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Optical interband and intraband transitions in semiconductor quantum dots~QD’s! are analyzed theoreti-
cally. It is found that three-dimensional confinement essentially modifies intraband matrix elements of the
electron-photon interaction in the QD’s as compared to the bulk materials. This effect is quite important for the
multiphoton processes. It is shown that two competitive types of two-photon transitions with different selection
rules are in the QD’s of noncentrosymmetric semiconductor and amplitudes of these transitions differently
depend on light polarization, electron and hole effective masses, and QD radius as well. Analytical expressions
for the two-photon absorption coefficient are derived for the strong confinement regime, taking into account the
size distribution of the nanocrystals.@S0163-1829~96!00235-4#

I. INTRODUCTION

Currently, the methods of nonlinear optics occupy an in-
creasingly important place in experimental studies of nano-
crystals, or quantum dots. Among studies of the nonlinear
optical properties of such systems, experiments on two-
photon absorption,1 nonlinear bleaching,2 four-photon
mixing,3 resonant hyper-Raman and hyper-Rayleigh
scattering4 should be mentioned. The interest in multiphoton
processes in quantum dot~QD! systems is due to several
reasons. Three-dimensional~3D! confinement drastically
changes the electronic energy spectrum in nanocrystals as
compared to the bulk material. Investigations of multiphoton
processes, with selection rules and light polarization depen-
dences different from those for one-photon processes, open
up additional opportunities to study the unusual electronic
structure of these systems in detail. The nonlinear optical
properties of QD systems are themselves of interest, since
the confinement essentially modifies the interaction of qua-
siparticles with electromagnetic field. Finally, investigations
of multiphoton processes are promising for applications in
optoelectronics. To our knowledge, despite the importance of
the problem, a more or less adequate theoretical description
of multiphoton effects in QD systems is not available.

In this paper, we theoretically analyze the effect of strong
confinement5 on optical interband and intraband transitions,
as well as the two-photon generation rate~TPGR! of
electron-hole pairs in QD’s based on a direct-band semicon-
ductor of symmetryOh or Td . These materials have a fairly
simple structure of energy bands, and hence they are better
model objects for experimental studies of 3D confinement
than hexagonal semiconductors with strongly anisotropic and
nonparabolic valence bands. The complex band structure of
confinement systems is a severe problem in theoretical treat-
ments of optical effects and the interpretation of experi-
ments.

Analytical expressions for matrix elements of electron-
photon interaction and the TPGR are derived in the effective-
mass approximation for the well-known four-band model of

the semiconductor,6 explicitly including the doubly degener-
ate conduction band (c) and twofold degenerate bands of
heavy (h1), light (h2), and spin-orbit-split (h3) holes. It is
assumed that electrons and holes are located in a spherical
potential well of radiusR with infinitely high walls, and that
the Coulomb electron-hole correlation is negligibly small.

It is found that the intraband matrix elements are in-
versely proportional to the radiusR and, thus, 3D confine-
ment can significantly change the role of intraband and in-
terband transitions in multiphoton processes as compared to
the bulk semiconductors. It is shown that two competitive
types of two-photon transitions with different selection rules
are in QD’s of noncentrosymmetric semiconductors, and that
amplitudes of these transitions depend differently on light
polarization, electron and hole effective masses, and QD ra-
dius as well. Finally, the two-photon absorption coefficient
for the QD system was calculated with regard to the system’s
size distribution.

II. RATE OF TWO-PHOTON TRANSITIONS

The TPGR of electron-hole pairs by plane-polarized light
with frequencyv can be represented in second-order pertur-
bation theory with respect to the electron-photon interaction
V as

W~2!5
2p

\ (
n1 ,n0

uM n1 ,n0
u2d~En1

2En0
22\v!, ~1!

M n1 ,n0
5(

n2

Vn1 ,n2
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En2
2En0

2\v2 i\gn2

. ~2!

In Eqs.~1! and~2!, the subscriptsn0, n1, andn2 denote sets
of quantum numbers for initial, final, and intermediate states
of an electron subsystem, respectively, and the parameter
gn is the inverse lifetime of the staten. The composed ma-
trix element Eq.~2! will be calculated in the effective-mass
approximation for the four-band model of a cubicOh or Td
semiconductor with an isotropic and parabolic electronic
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spectrum. In addition, we assume that the potential of the
QD has only diagonal matrix elements. In this case, under
the condition of strong confinement, the electron wave func-
tion cn(x) is a product of the Bloch amplitudewa(x) of the
a band (a5c or hj ) and the envelope wave function
Cb(x) ~Ref. 5! with composed index,b5nlm, wheren, l ,
andm are the principal quantum number, the angular mo-
ment, and its projection, respectively. Hereafter, in order to
simplify mathematical expressions, we will use yet another
composed index,b5nl. With the above assumptions, the
electron energy spectrum can be represented as

Eb
c5

\2jb
2

2R2mc
, Eb

hj52Ehj
2

\2jb
2

2R2mhj

, ~3!

