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Guided  Beams in Concave Metallic  Waveguides 
LEE w. CASPERSON, ASSOCIATE MEMBER, IEEE, AND TRACY s. GARFIELD 

Abstract-A new  waveguiding  technique employs a  single  concave 
metallic  strip as the guiding  medium. With  appropriate  curvature of 
the strip, the beam modes  may  be  described in terms of Hermite- 
Gaussian functions parallel to the strip  and Airy functions in the 
perpendicular  direction.  Such  devices  would  be  especially  useful in 
frequency  or  power  regimes  where  appropriate  dielectric  waveguides 
are not available.  Experiments  have  been  performed  with  concave 
waveguides  formed to circular  and helical  geometries. 

0 
I. INTRODUCTION 

NE of the long-standing problems in  many laser applica- 
tions involves the low-loss transmission of a laser beam 

from  its source to a  distant  detector or target. The atmosphere 
is often  an unsuitable medium, and in recent years, dielectric 
optical fibers have been gaining in effectiveness and  popularity 
as transmission media. The principal advantages of fibers for 
transmitting laser beams are their small size, low  cost, and 
good mode  control. There remain, however, certain applica- 
tion areas where the  properties of a metallic waveguide  are 
essential. For example, in the infrared  and far infrared por- 
tions  of the spectrum  there are broad wavelength regions 
where low-loss fiber materials are not readily available, al- 
though  steady progress is being made. Similarly in the far 
ultraviolet and soft X-ray  regimes, transparent materials are 
virtually unknown, while grazing reflectivities from metals 
can be quite high. For such wavelengths and for  extremely 
high-power applications, metallic waveguides would be the 
only choice. 

There have been extensive theoretical studies of propagation 
in single-mode or low-order-mode metallic waveguides, and 
curved and twisted guides have also been considered [l] . More 
recently, curved dielectric waveguides for optical frequencies 
have been studied in detail [ 2 ] -  [4] , and flexible metallic 
waveguides of rectangular cross section have been developed 
for  transmitting  infrared wavelengths [ 5 ]  - [8]. Lately it has 
been shown that effective light guiding is possible using a 
single curved metallic surface rather  than  a fully enclosed 
waveguide [9]. In that work, the surface of the waveguiding 
strip was flat in  the transverse direction.  The purpose of  the 
present study is to investigate the characteristics of a wave- 
guiding strip which is curved in the transverse direction. The 
advantage of this configuration is that  it eliminates diffraction 
losses and results in low-loss Airy-Hermite-Gaussian modes. 
These modes are obtained in Section I11 as approximate solu- 
tions of the wave equation,  and experimental results are 
presented in Section IV. 
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11. THE WAVEGUIDE EQUATION 
The electromagnetic modes of a waveguide can be found as 

solutions of the wave equations 

v x  v x Z - u 2 p E Z = ( V p / p ) x  VXE (1) 

V X  QXH- u2pEH=(Ve/e)X V X H  (2) 

where E and u are  the complex vector amplitudes  of  the time 
harmonic electric and magnetic fields and p and E are, respec- 
tively, the permeability and  permittivity of the  component 
media. To be specific, we emphasize solutions of (2),  and (1) 
can be  solved in an identical fashion. When (2) is applied to 
the cylindrical components of a vector expressed in cylindrical 
coordinates, the resulting equation is [ 101 

- 
i,V2H, t &,V2HG t FzV2Hz t k2H 

= (1/r2 @r [Hr t 2(a~, /a+)I  TG [HG - 2(a~y/a#)I I 
- V[(Vp/p) * HI - (Vele) x v x H (3) 

where k = o(,uc)'/~ is a propagation constant.  The  permit- 
tivity and permeability in  the  component media are indepen- 
of space, so the last terms in (3) vanish. For the  moment we 
are interested in field distributions which are dominated  by 
the radial component H,. At large radii the coupling terms on 
the right-hand side of (3) also vanish and H, is governed by 
the familar scalar wave equation 

']- 1 ( 3:) 1 a2H, a2Hr 
Y- t-- 

r ar 
t- 

r2 a 2  t k2H, = 0. (4) 

For  the metallic strip waveguide, the region outside of the 
guide is essentially free space and k may be replaced by 
ko = u(po eo)'/'. 

