus, by (6.482),

(6.486) limit Re[ fr P,.(a)v(da):l = limit fr P, (a)v.(da) = 0.

n— o n— oo

By (6.44) and (6.47)

(6.847) limit fr P.(a)r,(da) = frkc(a)v,(da) = u(0)/2.

n—> 0

Thus, u(0) =0, a contradiction.

Theorem (6.4) applied to u=m, shows us that as long as the measures m,
are mutually singular with Haar measure, i.e., except in the classical case, no
Cauchy measures exist.
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