Eh1~h2!5Eg , Eh3
5Eg1Dso, ~4!

whereEg andDso are the energy gap and spin-orbit splitting
in the bulk material,ma is the effective mass in thea band,
andjb5jn,l is thenth root of the spherical Bessel function
of l th order, j l(jn,l)50.

TheAp representation is used for the electron-photon in-
teraction, whereA5Ae is the vector potential of the light

wave with amplitudeA and the polarization vectore, and
p52 i\“ is the electron momentum operator. In what fol-
lows we assume that the semiconductor hasTd symmetry.
All results are valid for the materials ofOh symmetry as
well, unless otherwise specified.

Since in cubic semiconductors the one-photon interband
transition hj→c, is allowed in the dipole approximation,
each term in the sum@Eq. ~2!# contains the product of the
matrix elementsVc,b1 ;hj ,b0

and Va,b1 ;a,b0
for one-photon

transitions. Elements of the first type can be obtained imme-
diately from the corresponding matrix elements for bulk ma-
terial. To do this, it will suffice to call attention to the fact
that the effect of 3D confinement is reduced to the substitu-
tion of the Kronecker symboldk8,k , which expresses the
momentum conservation law in one-photon interband transi-
tions by the product of the Kronecker symbols
dn8,nd l 8,ldm8,m , arising from the orthogonality of the enve-
lope wave functions. It is easily seen that, in the basis of
coupled moments,7 the matrix elements of the one-photon
interband transitions are determined by the following expres-
sion:

^c,b8uVuh,b&5 idn8,nd l 8,ldm8,m
P

A3
eA

\c S A3e11 0 A2e0 e21 2e0 2A2e21

0 A3e21 e11 A2e0 A2e11 e0
D , ~5!

where e6157(ex6 iey)/A2, e05ez , ej are the Cartesian
components of the polarization vector (j5x,y,z),
P5\pc,h /m05\2^Su]/]zuZ&/m0, m0 is the free-electron
mass, andpc,h is the interband matrix element of the electron
momentum. In Eq.~5!, the row numbering from top to bot-
tom corresponds to the Bloch amplitudesuc, 12,

1
2& and

uc, 12,2
1
2&, and the column numbering from left to right cor-
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3
2,

3
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indices in the kets are equal to the total moment~i.e., a sum
of angular and spin moments! and its projection. Thus, ac-
cording to Eq.~5!, the 3D confinement does not qualitatively
change the electron-photon interaction in the case of inter-
band transitions. Quite a different situation occurs in the case
of intraband transitions whose matrix elements can be writ-
ten as
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cma
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From Eqs.~6!–~8!, it follows that the 3D confinement essen-
tially modifies the electron-photon interaction in this case as
compared to the bulk material. Only off-diagonal matrix el-
ements for this interaction are nonzero. In other words, no
analogy with the momentum-conservation law exists for this
interaction. Also, the intraband matrix elements depend ex-
plicitly upon the QD size, that is, the elements are inversely
proportional to the radiusR.

The TPGR of electron-hole pairs is readily calculated
from Eqs.~5!–~8!,

W~2!5
16pP2

9\ S eAc D 4@ 3
2 ~12ez

2!Fc,h1
1 1

2 ~113ez
2!Fc,h2

1Fc,h3
#, ~9!

where the form functions for two-photon transitions from the
valence bandhj to the conduction bandc are given by

Fc,hj
5

1

R2 (
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In deriving Eq.~9!, we assume that the inverse lifetime of the
electron states is independent of the quantum numberm.

The systems under experimental study contain a large
number of QD’s with different orientations of the crystallo-
graphic axes. As a rule, dielectric matrices with built-in
nanocrystals can be considered as randomly oriented sys-
tems. In this case, of interest is the electron-hole pair gen-
eration rate averaged over the orientation of the QD, or over
polarization of the light wave,

W̄~2!5
16pP2

9\ S eAc D 4(
j51

3

Fc,hj
. ~12!

The important feature of the given two-photon transitions
are the selection rules, different from those for the one-
photon transitions.5 According to Eqs.~8! and~10!, it is pos-
sible to generate only such electron-hole pairs for which

quantum numbers of the electron (l 1, m1) and hole (l 0,
m0) satisfy the relations D l5 l 12 l 0561 and
Dm5m12m050,61.

