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a b s t r a c t

In 1907 Lord Rayleigh published a paper on the dynamic theory of gratings. In this paper he presented a
rigorous approach for solving plane wave scattering on periodic surfaces. Moreover he derived explicit
expressions for a perfectly conducting sinusoidal surface, and for perpendicular incidence of the electro-
magnetic plane wave. This paper was criticized by Lippmann in 1953 for he assumed Rayleigh’s approach
to be incomplete. Since this time there have been published several arguments, proofs, and discussions
concerning the correctness and the range of validity of Rayleigh’s approach not only for plane wave scat-
tering on gratings but also for light scattering on nonspherical structures, in general. In the paper at hand
we will discuss the different point of views on what is called ‘‘Rayleigh’s hypothesis” as well as the rel-
evance of a found theoretical limit for its validity. Furthermore we present a numerical treatment of the
original scattering problem of a p-polarized plane wave perpendicularly incident on a perfectly conduct-
ing sinusoidal surface (i.e., the scalar Dirichlet problem). In doing so we emphasizes the near-field solu-
tion especially within the grooves of the grating up to points on the surface, and below the surface. Two
different Green’s function formulations of Huygens’ principle are used as starting points. One of this for-
mulation results in the general T-matrix approach which is considered to be affected by Rayleigh’s
hypothesis especially for near-field calculations. The other formulation provides a conventional boundary
integral equation which is in accordance with Lippmann’s point of view and free of problems with Ray-
leigh’s hypothesis. But the obtained results show that Lippmann’s argumentation do not withstand a crit-
ical numerical analysis, and that the independence of least-squares approaches from Rayleigh’s
hypothesis, as understood and proven by Millar, seems to hold also for certain methods which does
not fit into such an approach.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction be applied successfully. Regardless of such doubts Rayleigh used a
This year we celebrate the 100th anniversary of Mie’s famous
paper in which he solved the light scattering problem on spherical
particles rigorously [1]. This paper has become very popular since
electromagnetic wave scattering measurements gained more and
more importance over the years. To solve the scattering problem
Mie applied the well-known separation of variables method in
spherical coordinates. Since considering only spherical scatterer
he was on the firm mathematical ground of Fourier series to
approximate the solution of this specific boundary value problem.
But, interestingly, one year before Mie Lord Rayleigh published a
paper in which he provided an approach to solve the problem of
electromagnetic plane wave scattering from periodic surfaces (grat-
ings) in Cartesian coordinates [2]. Mathematically seen, this is the
more complicate boundary value problem since the surface of the
grating does not coincide with a constant coordinate line. It is as-
sumed that in this case the separation of variables method cannot
ll rights reserved.

x: +49 3981 480 299.
series expansion of the scattered wave in terms of outgoing plane
waves only, i.e., in terms of waves which move only away from
the grating. He determined the unknown expansion coefficients
afterwards by application of the boundary conditions at the peri-
odic surface appropriately. For the special case of a perpendicularly
incident plane wave on a sinusoidal but perfectly conducting sur-
face he derived an equation system which is at first independent
of the groove depth. But Rayleigh approximated this system after-
wards to allow for an iterative solution for shallow grooves.

There were no essential arguments against Rayleigh’s approach
until 1953, when Lippmann published a short note [3] in which he
intuitively criticized the usage of solely outgoing plane waves in
the representation of the scattered field in the grooves (in space
point r1 in Fig. 1, for example).

Lippmann argued that in the grooves one has to consider also
waves which moves toward the surface resulting from surface
current elements above the points of observation. Therefore he
assumed that Rayleigh’s approach is incomplete. This paper can
be considered as the hour of birth of the so-called ‘‘Rayleigh
hypothesis” or ‘‘Rayleigh assumption”, as the problem was called
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Fig. 1. Geometry of a sinusoidal grating. The boundary surface S@C is given by
y ¼ RðxÞ ¼ h cos px. In Rayleigh’s approach solely outgoing plane waves have been
considered for the scattered wave everywhere above the surface, i.e., in Cþ .
According to Lippmann’s argumentation this is correct only for points above y ¼ h
(point r2). In r1 one has to consider also incoming waves.
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in the manifold discussions and treatments of subsequent papers.
Especially the papers of Petit and Cadilhac [4,5], Burrows [6], and
Millar [7,8] constituted the next and most essential milestones in
this discussion and are cited very often in this context even in re-
cent publications. Petit and Cadilhac presented a mathematical
proof of the untenability of Rayleigh’s assumption if the product
of the amplitude h and the inverse of period L of the grating ex-
ceeds a certain value (h � p > 0:448; p ¼ 2p=L). A generalization
to the dielectric case can be found in [9]. But there was a numerical
development in parallel with seemingly contradictory results.
Using Rayleigh’s original approach there have been developed cer-
tain numerical methods which were able to produce reliable scat-
tering results even if h � p exceeds the theoretical limit of 0.448 [5].
Moreover, Burrows stated in his paper that Rayleigh’s approach
can be considered to be applicable without any restriction in a gen-
eralized sense. But the most detailed treatment was given in the
above cited papers by Millar. There we can find a proof of the cor-
rectness of Rayleigh’s approach if h � p < 0:448. This proof was later
on simplified and applied to other periodic surfaces as well as to
two-dimensional problems by van den Berg and Fokkema
[10,11], DeSanto [12], and Keller [13]. The found limit for the valid-
ity of Rayleigh’s hypothesis is used very often in the literature to
justify the restriction of numerical methods but especially that of
conventional point-matching. Beside this proof Millar’s papers
contain additional proofs of the completeness of the outgoing
plane waves on the surface of the grating, and of the general pos-
sibility to apply a least-squares approach to the boundary condi-
tion. This least-squares approach results in a uniformly
convergent series expansion of the scattered field in terms of only
outgoing plane waves everywhere outside the grating and inde-
pendent of whether Rayleigh’s assumption is fulfilled or not. Espe-
cially this last aspect provides an explanation of the above
mentioned contradictory results obtained with those numerical
methods which fit into a least-squares approach. But in other pa-
pers (in [14] chapter 10, for example) we find the statement that
convergent results beyond the theoretical groove depth limit can
be obtained only for the far-field quantities. This seems to contra-
dict the least-squares proof of Millar. And what happens with the
methods which does not fit into a least-squares approach? Some
of those methods, including geometric optics approaches, are also
able to produce reliable and stable results beyond the theoretical
groove depth limit [5,15,16]. Surprisingly, as we will show here,
this happens for Rayleigh’s original approach for which the limit
was claimed to hold. Thus the two questions arise: what does
‘‘Rayleigh’s hypothesis” really means, and what Rayleigh really
did? We are not able here to cite and discuss all the published lit-
erature dealing with Rayleigh’s hypothesis and its influence on the
usefulness or worthlessness of a certain numerical methodology
for solving scattering problems on structures which are not appro-
priate for the separation of variables method. But if one winnows
the literature one gets the feeling ‘‘that the problem has perhaps
been papered over rather than resolved”, as Wiscombe and Mugnai
stated in [17] when discussing the influence of Rayleigh’s hypoth-
esis on Waterman’s T-matrix approach [18,19]. T-matrix ap-
proaches are of our special interest here since they have become
very popular and powerful tools in many applications not at least
due to the improvements performed by Mishchenko [20]. But it
is also still an open question if these approaches are influenced
by Rayleigh’s hypothesis and whether they can be used for near-
field calculations or not. Such near-field calculations become
important if one is interested in plane wave scattering on clusters
of particles, for example [20]. It would be of some benefit if those
calculations can be performed by use of T-matrix methods.