The  most general beam modes of interest  here propagate 
helically about  the z axis as shown schematically in Fig. 1. 
Thus a useful substitution is 

H, ( I ,  4, z )  = A(r,  4, z )  exp [-iko (ro 4 cos 8 t z sin e)] (5) 

where A(r, 4 , z )  is a slowly varying amplitude, yo is the radial 
distance to the  metal  strip,  and 0 is the propagation angle 
with respect to the Y - 4 plane. When ( 5 )  is substituted  into 
(4), one obtains 
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Fig. 1. Schematic  respresentation of a helically propagating waveguide 
mode showing some of the  coordinates used in  the analysis. 

To evaluate the  amplitude A,  it is helpful to transform  the 
#I and z coordinates to  a system rotated by the angle 8 .  The 
appropriate  transformation is 

cp’ = cp cos e t ( z / r )  sin e (7) 

z‘ = -r@ sin e t z cos e. (8) 

With these substitutions ( 6 )  becomes 

a2A 1 aA 1 a2A a2A 2ikOro aA 
ar2 r ar r2 a@I2  azf2 r2 
- + - - + - - + - - -  

At this  point, it is helpful to  make some approximations. 
After some analytical experimentation, one concludes that 
for dimensions much larger than  the wavelength (r, >> A), 
the radial coordinate r can  be approximate by r, except in 
the last term,  and  the second term may be neglected entirely. 
Thus one obtains 

We can also make the  standard paraxial approximation assum- 
ing that A varies so slowly in the direction of propagation 
that  its second derivative with respect to @’ can  be neglected. 
Thus we have 

The boundary  conditions  must be applied across a curved 
boundary,  and it is helpful to  transform the r coordinate using 
the  substitution 

r = r, - r’ - zP2/2Ro (1 2) 

where  R, is the radius of curvature across the waveguiding 
strip,  and r’ measures distance inward from  the strip. Thus 
(1 1) becomes 

The last term in (13) may be expanded into a binomial series, 
and to lowest order the result is 

a2A  a2A 2ik0 aA 2kg(r’ tzf2/2R,) - + - - -  - -  
art2 azt2 r, a@’ YO 

cos2 BA=0. 

(1 4) 
This equation is the principal result of this section and it is 
solved exactly in the following paragraphs. 

111. DERIVATION OF THE WAVEGUIDE MODES 
A. The Gaussian Factor 

Equation (14) is in some respects similar to the equations 
of conventional beam optics, and the initial portion of the 
solution proceeds along fairly standard lines [ 101 , [ 1 I ]  . As 
a first step we factor out a form corresponding to an off-axis 
Gaussian  beam by means of the  substitution 

A(r’, @’, z’) =B(r t ,  @’, z‘) exp {-i[Q(@‘)zf2/2 t S(@’)z’]}. 

(1 5) 

By setting equal to zero the sum of terms in zr and z”, (14) 
separates into the  set 

2kgr‘ _ -  cos2 OB = 0. 

In these equations, Q is  the usual beam parameter 
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Fig. 2 .  Normalized plot of the  beam displac ment  and  spot size as a 
function of the  distance x = (cos B / ~ o R o ) 1 ~ 2 v o ~ ~  in a concave  metal 
strip waveguide. 

where R and w are the radius of curvature of the phase fronts 
and  the l / e  amplitude spot size in  the z' direction, respectively. 
The  ratio d, = -$/ei is the displacement in the z' direction of 
the iunplitude center of the beam, and  the ratio dp = -S,/Q, 
is the displacement in the z' direction of the phase center of 
the beam. The subscripts i and r denote  the imaginary and 
real parts  of  the parameters Q and S, respectively. 