The expressions for the TPGR, Eqs.~9! and ~12!, are
applicable to semiconductors ofOh and Td symmetries.
However, in the materials of the second type there is another
important channel of two-photon transitions, with the same
selection rules as for one-photon transitions. This channel
describes transitions for which the intermediate states are
bands different fromc andhj bands, and exists due to the
fact that, in noncentrosymmetric~e.g.,Td) semiconductors,
two-photon transitions are allowed in the dipole approxima-
tion. It is well known6 that the effective-mass approximation
is based on the premise that the bands taken into account
explicitly ~in our casec andhj ) are separated from the others
by fairly wide energy gapsDE. The criterion for the
effective-mass approximation to be applicable in describing
two-photon transitions is the inequality 2\v!DE. This in-
equality permits the matrix element~2! to be represented as a
product ofv-independent constants and quadratic combina-
tions of the Cartesian components of the vector potential. For
the Td group only one such constantQ is nonzero. There-
fore, the matrix elements~2! take a form similar to Eq.~5!,

^c,b8uM uh,b&52 idn8,nd l 8,ldm8,m
Q

A3 S eA\cD 2S A3e021 0 iA2exy 2e011 2 i exy A2e011

0 2A3e011 e021 iA2exy A2e021 i exy
D , ~13!

wheree i j5eiej . Then, the TPGR in a QD is easily obtained:
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where
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The dipole-allowed TPGR averaged over orientation of the
QD takes the form

W̄Td
~2!5

4pQ2

15\ S eAc\ D 4(
j51

3

Fc,hj
. ~16!

From Eqs.~14!–~16! it follows that this channel of two-
photon transitions satisfies the selection rules coinciding with
the ones for one-photon transitions,5 i.e.,n15n0, l 15 l 0, and
m15m0.

As a result of size-quantization effect, the TPGR,W(2),
andWTd

(2) possess line energy spectra that are superpositions

of contributions of transitions from three valence bands to
the conduction band@Eqs.~9! and ~14!#. Note that the posi-
tions of the lines in theWTd

(2) spectrum and in the spectrum of

the one-photon electron-hole pair generation rateW(1) coin-
cide with each other, since the latter rate is determined by the
same form functionsFc,h from Eq. ~15! as the two-photon
rateWTd

(2) , if 2\v in Eq. ~14! is substituted with\v.

Figures 1–3 show the low-energy spectra of the form
functionsFc,h ~a! andFc,h ~b! calculated from Eqs.~10! and
~15! for the three values of the QD radius,R51.6, 2.0, and
2.5 nm. In this energy range the confinement-induced pecu-
liarities in the optical spectra of the QD are most pronounced
and an important nonlinear effect such as the double optical
resonance can be neglected.8 Hereinafter calculations are
carried out for a cubic CdS crystal with the following param-
eters: Dso50.075 eV, Eh1

52.42 eV,9 mc50.205m0,

mh1
51.348m0, mh2

50.192m0, mh3
50.33m0,

1 and

g5gb
a50.06 eV.10

The Fc,h andFc,h spectra show some similarities along
with essential differences. On one hand, all spectra exhibit a
low-energy threshold which shifts to higher energies with
decreasing QD radius. As this takes place, the energy density
of lines, or the number of lines per a given energy range,
decreases. On the other hand, due to different selection rules,
the positions of lines in theFc,h and Fc,h spectra do not
coincide. In particular, the threshold in theFc,h spectrum
occurs at a higher energy than in theFc,h spectrum. The
behavior of the line amplitudes in relation to the QD radius is
also different forFc,h and Fc,h . The Fc,h amplitudes are
independent ofR and determined by the value of 2l 011
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only, while theFc,h amplitudes are complicated functions of
R. The dependence of these functions onR is illustrated in
Fig. 4, where the line amplitude for the transition
uh1,1,1&→uc,1,0& is shown. Hereinafter the second and third
indexes in the ket correspond to the value ofn andl , respec-
tively. For a cubic CdS crystal with the above-listed param-
eters, this transition is the lowest in energy. The shape of the
curve in Fig. 4 is defined by two factors: the factorR22

connected with the intraband matrix element@Eq. ~6!#, and
the dependence of the energy denominators in Eq.~11! on
R.