This somehow muddled situation forced us to treat Rayleigh’s
original problem (the scalar Dirichlet problem for a p-polarized,
perpendicularly incident plane wave) in the chapter after next by
three different numerical approaches even in the grooves up to
the boundary surface, and beyond. The first one is simply the
numerical realization of Rayleigh’s original approach. This demon-
strates that he used not a least-squares approach but a set of
smooth weighting functions in order to fulfil the boundary condi-
tion somehow in between a least-squares approach and pointwise.
The second approach we use to solve the problem is a least-squares
approach. It differs from Rayleigh’s approach only in the choice of
the weighting functions. Thus we can demonstrate that the choice
of the weighting functions has a major impact on the stability and
reliability of the results – a fact which is well-known to practitio-
ners, of course. Finally we solve the problem by a boundary inte-
gral equation method which is considered to be generally not
influenced by Rayleigh’s hypothesis, and, therefore, in agreement
with Lippmann’s requirement to take not only outgoing but also
incoming plane waves into account. But there are no differences
even in the grooves between all three approaches, as we will see.
This gives us the justification to take up a pragmatic position
regarding the problem of ‘‘Rayleigh’s hypothesis”.
2. The Rayleigh hypothesis

After two equivalent formulations of the scattering problem of a
p-polarized plane wave perpendicularly incident on a sinusoidal
and perfectly conducting surface we will derive the general T-ma-
trix approach by use of a rigorous Green’s function formalism.
Afterwards we discuss the different understandings of the term
‘‘Rayleigh hypothesis” in the papers by Lippmann and Millar cited
already in Section 1.

2.1. Conventional formulation of the scattering problem

The scattering configuration is depicted in Fig. 2. The scattering
problem of a p-polarized plane wave perpendicularly incident from
above on a sinusoidal and perfectly conducting surface can be re-
lated to the following Dirichlet problem of the homogeneous
Helmholtz equation: We are seeking for a solution uðrÞ in Cþ of

r2uðrÞ þ k2
0uðrÞ ¼ 0 ð1Þ

with

r2 ¼ @2

@x2 þ
@2

@y2 ; ð2Þ



Fig. 2. Scattering configuration of a sinusoidal surface.
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and r being the two-dimensional vector ðx; yÞ. The assumed time
dependence expð�ixtÞ is suppressed throughout the paper. The
open region Cþ above the periodic surface S@C is characterized by
the free-space wave number k0 ¼ 2p=k. On the periodic boundary
we have to fulfil the homogeneous Dirichlet condition

uðx;RðxÞÞ ¼ 0: ð3Þ

Due to the linearity of Maxwell’s equations we can represent the
solution uðrÞ as a superposition of the incident and scattered field,

uðrÞ ¼ uincðrÞ þ usðrÞ: ð4Þ
uincðrÞ ¼ e�ik0y ð5Þ

is the given plane wave perpendicularly incident from above the
periodic surface. This plane wave is obviously a solution of the
homogeneous Helmholtz equation. Furthermore, due to the period-
icity of the problem we require

uð0; yÞ ¼ uðL; yÞ ð6Þ

with respect to x. Thus we can approximate uðrÞ by

uðrÞ ¼ uincðrÞ þ
XN

n¼�N

unðyÞ � eikxnx ð7Þ

with

kxn ¼ np; p ¼ 2p
L
; ð8Þ

and N being a finite number. The appropriate choice of N is dis-
cussed in the next chapter when dealing with the numerical reali-
zation of certain methods. We need an additional condition in
order to specify unðyÞ in the series expansion of the scattered field.
This is the non-local radiation condition

lim
y!1

@unðyÞ
@y

� ikynunðyÞ
� �

¼ 0: ð9Þ

S1 is considered to be this outer but non-local boundary of Cþ. The
discrete values of kyn are defined according to

kyn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � k2
xn

q
; if k2

0 > k2
xn

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xn � k2
0

q
; if k2

xn > k2
0:

8><>: ð10Þ
This condition is fulfilled by every outgoing plane wave

unðyÞ ¼ an � eikyny ð11Þ

with constant an. But it is not fulfilled by the total field uðrÞ since the
incident plane wave (5) violates this condition. Inserting (11) into
the series expansion of the scattered field in Eq. (7) provides the
representation

usðx; yÞ ¼
XN

n¼�N

aðNÞn � eiðkxnxþkynyÞ ð12Þ

which is assumed to applies generally for every y > h. Since the
boundary surface S@C of our interest is given by the even function

y ¼ RðxÞ ¼ h cos px; ð13Þ

and since considering perpendicular incidence of the plane wave
aðNÞn ¼ aðNÞ�n holds, i.e., the scattered modes are symmetric with re-
spect to the y-axis. Thus we can rewrite representation (12) as
follows:

usðx; yÞ ¼
XN

n¼0

aðNÞn � eiðkxnxþkynyÞ þ
XN

n¼1

aðNÞn � eið�kxnxþkynyÞ

¼
XN

n¼0

aðNÞn � �n � cos kxnx � eikyny: ð14Þ

Here we have �n ¼ 1 if n ¼ 0, and �n ¼ 2 if n > 0. This last represen-
tation was used by Rayleigh in [2]. Before discussing different meth-
ods to calculate the unknown coefficients aðNÞn we will formulate the
problem again by applying Green functions.