The solution of equations like (1 6 )  has been given previously 
[ 101 , [ 1 11 , and  for this case the result is 

and the result is 

2kg r' - -  cos' 8B = 0. 
TO 

This substitution makes it more convenient to express the 
off-axis Hermite polynomial functions. For simplicity, we 
have retained the original notation  for  the unchanged variables 
r' and $'. 

The  substitution 

[.;r+i({- b)Q+ - -- a 2 - - - 2  
iko ({ - b)  da 

at2 ro a d$' 

iko db aC 2ik aC + - -  --o - -  
ro d$' 1 a{ ro a$' 2mQiC = 0 

Q(ro4') -(cos 8/roRo)1/2 sin  [(cos 6/roRo)'~2r,,$r] + [Q(d)/ko] cos [(cos 6/roRo)1~2ro$']  -_  
k0 cos [(cos 6/roRo)'/'ro$'] + [Q(0)/ko] (roRo/cos sin  [(cos 6/roRo)1/'ro$'] 

- 

Equations (16)  and ( 1  7) may also be combined to yield a 
formula for  the  location of the beam's amplitude  center 

1 d'd, cos 6 

TOR0 ri d$" 
_ -  - da * 

The integral of (21) is the oscillatory function 

da(r0$') = d,(O) COS [(COS ~ / r o ~ o ) ' ~ 2 r o ~ r ]  

+ dh(0)(roRo/cos sin [(cos 6/roRo) '~2ro$']  

(22) 

where dh(0) is the  input slope with respect to the z' = 0 sur- 
face. Thus  the beam center propagates along a ray-like tra- 
jectory, while the  spot size oscillates periodically according 
to the real part of (20). 

A typical plot of (20) and (22) is  given in Fig. 2. This 
example shows clearly the sinusoidal oscillation of the beam 
center displacement and  the periodic pinching of  the beam 
waist. It is always true  that  the period of the beam center 
oscillation is twice as large as the period of  the pinching. 
However, the relative phase of these phenomena depends 
on the initial conditions. 

B. The Hermite Polynomial Factor 
In solving ( 1  8) it is helpful now to introduce  the new variable 

[I21 

5 = a($')z' + b($')  (23) 

The  purpose of this  substitution is to split apart  the r' and { 
dependences. This particular separation was chosen because it 
leads to  a set of Hermite polynomial functions  of real argu- 
ment. An alternate set of complex Hermite polynomials can 
be derived in a similar manner [12] . Neglecting (27) for the 
moment,  the  requirement  that a($'), b($'), and C($', {) all 
be real, separates (26) into  the two equations 

ko (5  - b) da ko db] E 
ro a d$' ro d4 a{ aS, + (I - b)Q, t - - - +-7 

If one imposes the  conditions 

a' = -Qi 

asi = bei  

(24) reduces to 
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If C is assumed to be independent of qj’, (32) is just  the  ordi- 
nary Hermite differential equation.  The significance  of (30) 
and (31) and the definition of in (23) is that  the Hermite 
polynomial functions are displaced from  the waveguide axis 
by the same amount as the Gaussian factor. 

With C independent of qj‘ the  bracketed  quantity in (29) 
must vanish. This is only possible if a and b satisfy the  ad- 
ditional constraints 

Q , t  - y = O  
ko da 

roo d@ 

s,+ - - =o .  k, db 
roa dqj’ 

(33) 

(34) 

Equations  (30),  (31),  (33), and (34) may be readily shown to 
be consistent with (1 6) and (1 7), so the validity of  the Hermite 
polynomial factorization is confirmed. 