Another important difference ofW(2) from WTd
(2) and

W(1) is its complicated dependence on the effective masses
of carriers. As follows from Eq.~15!, the effective masses
control only the spectral positions of the lines forWTd

(2) and

W(1). In this case, the ratesWTd
(2) andW(1) depend on the

reduced electron and hole masses,mh5mcmh /(mc1mh).
With decreasingmh the contribution from theh band to the
total spectrum is shifted to higher energies, while the se-
quence of lines related to this band remains unchanged. The
rateW(2) depends on individual values ofmc andmh . In this
case, besides the higher-energy shift of the spectrum as a
whole, with decreasingmc or mh the sequence of lines con-
trolled by the ratiomh /mc may be changed. For instance, if
mh /mc51, each line is a ‘‘doublet.’’ In contrast to the

WTd
(2) andW(1), the amplitudes of theW(2) lines depend on

the effective masses of carriers.

III. TWO-PHOTON INTERBAND
ABSORPTION COEFFICIENT

Using the results derived in Sec. II, the two-photon ab-
sorption coefficient for a medium with nanocrystals can be

FIG. 1. ~a! and ~b! Calculated spectra of the form functions
Fc,hj

~a! and Fc,hj
~b! for a QD of cubic CdS with a radius

R51.6 nm. Circles, triangles, and squares correspond to transitions
from the valence bandsh1, h2, andh3 to the conduction bandc,
respectively.~c! Calculated absorption spectra,KTPA, KTd

TPA , and
KOPA, for a system of QD’s with a size distribution described by
Eq. ~18!, an average radiusR051.6 nm, and the concentration
N5 const. See text for the material parameters used in the calcula-
tions. E5\v for Fc,hj

and KOPA; E52\v for Fc,hj
, KTPA, and

KTd
TPA .

FIG. 2. ~a!–~c! Same as Figs. 1~a!–1~c!, but for R5R052.0
nm.

FIG. 3. ~a!–~c! Same as Figs. 1~a!–1~c!, but for R5R052.5
nm.
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easily calculated if the size-uniform dots are oriented in the
same direction@Eqs. ~9! and ~14!# or randomly@Eqs. ~12!
and ~16!#. To do this, it will suffice to multiply the corre-
sponding expression for the TPGR by the energy absorbed in
one transition 2\v, and the QD concentrationN, and to
divide by the light intensityI5«v

1/2v2A2(2pc)21, where
«v is the dielectric constant of semiconductor at the light
frequency. However, in the samples available for experimen-
tal studies, the system of randomly oriented nanocrystals ex-
hibits a size dispersion, which can be characterized by a
size-distribution functionf (R). Hence, to obtain the two-
photon absorption coefficient for a given QD system, the
size-averaged TPGR should be calculated,

KTPA52\v
N

I E dR f~R!W̄~2!. ~17!

The question about the distribution functionf (R) is of
interest in itself, but its discussion in detail is beyond the
scope of this work. Note, however, that the main factor re-
sponsible for the shape off (R) is the conditions of sample
preparation. Currently, the Gaussian function or the Lifshits-
Slezov distribution11 are mostly used asf (R) functions. The
latter distribution

f ~R!5H 34

25/3
R2

R0

exp@121/~122R/3!#

~R13!7/3~ 3
22R!11/3

, R, 3
2 ,

0, R.3/2,
~18!

with R5R/R0 is characterized by a single parameter, the
average QD radiusR0.

An important feature of the results of Sec. II is the possi-
bility of calculating the two-photon absorption coefficient in
an explicit form with an arbitrary functionf (R). Indeed, sub-
stituting Eqs.~12! and~16! into Eq.~17!, and using the prop-
erties of thed function, we readily obtain

KTPA5
2pvNI

«v
S 8pe2P

3cv2 D 2(
j51

3

^Fc,hj
&, ~19!

KTd
TPA5

2pvNI

15«v
S 4pe2Q

\2cv2 D 2(
j51

3

^Fc,hj
&, ~20!

where the average form functions of two-photon transitions
are as follows:

^Fc,hj
&5

1

2Dhj
(

b1 ,b0
~ l 1d l1 ,l0111 l 0d l1 ,l011!

3Tb1 ;b0

c,hj
jb1
2 jb0

2

~jb1
2 2jb0

2 !2

f ~Rb1 ;b0

~hj ! !

Rb1 ;b0

~hj !
, ~21!

^Fc,hj
&5

1

2Dhj
(
b0

~2l 011!Rb0 ;b0

~hj ! f ~Rb0 ;b0

~hj ! !. ~22!