2.2. Formulation of the scattering problem in terms of Green functions

In contrast to (1) we ask now for the solution of the inhomoge-
neous Helmholtz equation

r2uðrÞ þ k2
0uðrÞ ¼ �qðrÞ ð15Þ

subject to the Dirichlet condition (3), the periodicity condition (6),
and the radiation condition (9). qðrÞ is the source which generates
the primary incident field uinc , i.e., uinc is a solution of

r2uincðrÞ þ k2
0uincðrÞ ¼ �qðrÞ ð16Þ



Fig. 3. Scattering configuration of a sinusoidal surface if formulated in terms of
Green functions.

342 J. Wauer, T. Rother / Optics Communications 282 (2009) 339–350
The necessity of introducing a local source is a consequence of
the cause and action concept of Green’s functions. We will now ex-
press the incident field uinc as well as the total field u by use of
appropriate Green functions.

2.2.1. Free-space Green’s function and the incident plane wave
It should be emphasized that for the scattering problem under

consideration the free-space Green’s function depends on the
direction of incidence of the plane wave. This is a consequence of
the restriction to a space with only periodic functions (fields and
sources). All ongoing discussions and representations of G0 are
therefore restricted to perpendicular incidence only!

Let us see now how we can generate the plane wave (5) perpen-
dicularly incident on the periodic boundary (13). For this we intro-
duce the free-space Green’s function by the defining equation

r2
r G0ðr; r0Þ þ k2

0G0ðr; r0Þ ¼ �dðr� r0Þ: ð17Þ

This Green’s function is related to the whole space C ¼ Cþ [ C�
without the grating (i.e., the unperturbed problem). But despite of
this we require the fulfilment of the periodicity condition

G0ð0; y; r0Þ ¼ G0ðL; y; r0Þ ð18Þ

with respect to x. Due to this condition we can expand G0 into the
Fourier series

G0ðr; r0Þ ¼
X1

n¼�1
Gnðy; r0Þ � eikxnx: ð19Þ

The Gnðy; r0Þ have to fulfil the radiation condition

lim
jyj!1

@Gnðy; r0Þ
@jyj � ikynGnðy; r0Þ

� �
¼ 0 ð20Þ

which holds at S1 as well as at S�1 [21]. In the literature one can
find several expressions for this Green’s function (for an overview,
see [22]). Here we want to employ the expression

G0ðr; r0Þ ¼
i

2L
�
X1
n¼0

�n

kyn
cos kxnðx� x0Þeikyn jy�y0 j: ð21Þ

Please, note that the eikxnx term in (19) has been resolved into the
term cos kxnðx� x0Þ thus restricting the sum over n to run from 0
to1. The values of �n are defined as in Eq. (14). This representation
of G0 does not explicitely show the expected logarithmic singularity
at r ¼ r0. But it is obviously divergent in this point. Moreover, it
exhibits the symmetry

G0ðr; r0Þ ¼ G0ðr0; rÞ ð22Þ

which follows from application of Green’s theoremZ
C

WðrÞr2UðrÞ �UðrÞr2WðrÞ
h i

dVðrÞ

¼
I

S
WðrÞ @UðrÞ

@n̂
�UðrÞ @WðrÞ

@n̂

� �
dSðrÞ: ð23Þ

in C ¼ Cþ [ C� with

WðrÞ ¼ G0ðr; r0Þ ð24Þ
UðrÞ ¼ G0ðr; r00Þ; ð25Þ

and in conjunction with the radiation condition (20) and periodicity
condition (18). The closed boundary S of the surface integral on the
right-hand side of (23) consists of the parts Sright , Sleft , S1, and S�1
(see Fig. 3). The derivation with respect to the unit normal vector
is defined according to

@U
@n̂

:¼ n̂ � rU: ð26Þ

On the other hand, if we choose
WðrÞ ¼ G0ðr; r0Þ ð27Þ
UðrÞ ¼ uincðrÞ ð28Þ

in (23), we get

uincðrÞ ¼
Z

C
G0ðr; r0Þ � qðr0ÞdVðr0Þ ð29Þ

If taking the symmetry (22) and Eqs. (16) and (17) into account, and
if requiring the radiation condition (20) to hold also for uinc . Then it
is straightforward to show that the source distribution

qðrÞ ¼ �2ik0dðy� y0Þ ¼ �2ik0 � cos kx0x � dðy� y0Þ ð30Þ

in conjunction with expression (21) generates the incident field

uincðrÞ ¼ eik0 jy�y0 j: ð31Þ

If we locate y0 somewhere in Cþ such that

y0 > h; ð32Þ

and if choosing w.l.o.g.

eik0y0 ¼ 1 ð33Þ

(see Fig. 3) we produce exactly the incident field (5) below y0

needed for our discussion.
But representation (21) can be simplified further. Due to the

considered surface (13) it is sufficient to take only the even part

eG0ðr; r0Þ ¼
i

2L
�
X1
n¼0

�n

kyn
cos kxnx cos kxnx0eikyn jy�y0 j ð34Þ

of G0 with respect to x into account. This expression can be decom-
posed into

eG0ðr; r0Þ ¼
eG>

0 ðr; r0Þ; y > y0eG<
0 ðr; r0Þ; y < y0;

(
ð35Þ

with

eG>
0 ðr; r0Þ ¼

i
2L
�
X1
n¼0

~/nðrÞ � ~wnðr0Þ ð36Þ

eG<
0 ðr; r0Þ ¼

i
2L
�
X1
n¼0

~wnðrÞ � ~/nðr0Þ: ð37Þ

The expansion functions therein are given by
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~/nðrÞ ¼
ffiffiffiffiffiffiffi
�n

kyn

s
� /nðrÞ ð38Þ

/nðrÞ ¼ cos kxnxeikyny ð39Þ

~wnðrÞ ¼
ffiffiffiffiffiffiffi
�n

kyn

s
� wnðrÞ ð40Þ

wnðrÞ ¼ cos kxnxe�ikyny: ð41Þ

This even part of G0 together with the source distribution (30) pro-
duces the same incident field (5) below y0.