Some simple checks can be performed on  the Hermite- 
Gaussian modes that have been found so far. For this purpose 
we consider first a  steady-state nonpinching mode.  Thus (1 6 )  
has the solution 

Q =  (- ) k i  cos2 0 ‘1’ 

roR0 
and with (19)  the spot size  is 

2 ( r ,~ , ) ‘ /~  
w =  [ k, cos 0 ] 

(3 5) 

If 0 is equal to zero, this result corresponds to a beam propa- 
gating around the  equator of a  spheroid, and for a sphere 
(ro =I?,), the  spot size  is simply w = (2r0/k0)1/2. In a pre- 
vious analysis of beam propagation around  a sphere the  spot 
size  was obtained in the  form w = (2/n)1/2~0,  where n is the 
azimuthal mode order [13] . But these results are equivalent 
since n = koro. The higher order Hermite-Gaussian modes 
obtained in both analyses are  also identical. 

Another way to check these results is by considering off- 
axis (z’# 0) beam modes. From  (22) it follows that  the 
oscillation period of such modes is 

& = 2 7 r ( ~ ~ / r ~  cos o)’/’. (3 7) 

For the case  of a sphere (0 = 0 ,  R,  = P , ) ,  (37) is simply 
qj; = 2n. This is a reasonable result, since a beam propa- 
gating near the  equator of a sphere would clearly have to 
return to its initial displacement after an angular distance 
of 2n. 

C The Airy Function Factor 
It only remains now to break down the  function D(r’, 4’) 

governed by (27). Unfortunately,  standard  tabulated  func- 
tions are not sufficient to describe the  solutions of this equa- 
tion which characterize a beam “bouncing along” with  its rr 
distribution depending on its qj’ position. We can, however, 
obtain  a useful set of radial eigenmodes in which the r’ dis- 
tribution is independent of 4’. For this purpose the appro- 
priate substitution is 

with the resulting separation 

(39) 

where Q! is a separation constant. 
Equation  (39) can be reduced by  the change of variables 

r’ - a) (41) 

and the result is 

This is the  standard  form  of Airy’s equation  and  the solu- 
tions are  well known [14]. Equation (40) governs the ampli- 
tude and phase of the modes, and  the integral of thus equation 
is also known [ 101. Thus the waveguide equation has been 
completely solved and the resulting field distributions may 
be described in terms of Airy-Hermite-Gaussian modes. 

To apply these results to a practical waveguide, one should, 
in principle, solve (42)  for  the various waveguide  regions and 
apply appropriate  boundary conditions. For  the case  of 
interest, one would derive the field distribution above the 
metal waveguiding strip  and within the metal and apply the 
boundary  conditions at the curved surface. However, the 
effective dielectric constant of typical metals is  very large, 
and it is sufficient here to require that  the normal component 
of the magnetic field vanish at  the  metal surface. Thus the 
separation constant (11 must be chosen in such a way that  a 
zero of  the A r y  function occurs at rr = 0. From (41) it 
follows that the a value for  the nth mode must be  given by 

(43) 

where p n  is the nth zero of the Airy function. The coordinate 
p is now related to P‘ by 

(44) 

The Airy function solutions of (42) are plotted  in Fig. 3 as 
functions  of  the  coordinate P” defined in (44)  for several low 
order modes. It is evident from this figure that, with increas- 
ing mode order,  the fields extend  farther away from  the wave- 
guide surface. An alternate  set of modes can  be obtained from 
(1) with  the requirement that the electric field be dominated 
by its radial component. The solution would be the same in 
all respects, except  for changes in the  boundary conditions. 
It should be noted  that these results apply also to acoustic 
modes, and  the Airy function radial dependence has been 
obtained long ago with reference to whispering gallery modes 
[ 151 - [ 171 . The  attenuation of the waveguides modes can be 
calculated using standard techniques [18], and the loss for  a 

D(rr, qjr) = F(r’) exp [-iP(qj’)] (38) circular metal  strip  has been given [9]. 
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Fig. 3. Low order Airy function radial modes of a  metal  strip waveguide. 

Fig. 4. Possible waveguides configurations for propagating Airy- 
Hermite-Gaussian modes:  (a) helical metal strip; (b) helical metal 
tube of circular cross section; (c)  twisted  metal tube of elliptical 
cross  section. 