2.2.2. Green’s function of the total field in Cþ
The Green’s function which is related to the considered scatter-

ing problem in Cþ is also a solution of the inhomogeneous Helm-
holtz equation

r2
r Gþðr; r0Þ þ k2

0Gþðr; r0Þ ¼ �dðr� r0Þ: ð42Þ

Cþ is enclosed by Sright , Sleft , S1, and S@C. We require again the fulfil-
ment of the periodicity condition

Gþð0; y; r0Þ ¼ GþðL; y; r0Þ ð43Þ

with respect to x as well as the radiation condition (9) if y!1. But
in contrast to the free-space Green’s function we have the addi-
tional homogeneous Dirichlet condition

Gþðx;RðxÞ; r0Þ ¼ 0 ð44Þ

which must hold on the surface of the grating. Gþ obeys the symme-
try relation we already know from G0, i.e.,

Gþðr; r0Þ ¼ Gþðr0; rÞ: ð45Þ

This can be simply proven by using

WðrÞ ¼ Gþðr; r0Þ ð46Þ
UðrÞ ¼ Gþðr; r00Þ; ð47Þ

in Green theorem (23) now applied in Cþ. On the other hand, if using

WðrÞ ¼ Gþðr; r0Þ ð48Þ
UðrÞ ¼ uðrÞ ð49Þ

in (23), we get

uðrÞ ¼
Z

Cþ

Gþðr; r0Þ � qðr0ÞdVðr0Þ: ð50Þ

The problem we have to solve now is the determination of the
unknown Green’s function Gþ. For this we introduce the so-called
interaction operator W@C by the definition (see [23], for example)

Gþðr; r0Þ :¼ eG0ðr; r0Þ þ
Z

S@C

eG0ðr; r̂Þ �W@Cðr̂;~rÞ � eG0ð~r; r0ÞdSðr̂ÞdSð~rÞ:

ð51Þ

This interaction operator is solely determined on the surface of the
grating and describes the interaction of the incident plane wave with
this surface. For r not on the surface and r0 being the location of the
primary source (30) this representation of Gþ is in accordance with
all requirements formulated above. For the ongoing discussion we
assume generally that y < y0 holds. Thus we can write instead of (51)

Gþðr; r0Þ ¼ eG<
0 ðr; r0Þ þ

Z
S@C

eG0ðr; r̂Þ �W@Cðr̂;~rÞ � eG<
0 ð~r; r0ÞdSðr̂ÞdSð~rÞ:

ð52Þ
Please, note that on the surface RðxÞ of the grating we have the

unit normal vector

n̂ ¼ êx � R0ðxÞ � êyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½R0ðxÞ�2

q ð53Þ
with R0ðxÞ ¼ dRðxÞ=dx. The surface element dS in the surface integral
on the right-hand side of (51)/(52) is given by

dSðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½R0ðxÞ�2

q
dx ¼ SðxÞdx: ð54Þ

If we further restrict the variable y to the region in Cþ for which
y > h holds we can replace eG0ðr; r̂Þ in the surface integral of (52)
by eG>

0 ðr; r̂Þ, i.e.,

Gþðr; r0Þ ¼ eG<
0 ðr; r0Þ þ

Z
S@C

eG>
0 ðr; r̂Þ �W@Cðr̂;~rÞ � eG<

0 ð~r; r0ÞdSðr̂ÞdSð~rÞ:

ð55Þ

If using expansions (36) and (37) but now truncated at a finite num-
ber N, and if defining the matrix elements of the interaction opera-
tor according to

½W@C�n;n0 :¼ i
2L

Z
S@C

~wnðx̂;Rðx̂ÞÞ �W@Cðr̂;~rÞ � ewn0 ð~x;Rð~xÞÞdSðr̂ÞdSð~rÞ

ð56Þ

we get as an approximation of Gþ in the considered region y > h

GðNÞþ ðr; r0Þ ¼ eG<
0 ðr; r0Þ þ

i
2L
�
XN

n;n0¼0

W@C½ �n;n0 � e/nðrÞ � e/n0 ðr0Þ: ð57Þ

This is a representation in terms of outgoing plane waves only with
respect to y and y0. Inserting this expression together with the
source distribution (30) into (50) provides the corresponding
representation

uðrÞ ¼ uinc þ
ffiffiffiffiffi
k0

p
�
XN

n¼0

ffiffiffiffiffiffiffi
�n

kyn

s
� ½W@C�n;0 � /nðrÞ ð58Þ

of the total field in the region h < y < y0. The second part on the
right-hand side of this equation represents the scattered field. If
comparing it with (14) we get

aðNÞn ¼

ffiffiffiffiffiffiffiffiffiffiffi
k0

kyn�n

s
� ½W@C�n;0 ð59Þ

as the relation between the expansion coefficients in Rayleigh’s rep-
resentation and the matrix elements of the interaction operator.
Thus we can state that in region h < y < y0 representation (55) or
approximation (57) of the Green’s function related to our scattering
problem is equivalent to the conventional representation of the to-
tal field with the scattered part given by (14). But the question how
to determine the unknown expansion coefficients or the matrix ele-
ments (56) of the interaction operator, respectively, is still open.
This will be considered now.

2.3. T-matrices and Rayleigh’s method

In this subchapter we will first discuss the general T-matrix ap-
proach. It turns out afterwards that Rayleigh’s original approach is
nothing but a certain realization of this method. To demonstrate
this we have to choose the weighting functions appropriately.
Two other choices of weighting functions are also discussed which
result in other T-matrices.

The essential step to determine the unknown coefficients is the
following assumption which dates back to Rayleigh:

� Representation (14) holds not only for y > h but also for all val-
ues of y within the grooves and at the surface of the grating.

To determine the matrix elements of the interaction operator
we formulate the equivalent assumption for the Green’s function
of the scattering problem:
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� Representation
GR
þðr;r0Þ¼ eG<

0 ðr;r0Þþ
Z

S@C

eG>
0 ðr; r̂Þ�W

R
@Cðr̂;~rÞ� eG<

0 ð~r;r0ÞdSðr̂ÞdSð~rÞ;

ð60Þ

or, equivalently, approximation (57) holds not only for y > h
but also for all values of y within the grooves and at the sur-
face of the grating.

Please, note that the Green’s function as well as the matrix ele-
ments (56) of the interaction operator are marked with the upper
letter ‘‘R” to distinguish the resulting approach from the approach
on the basis of Lippmann’s argumentation we will consider later
on. We will call both assumptions ‘‘Rayleigh’s assumption”. They
allow us to apply the additional Dirichlet conditions (3) or (44),
respectively, to determine the unknown quantities. The matrix ele-
ments of the interaction operator can thus be determined in the
following way:

Applying (44) to (57) provides the equationXN

n0¼0

~wn0 ðx;RðxÞÞ � ~/n0 ðr0Þ ¼ �
XN

n;n0¼0

~/nðx;RðxÞÞ � ½WR
@C�n;n0 � ~/n0 ðr0Þ ð61Þ

if using the (now finite!) expansion (37) to approximate eG<
0 ðr; r0Þ in

Eq. (57). Next we ask for the transformation matrix eT@C which al-
lows us to express the expansion functions ~wn0 ðx;RðxÞÞ by the expan-
sion functions ~/nðx;RðxÞÞ on the surface y ¼ RðxÞ of the grating
according to

~wn0 ðx;RðxÞÞ ffi
XN

n¼0

½eT @C�n0 ;n ~/nðx;RðxÞÞ; ð62Þ

where the ‘‘equal”-sign holds only for a plane interface RðxÞ ¼ const.
If we insert this relation into (61) we get after comparison

½WR
@C�n;n0 ¼ �½T@C�n;n0 ¼ �½eT @C�tpn;n0 : ð63Þ

Index ‘‘tp” denotes the transpose of ½eT @C�n;n0 . ½T@C�n0 ;n, on the other
hand, can be calculated according to (see [18,23,24], for example)

½T@C�n;n0 ¼
XN

m¼0

½A�1
@C �n;m½B@C�m;n0 ð64Þ

from the two matrices A›C and B›C. Their elements are given by

½A@C�n;m ¼ hwnðrÞj~/mðrÞi ð65Þ
½B@C�n;m ¼ hwnðrÞj~wmðrÞi ð66Þ

with the scalar product defined according to

hwnðrÞjfmðrÞi :¼ 1
L
�
Z L

0
w�nðx;RðxÞÞ � fmðx;RðxÞÞdx: ð67Þ

In contrast to the way described above Waterman employed the so-
called ‘‘Extended Boundary Condition” in his original papers. But
the result is still the same, as proven for three-dimensional scatter-
ing problems in [25], for example. As it can be seen from (59) it is
sufficient to know only the first column of the matrix WR

›C, i.e.,
we need only

½T@C�n;0 ¼
XN

m¼0

½A�1
@C �n;m � ½B@C�m;0: ð68Þ

Moreover, in (64)/(68) we have the degree of freedom to choose
the set of weighting functions fwnðrÞgN

n¼0 appropriately. Due to our
special scattering surface they are only restricted to be even func-
tions with respect to x. Three types of weighting functions are of
our special interest here:

Let

wnðrÞ ¼ L � dðx� xnÞ ð69Þ
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with xn being N þ 1 points within the interval ½0; LÞ. These weighting
functions provides the conventional point-matching technique, as
can be seen from (68) in conjunction with (65), (66), and (38)–(41).
This technique was the catalyst of a controversial discussion by Bates
and Millar [26] and of Millar’s analysis of Rayleigh’s hypothesis. It is
well-known by practitioners that this method is not very stable and
provides accurate results only for shallow gratings. But a drastic
improvement can be achieved if the number of points chosen on
the surface exceeds the number of unknowns in the series expansion
(14) of the scattered field thus getting an overdetermined equation
system. Applying to this system a least-squares approach (a singular
value decomposition procedure, for example) results in a much more
stable method which is called the ‘‘improved” or ‘‘generalized” point-
matching technique. An essential characteristics of both methods is
the fact that the resulting expansion coefficients are not final, i.e.,
that they are dependent on the number N of expansion terms used
in the representation of the scattered field. Thus, if the problem re-
quires the consideration of an additional expansion term all coeffi-
cients must be calculated again. This is the reason why we denoted
the expansion coefficients in (12), (14), and in (59) with aðNÞn .

wnðrÞ ¼ cos kxnx ð70Þ

is another type of weighting functions of our interest. Taking the
integral representation

1
2p
�
Z 2p

0
eiðny�z cos yÞdy ¼ e�iðnpÞ=2 � JnðzÞ ð71Þ

of Bessel’s functions JnðzÞ into account we get from (65) and (66)

½A@C�m;n ¼
1
2

ffiffiffiffiffiffiffi
�n

kyn

s
eiðmþnÞp2 � JmþnðhkynÞ þ eiðm�nÞp2 � Jm�nðhkynÞ
� �

ð72Þ

½B@C�m;n ¼
1
2

ffiffiffiffiffiffiffi
�n

kyn

s
e�iðmþnÞp2 � JmþnðhkynÞ þ e�iðm�nÞp2 � Jm�nðhkynÞ
� �

ð73Þ

as the relevant matrix elements. Albeit of our more compact nota-
tion this agrees exactly with the equation system derived by Ray-
leigh in his original paper (see Eqs. (28)–(34) in [2]). It should be
mentioned that Rayleigh applied the Jacobi-Anger formula instead
of Sommerfeld’s integral representation to derive the equation sys-
tem. This system was resolved afterwards by Rayleigh under the
assumption of a shallow grating. This allowed him to derive explicit
expressions for the expansion coefficients according to (59). We
have to state again that the resulting expansion coefficients are
not final! It should be also mentioned that these weighting func-
tions does not belong to a least-squares scheme.

Therefore, let

wnðrÞ ¼ ~/nðx;RðxÞÞ ð74Þ

with ~/n according to (38). This choice of weighting functions corre-
sponds to the least-squares determination of eT@C in (62). We are
again able to perform the scalar product in (65) and (66) analyti-
cally. The matrix elements read in this case

½A@C�m;n ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�m

kynkym

s
eiðmþnÞp2 � Jmþnðhðkyn � k�ymÞÞ
n

þ eiðm�nÞp2 � Jm�nðhðkyn � k�ymÞÞ
o

ð75Þ

½B@C�m;n ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�m

kynkym

s
e�iðmþnÞp2 � Jmþnðhðkyn þ k�ymÞÞ
n

þ e�iðm�nÞp2 � Jm�nðhðkyn þ k�ymÞÞ
o

ð76Þ

and the corresponding expansion coefficients are again not final.
Other types of T-matrices which can be related to other choices of
weighting functions are described in [27], for example.
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The numerical realization and consequences of these choices of
weighting functions will be discussed in chapter 3. But before
doing this we are now prepared to discuss the two different under-
standing of ‘‘Rayleigh’s hypothesis” in Petit’s/Cadilhac’s/Millar’s,
and in Lippmann’s initially mentioned papers.
2.4. Rayleigh’s hypothesis according to Petit, Cadilhac, and Millar

In [4,5,7,8] the authors started from the representation

usðx; yÞ ¼
X1

n¼�1
an � eiðkxnx�kynyÞ: ð77Þ

of the scattered field in terms of outgoing waves only. It differs from
our representation (12) by assuming an infinite expansion from the
beginning with final expansion coefficients. Moreover, applying
Green’s theorem (23) in a subdomain of Cþ bounded by Sleft , Sright ,
S@C, and h < y 6 const: < y0 with

WðrÞ ¼ usðrÞ; ð78Þ
UðrÞ ¼ e�iðkxnx�kynyÞ: ð79Þ

Millar could relate the final coefficients to the surface integral

an ¼
i

2kynL
�
Z

S@C

usðrÞ
@

@n̂
� @usðrÞ

@n̂

� �
� eiðkxnx�kynyÞdSðrÞ ð80Þ

containing the known scattered field us and its unknown outward
normal derivative on the surface S@C (see [7,8]). Rayleigh’s hypoth-
esis in the understanding of Petit, Cadilhac, and Millar is defined as
follows (if we talk about Rayleigh’s hypothesis in the ongoing dis-
cussion of this subchapter this definition is tacitly meant!):