IV. EXPERIMENT 
From  the discussions in the previous sections it follows that 

one should be able to guide a light beam for long distances by 
means of  a simple concave metallic strip. Some possible  reali- 
zations of this waveguide method are shown in  Fig. 4. For 
applications requiring vacuum techniques, it might be desirable 
to use a helical tube of circular cross section or a twisted tube 
of elliptical cross section instead of  an  open metal strip. The 
open strip configuration of Fig.  4(a) is, of course,  much easier 

Fig. 5. A 92 cm long concave metal strip showing light scattered from 
a  propagating 6328 A helium-neon laser beam.  Periodic  displacement 
and pinching of the beam may be seen. 

to polish. Several experiments have been performed  in order 
to test  the  theoretical predictions. We find that satisfactory 
waveguides can be made by sawing the side from  a  metal  tube 
and polishing the concave inner surface. The circular or helical 
shape can  be readily formed. Alternatively, some types of 
weather stripping are concave and  with polishing make excel- 
lent waveguides. 

A typical waveguide strip is shown in Fig. 5. In this example, 
the  strip is 92 cm in  length  and  formed  from aluminum. The 
principal radii of curvative are ro = 36 cm and R, = 3.25 cm. 
This photograph used a time exposure and shows the  actual 
beam from a 6328 ii helium neon laser as it propagates along 
the guide. The beam shows up because of scattering imper- 
fections  on  the waveguide surface. 

The oscillating trajectory of the beam center  and pinching of 
the beam  waist are conspicuous features of Fig. 5. From (37) 
the oscillation period of  the beam center  should be 

Y, 4; = 27r(r0R,)'/2 = 68.0 cm (45) 

and this result is confirmed by the  experiment to within our 
experimental accuracy. The pinching data also agree with the 
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theory. Our uncertainty in these measurements is  less than 
about 2 percent,  and  the  most uncertain measurement in- 
volves determining the concaveness R ,  . 

In principle, one could also test to see whether the experi- 
mental radial field variations are in agreement with the  theo- 
retical Airy functions.  From Fig. 3  or suitable tables, the l / e  
radius of the  fundamental Airy function mode occurs at  the 
radius Y” = 3.00. Thus,  for  the previously described experi, 
ment the mode thickness is 

AY’ = 3.00(~,/2kg)’/~ = 3.67 X lo-’ m. (46) 

Our present setup does not select radial modes, so this result 
has not been confirmed. 

Experiments have also been performed with helical wave- 
guides.  One  device consists of  an aluminum strip 365 cm in 
length which has been coiled to a  helix  of radius Y ,  = 14.7 cm. 
The concaveness of the  strip is 3.7 cm. The resulting coil is 
highly flexible, and when compressed the theoretical oscilla- 
tion period is 

roc& = 2n(~,R,)’/~ = 46.3 cm. (47) 

When the coil is extended to a helix angle of 0 = 27.1” (keep- 
ing Y ,  constant),  the oscillation period is 

r0& = 2n(r0R,/cos @)‘I2 = 49.1 cm. (48) 

These results are in agreement with the corresponding experi- 
mental measurements. 

V. CONCLUSION 
A beam guiding technique has been developed in which the 

waveguiding medium consists of  a single metallic strip. The 
mode  properties of this device have been expressed in terms of 
oscillating Ary-Hermite-Gaussian functions. Our experi- 
mental results have confirmed the validity of the  theoretical 
formalism for waveguides  of almost 4 m length. An input 
beam which is displaced from the waveguide  axis propagates 
with periodic variations of the beam center and width. The 
approximations of the analysis (paraxial approximation, large 
Y,) have produced no discernible effects, and any possible 
errors would have still less significance for on-axis eigenmode 
propagation. 

However, if the inside of a metal tube can be polished, then 
the  other designs shown in Fig. 4 may also be of interest. 
The main applications of these waveguides would be for 
wavelength and power regimes where low-loss dielectric 
materials are not available. 