It is the assumption that expansion (77) with coefficients (80) is
a valid representation of us not only in y > h but in every point of
Cþ and especially on the surface RðxÞ [8]. Thus the Dirchlet condi-
tion (3) provides

e�ik0RðxÞ ¼ �
X1

n¼�1
an � eiðkxnx�kynRðxÞÞ ð81Þ

which is assumed further to hold in every point of this surface.
This understanding of Rayleigh’s hypothesis targeted obviously

at conventional point-matching methods [28]. According to our
discussion in the foregoing subchapter this designation is some-
how questionable since Rayleigh never used the conventional
point-matching method nor he assumed final expansion coeffi-
cients according to (80) even if he did not made it in his equa-
tions. Some misunderstandings in the recent literature may
result from this confusing designation. But for practitioners oper-
ating with conventional point-matching methods the analysis of
Petit, Cadilhac, and Millar is of importance since Petit and Cadil-
hac found a counter example, i.e., a point on the surface which
violates boundary condition (81). They could show in an elegant
way that in x ¼ L=2 condition (81) is violated if h � p > 0:448
[4,5]. Millar, on the other hand, could show by inspection of the
singularities of the scattered field that Rayleigh’s hypothesis as
formulated above holds for h � p < 0:448 [7]. Thus h � p ¼ 0:448
can be considered to be an upper limit of the applicability of con-
ventional point-matching techniques even though they never
reach this value in practical calculations since running into stabil-
ity problems much before. Excluding such critical surface points
in the corresponding procedure would be therefore of little bene-
fit. This is the reason why conventional point-matching methods
are nowadays of less importance. But the requirement that
boundary condition (81) must hold in every point on the surface
is questionable also from a more physical point of view. Sommer-
feld stated in [21] that ‘‘in mathematical lectures on Fourier series
emphasis is usually put on the concept of arbitrary functions, on its
continuity properties and its singularities. This point of view becomes
immaterial in the physical applications. For, the initial boundary val-
ues of functions... must always be taken as smoothed mean values,
just as the partial differential equations in which they enter arise
from a statistical averaging of much more complicated elementary
laws. Hence we are concerned with relatively simple idealized func-
tions and with their approximation with... ‘‘Method of Least Squares”.
We shall see that it opens a simple and rigorous approach not only to
Fourier series but to all other series expansions of mathematical phys-
ics... in eigenfunctions”.

This physical point of view is reflected in Millar’s proof that an
understanding of boundary condition (81) in a least-squares sense,
i.e.,

e�ik0RðxÞ ¼ �
XN

n¼�N

aðNÞn � eiðkxnx�kynRðxÞÞ ¼ uðNÞs ðRðxÞÞ ð82Þ

with coefficients aðNÞn calculated by minimizing the least-squares
normffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huincðRðxÞÞ þ uðNÞs ðRðxÞÞ j uincðRðxÞÞ þ uðNÞs ðRðxÞÞi

q
ð83Þ

is generally not influenced by Rayleigh’s hypothesis and results in a
representation of the scattered field everywhere above y ¼ RðxÞ
which converges uniformly against the exact solution [8]. Please,
note that the scalar product hgðxÞ j f ðxÞi was already defined in
(67). T-matrix methods which are based on the third choice (74)
of weighting functions as well as generalized point-matching proce-
dures are therefore not in conflict with Rayleigh’s hypothesis. Ray-
leigh’s original approach is somewhere in between conventional
point-matching and least-squares methods and provide stable re-
sults much beyond the limit of Petit, Cadilhac, and Millar. But as
we will demonstrate in our numerical analysis the region of stable
and convergent results depends strongly on the choice of weighting
functions. And it is known from practical applications that a least-
squares approach is not necessarily the best one (see [29], for
example).

In this context it should be mentioned that one can find in the
more mathematical-oriented literature the following abstract def-
inition of Rayleigh’s hypothesis (see [24], for example): If the out-
going plane wave functions form a Schauder basis for L2ð@CÞ (that
is the space of all square-integrable functions on S@C) Rayleigh’s
hypothesis (or, better, Rayleigh’s assumption that the expansion
of the scattered field in terms of outgoing plane waves only is able
to solve the scattering problem) is said to be satisfied. An infinite
set of functions fn form a Schauder basis if there is a unique set
of final coefficients an such that any function u on the surface of
the grating can be represented by

u ¼
X1
n¼0

an � fn ð84Þ

(see [30], for example). What does it means from a more practical
point of view? We would then be able to apply the T-matrix ap-
proach with least-squares weighting functions up to an infinite
truncation parameter N, i.e., we would be able to perform the nec-
essary inversion of the infinite matrix A›C in (68), for example. But
this definition is of less importance for practitioners since one can
find no clear answer whether the outgoing plane wave functions
form a Schauder basis on a sinusoidal surface or not. And if they
do this would be of little help since every numerical procedure is
based in principle on a finite numerical accuracy and on a finite ser-
ies expansion, and it has to fight against stability problems like the
bad condition number of major matrices one has to invert in the
process of the numerical solution.
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2.5. Lippmann’s criticism and the corresponding approach

Lippmann’s criticism of Rayleigh’s approach is much more intu-
itive and traceable for practitioners since it is based on the clear
physical picture of Huygens’ principle, at first glance (see Fig. 4).
It is therefore used very often in recent papers as a justification
for the supposed advantage of boundary integral equation methods
and can be formulated as follows:

For observation points above the line y ¼ h Lippmann agrees
with Rayleigh’s representation of the scattered field as a series
expansion in terms of outgoing waves only. But in observation
points below y ¼ h there exist surface current elements generating
waves which moves toward the surface of the grating. Ignoring
those waves will result in an incomplete method to calculate the
scattered field.

If we speak about Rayleigh’s hypothesis in this subsection we
have this understanding of Lippmann in mind. It is not easy to with-
stand his argumentation. Applying it to our Green’s function for-
malism means that representations (60) and (57) are not allowed
Fig. 4. Lippmann’s criticism on Rayleigh’s approach is based on the assumption that
in point r1 also waves must be taken into account which moves toward the surface
of the grating. These waves stem from surface current elements j above r1.

Fig. 5. The scattered field is plotted along the line x ¼ 0 in Figs. 6, 9, and 12, and along t
field is additionally plotted in Figs. 8 and 11 along the boundary surface S@C.
in the grooves of the grating. Or, in other words, replacing eG0ðr; r̂Þ
in the surface integral of (52) by eG>

0 ðr; r̂Þ is not allowed for points
in the grooves up to the surface RðxÞ. This point of view seems to
be even more supported by the fact that according to (35) series
expansion (36) is a valid representation of the free-space Green’s
function in (60) only if y > ŷ. But this replacement was the essential
step to derive the T-matrices. Fortunately, beside his pure criticism,
Lippmann provided a loophole. Using the full free-space Green’s
function, i.e., employing Eq. (52) instead of (55) in the grooves up
to the surface will not suffer from his criticism. This will lead us
to a boundary integral equation with part of its kernel exhibiting
a logarithmic singularity. As we have already mentioned in chapter
2.2.1 this singularity is not obvious in representation (21) or (34),
respectively. There exists an equivalent representation which
shows this singularity more clearly. It is given by

G0ðr; r0Þ ¼ �
i
4
�
X1

n¼�1
Hð1Þ0 ðk0rnÞ;

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0 � nLÞ2 þ ðy� y0Þ2

q
ð85Þ

with Hð1Þ0 being the Hankel function of zero order and first kind [22].
Please, note that this representation contains both even and odd
parts with respect to x. Since the logarithmic singularity is a weak
singularity the calculation of the surface integral for p-polarized
waves provides no difficulties (the case of s-polarized waves which
can be related to the von Neumann problem is a little bit more com-
plicate and can be treated by using Maue’s boundary integral equa-
tion as described in [5,31], for example). But it should be pointed
out already that both representations provide the same numerical
results. Therefore we will use (34) in the subsequent analysis.
WL

@C can then be calculated from

GL
þðr; r0Þ ¼ eG<

0 ðr; r0Þ þ
Z

S@C

eG0ðr; r̂Þ �WL
@Cðr̂;~rÞ

� eG<
0 ð~r; r0ÞdSðr̂ÞdSð~rÞ ð86Þ

in the following way:
The interaction operator will be approximated by the bilinear

expansion

WL
@Cðr̂;~rÞ ¼

i
2L
�
XN

n;n0¼0

vnðr̂Þ � ½X
L
@C�n;n0 � v�n0 ð~rÞ; r̂;~r 2 S@C ð87Þ
he line x ¼ L=2 in Figs. 7, 10, and 13. To verify the boundary condition the scattered
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with expansion functions vnðx;RðxÞÞ given by

vnðx;RðxÞÞ ¼
~/nðx;RðxÞÞ

SðxÞ : ð88Þ

The denominator SðxÞ is defined in Eq. (54). If we insert this bilinear
expansion and series expansion (37) (which is now again assumed
to be finite!) into (86) we get from boundary condition (44)

� i
2L

XN

m0¼0

~wm0 ðx;RðxÞÞ � e/m0 ðr0Þ

¼ i
2L

� �2 XN

n;n0 ;m0¼0

Z
S@C

eG0ðx;RðxÞ; r̂Þ
~/nðr̂Þ
Sðr̂Þ � ½X

L
@C�n;n0 �

~/�n0 ð~rÞ
Sð~rÞ

� ~wm0 ð~rÞdSðr̂ÞdSð~rÞ � ~/m0 ðr0Þ

¼ � 1
4L

XN

n;n0 ;m0¼0

Z L

0

eG0ðx;RðxÞ; x̂;Rðx̂ÞÞ � ~/nðx̂;Rðx̂ÞÞdx̂½XL
@C�n;n0

� ½Bð~/;~wÞ@C �n0 ;m0 � ~/m0 ðr0Þ: ð89Þ
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Fig. 6. Fields usðx; yÞ and �uincðx; yÞ (real part in (a), imaginary part in (b)) for
h � p ¼ 0:51 (k0 ¼ 1, L ¼ 8 and h ¼ 0:65) along the line x ¼ 0. For the Lippmann
approximation of us (solid line) N ¼ 10, and for the Rayleigh approximation (dashed
line with crosses) N ¼ 18 was used. �uinc (dot-dashed line with triangles) is also
plotted for comparison.
The matrix elements ½Bð~/;~wÞ@C �n0 ;m0 are defined according to (66)/(67).
Next we multiply this equation with ~/�mðx;RðxÞÞ and integrate over
x. This providesX

m0
½Bð~/;~wÞ@C �m;m0 � ~/m0 ðr0Þ ¼ �

i
2

X
n;n0 ;m0

½eGð~/;~/Þ@C �m;n � ½X
L
@C�n;n0

� ½Bð~/;~wÞ@C �n0 ;m0 � ~/m0 ðr0Þ ð90Þ

with

½eGð~/;~/Þ@C �m;n ¼
1
L

Z L

0

~/�mðx;RðxÞÞ � eG0ðx;RðxÞ; x̂;Rðx̂ÞÞ

� ~/nðx̂;Rðx̂ÞÞdxdx̂: ð91Þ

As already mentioned the calculation of this integral provides
no difficulties independent of whether representation (34) or
(85) is used. Thus we have finally the equation system (in matrix
notation)

Bð
~/;~wÞ
@C ¼ � i

2
� eGð~/;~/Þ@C �XL

@C � B
ð~/;~wÞ
@C ð92Þ
−2 h −h 0 h 2 h
y

−1

−0.5

0
R

e(
u)

x=L/2, hp=0.51

Γ+Γ−

−2 h −h 0 h 2 h
y

−1.5

−1

−0.5

0

Im
(u

)

us (Lippmann)
us (Rayleigh)
−uinc

Γ+Γ−

a

b

Fig. 7. Fields usðx; yÞ and �uincðx; yÞ (real part in (a), imaginary part in (b)) for
h � p ¼ 0:51 along the line x ¼ L=2. The same parameters as in Fig. 6 are used.
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from which we can determine XL
@C according to

XL
@C ¼ 2i½eGð~/;~/Þ@C �

�1
: ð93Þ

GL
þðr; r0Þ ¼ eG<

0 ðr; r0Þ �
i

2L

XN

n;n0 ;m0¼0

Z L

0

eG0ðr; r̂Þ � ~/nðr̂Þdx̂

� ½eGð~/;~/Þ�1

@C �n;n0 � ½B
ð~/;~wÞ
@C �n0 ;m0 � ~/m0 ðr0Þ ð94Þ

and

usðrÞ ¼ �
ffiffiffiffiffi
k0

p XN

n;n0¼0

Z L

0

eG0ðr; r̂Þ � ~/nðr̂Þdx̂ � ½eGð~/;~/Þ�1

@C �n;n0 � ½B
ð~/;~wÞ
@C �n0 ;0

ð95Þ

are the corresponding expressions for the Green’s function and for
the scattered field in Cþ we are interested in.