Note  Added in Proofi Related studies by M. E. Marhic 
et al. have recently been published in Appl. Phys. Lett., vol. 
33, pp. 609-611, Oct. 1 ,  1978; and AppZ. Phys. Lett., vol. 
33, pp. 874-876, NOV. 15,1978. 

REFERENCES 
See for example, L. Lewin,  “Propagation  in curved and twisted 
waveguides of rectangular cross-section,” Proc. Inst. Elec. Eng., 
vol. 102B,  pp. 75-80, Jan.  1955. 
E. A. J .  Marcatili and R. A. Schmeltzer, “Hollow metallic and 
dielectric waveguides for long distance  optical transmission and 
lasers,” Bell Syst. Tech. J., vol. 43, pp. 1783-1809,  July  1964. 
E. A. J. Marcatili, “Bends in  optical  dielectric guides,” Bell @st. 
Tech. J.,vol.  48,  pp. 2103-2133,  Sept. 1969. 
D. Marcuse, “Bent optical waveguide with lossy jacket,” Bell 
Syst. Tech. J.,vol.  53,pp. 1079-1101, July-Aug. 1974. 
E. Garmire, T. McMahon, and M. Bass, “Propagation of infrared 
light in flexible  hollow waveguides,” Appl. Opt., vol. 15, pp. 
145-150,  Jan. 1976. 

Phys. Lett., vol. 29, pp. 254-256, Aug. 15,1976. 

waveguides,”Appl. Phys. Lett., vol. 31, pp. 92-94, July  15,1977. 
H. Krarnmer, “Propagation of modes  in curved hollow metallic 
waveguides for  the infrared,” Appl. Opt., vol. 16, pp.  2163- 
2165, Aug. 1977. 

Appl. Opt., vol. 17,pp. 316-319, Jan.  15,1978. 
L. W. Casperson, “Gaussian light beams in inhomogeneous 
media,”Appl.  Opt.,vol.  12,pp.  2434-2441,Oct.  1973. 
H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. 

L. W. Casperson, “Beam modes  in  complex lenslike media and 
resonators,” J. Opt. SOC. Amer., vol. 66, pp.  1373-1379, Dec. 
1976. 

J. Opt. SOC. Amer.,vol. 65,  pp.  399-403, Apr. 1975. 
Handbook of Mathematical Functions, NBS Appl. Math. Ser. 
55. Washington DC: U.S. Government Printing Office, 1964, 
ch. 10. 
Lord Rayleigh (J. W. Strutt), “The problem of the whispering 
gallery,”Phil. Mag.,  vol. 20, pp. 1001-1004, Dec. 1910. 

to  the whispering gallery and allied problems,” Phil. Mag., vol. 
27, pp.  100-109,  Jan.  1914. 
J.  R. Wait, “Light waves guided by a single curved surface: Com- 

- , “Flexible infrared-transmissive metal waveguides,” Appl. 

- , “Low-loss optical transmission through bent hollow metal 

- , “Light waves guided by  a single curved metallic strip,” 

Opt., VOI. 5,pp. 1550-1567, Oct,  1966. 

- , “Electromagnetic  modes of an inhomogeneous  sphere,” 

- , “Further applications of Bessel’s functions of high-order 

Besides the flexibility of the  strip waveguides, another ments,” A&. Opt.,vol.  17,pp.  1678-1679,  June  1978. 
advantage is ease of fabrication. Polishing, in particular, is 

[18] S. Ramo, J. R. Whinnery, and T. Van Duzer,  Fields and Waves 
in Communication  Electronics. New York: Wiley, 1965, sections 

straightforward and can be done before  the waveguide  is bent. 7.13, 7.14. 

Authorized licensed use limited to: California State University Fresno. Downloaded on May 18, 2009 at 02:20 from IEEE Xplore.  Restrictions apply.