According to Lippmann’s argumentation there should be a dif-
ference between representation (14) with coefficients calculated
according to (59)/(68), and representation (95) of the scattered
field especially within the grooves of the grating. If this really hap-
pens will be discussed in the final chapter.

3. Numerical considerations

Even if Millar has already demonstrated with his proof that out-
going plane waves form a complete system of functions on a sinu-
soidal surface there remains an uncertain feeling, and the impact of
Lippmann’s argumentation of the incompleteness of only outgoing
waves within the grooves can still be observed also in the recent
literature dealing with the numerical analysis of gratings. The goals
of our numerical considerations are therefore the following:

� We want to demonstrate essentially that there is no difference
in the numerical results between the T-matrix approach with
weighting functions according to (70) and (74), and the
approach (95) based on Lippmann’s argumentation even in the
grooves of the grating, and even beyond the found groove depth
limit for conventional point-matching procedures.

� We want to demonstrate that Rayleigh’s original approach with
weighting functions which does not belong to a least-squares
scheme is able to produce accurate results even in the grooves
also if h � p exceeds the value of 0:448. The obtained results agree
with the approach based on Lippmann’s argumentation.
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Fig. 8. Lippmann’s and Rayleigh’s approximation of the scattering field usðx;RðxÞÞ
for h � p ¼ 0:51 along the surface S@C (parameters: see Fig. 6). The relative error is
calculated according to jusðx;RðxÞÞ þ uincðx;RðxÞÞj=juincðx;RðxÞÞj.
� In close connection to this we want to demonstrate that not only
least-squares schemes are able to exceed numerically the upper
limit h � p ¼ 0:448.

� We want to demonstrate that the solution scheme based on
Lippmann’s argumentation does not provide an analytical solu-
tion at the surface of the grating as it should be since the normal
derivative of the electric field exhibit a jump at the surface
which is related to the induced surface current. Below the sur-
face it cancels the primary incident plane wave, as expected.
The T-matrix approach, on the other hand, results in a represen-
tation which is continuous across the surface but becomes
divergent somewhere below the surface. The latter is of course
meaningless for practical applications since the corresponding
representation of the scattered field holds only above the grating
and on its surface.

For these purposes we have plotted the scattered field data of
the different approaches along the two lines depicted in Fig. 5 as
well as along the surface of the grating. The latter was done to
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demonstrate the fulfilment of the boundary condition. The trunca-
tion parameter N and the number of expansion terms used to rep-
resent the free-space Green’s function in all of our calculations was
chosen according to the requirement that the relative error of this
boundary condition does not exceed 1% along the whole surface.
Concerning the boundary integral equation approach we have to
fix additionally the accuracy of the surface integration which must
be performed numerically, and the number of expansion terms
used in the representation of the full free-space Green’s functioneG0. To calculate (91) we used a two-dimensional Gauss-Kronrod
formula with a step width ensuring a relative error less than
10�3. The same was done to calculate the scattered field according
to (95) but with an one-dimensional Gauss-Konrod formula. The
number of expansion terms in the representation of eG0 was the
most sensitive parameter in these calculations. If h � p ¼ 0:51 was
chosen it was necessary to take 200 expansion terms into account.
h � p ¼ 0:942 required 300 expansion terms to achieve the above
mentioned accuracy of the boundary condition. A standard NAG
routine was used for the necessary matrix inversion. All
calculations have been performed with double precision accuracy.
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Fig. 12. Least-square approximations of us at h � p ¼ 0:942 (see Fig. 9 for details) for
two consecutive truncation parameters N along the line x ¼ 0 (N = 18 – dashed,
N = 19 – dot-dashed).
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All relevant parameters can be found in the figure captions. Figs.
6–8 demonstrate the excellent agreement between Rayleigh’s ori-
ginal approach and the boundary integral equation approach even
if h � p exceeds the limit of 0:448. Moreover it can be clearly seen
that in C� the result of the boundary integral equation approach
cancles the incident plane wave. The least-squares approach based
on the weighting functions (74) produces in Cþ and at the surface
of the grating results which cannot be distinguished from Ray-
leigh’s approach but for a lower truncation parameter N (N ¼ 10
in this case). If h � p ¼ 0:942 is considered no convergence could
be achieved with Rayleigh’s approach but with the least-squares
method. The results of the latter are plotted in Figs. 9–11 against
the results obtained with the boundary integral equation method.
We can state again an excellent agreement. In Figs. 12 and 13 it is
shown that the series expansion of the scattered field based on the
T-matrix approach with the least-squares weighting functions
seems to diverge in C� but at different locations along the lines
x ¼ 0 and x ¼ L=2. It should be mentioned that it is more difficult
to achieve convergence in the near-field than for the scattering
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Fig. 13. Least-square approximations of us at h � p ¼ 0:942 (see Fig. 9 for details) for
two consecutive truncation parameters N along the line x ¼ L=2 (N = 18 – dashed,
N = 19 – dot-dashed).
quantities in the far-field. h � p ¼ 0:942 was the upper limit we
could obtain within double precision accuracy for the above men-
tioned criterion of the fulfilment of the boundary condition.

4. Conclusion

In this paper we have presented a rigorous Green’s function for-
mulation of the problem of plane wave scattering from a perfectly
conducting and sinusoidal surface. The considerations have been
restricted to a perpendicular incident and p-polarized plane wave.
Based on this scattering problem the different point of views on
Rayleigh’s hypothesis have been discussed. It was demonstrated
that there are especially two different understandings which can
be related to two different formulations of Huygens’ principle in
terms of Green’s functions resulting in two different expressions
for the corresponding interaction operators. One formulation re-
sults in the T-matrix approach with the additional degree of free-
dom to chose appropriate weighting functions. The other
formulation is equivalent to boundary integral equation
approaches.

Concerning T-matrix methods there is only a general problem
according to Petit, Cadilhac, and Millar if the delta distributions
are taken as weighting functions in such a way that one gets con-
ventional point-matching. But this is of less interest in practical
applications due to the instabilities of such a procedure. General-
ized point-matching methods or T-matrix approaches with other
weighting functions (including Rayleigh’s original approach) are
more appropriate. The presented numerical results and their inter-
comparison with the results obtained by use of a certain boundary
integral equation method suggest that T-matrices can be used for
near-field calculations also beyond the theoretical groove depth
limit discussed in the context of Rayleigh’s hypothesis.
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