In Eqs. ~21! and ~22! we have introduced the transition ra-
dius

Rb1 ;b0

~hj ! 5F \2

2Dhj
S jb1

2

mc
1

jb0
2

mhj
D G 1/2 ~23!

and the parameterDhj
52\v2Ehj

.
Figures 1~c!–3~c! show the calculated two-photon absorp-

tion spectraKTPA and KTd
TPA , of the QD with the Lifshits-

Slezov size distribution@Eq. ~18!# for the average radii
R051.6, 2.0, and 2.5 nm. The one-photon absorption spectra
KOPA are also shown in Figs. 1~c!–3~c! for comparison. The
latter spectra, to an accuracy of a constant, are described by
Eq. ~20!, where the form functions of transitions correspond
to the rateW(1) and the frequency factorv23 is replaced by
v21. An important feature of the distribution described by
Eq. ~18! is its high asymmetry. As noted in Ref. 5, asymme-
try leads to different positions of the maxima in the absorp-
tion spectra and of the related lines in theW(1), W(2), and
WTd

(2) spectra~Figs. 1–3!. In this connection, information
about the size distribution of the QD’s is very important in
analyzing experimental data.

As is evident from the figures, additional information
about the energy spectrum of the 3D-confined states can be
extracted only if the channelW(2) dominates in two-photon
absorption. Since theKTPA spectrum at higher energies is
formed by a large number of two-photon transitions, hardly
resolvable spectroscopically even ifR05 2.0 nm, unambigu-
ous information is obtained by the exciting of the lowest
two-photon transitionuh1,1,1&→uc,1,0&.

IV. DISCUSSION

As shown in Sec. II, a very important consequence of 3D
confinement is an essential modification of the intraband ma-
trix elements of electron-photon interaction in the QD as
compared to bulk materials. From Eqs.~6! and~7! it follows
that the intraband matrix element of the electron momentum,
pa,b8;a,b5\uVb8;b

(p) um0 /ma, is inversely proportional to the
QD radius R. This size dependence is responsible for
changes in the role of interband and intraband optical transi-
tions in multiphoton processes. While for bulk materials the
relation pc,h@pa,b8;a,b is valid, for a QD this inequality is
not only weakened but even may be changed to the opposite
one, depending onR. The critical value,R5R

*
(a) , such that

pc,h5pa,b8;a,b , can be estimated by using the well-known
formula12

pc,h5F32m0Sm0

mc
21DEg~Eg1Dso!

3Eg12Dso
G1/2. ~24!

FIG. 4. Size dependence of the line amplitude corresponding to
the lowest two-photon transitionuh1,1,1&→uc,1,0& in a QD of cubic
CdS.
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For cubic CdS crystal thepc,h'8.8310220CGS follows
from Eq. ~24!. If the intraband matrix elements between
states withn851, l 851, m850 andn51, l50, m50 are
chosen as characteristic ones, then the critical radius for four
bands are equalR

*
(c)51.1 nm,R

*
(h1)50.16 nm,R

*
(h2)51.14

nm, andR
*
(h3)50.66 nm. Thus, in the strong confinement

regime, the interband matrix elements are still larger than the
intraband once the above-mentioned inequality is replaced
by a weak inequality forpc,b8;c,b andph2 ,b8;h2 ,b . This effect
can be manifested more clearly in the InSb or InAs QD sys-
tems. Actually, similar estimates of the critical radius, e.g.,
for the conduction band, show thatR

*
(c)510.24 and 6.54 nm

for these semiconductors, respectively. In the sufficiently
small InSb or InAs QD, multiphoton processes will be con-
trolled by channels with a minimal number of interband ma-
trix elements of the momentum and a maximal number of
intraband ones. This situation is directly opposed to that for
bulk semiconductors under interaction with plane-polarized
light, and should be considered as a very important feature of
3D-confined systems. In this connection, experimental stud-
ies of multiquantum processes, such as multiphoton absorp-
tion, resonant hyper-Raman and hyper-Rayleigh scattering,
etc., in InSb and InAs QD’s are of great interest.

As shown above for QD’s ofTd semiconductors, there
exist two competitive channels of two-photon transitions
with different light polarization dependences and selection
rules. The latter leads to different spectral positions of ab-
sorption peaks for the channels@Figs. 1~c!–3~c!#. To distin-
guish between the channels of two-photon transitions, we
could compare the experimental spectra of one- and two-
photon absorption; however, a precise determination of peak
positions in the corresponding spectra is usually hampered
by the large homogeneous and inhomogeneous broadening.
At the same time, different size dependences ofKTPA

and KTd
TPA allow us to find the dominant mechanism

of two-photon transitions. According to Eq.
~20!, the ratio KTd

TPA(v)/KOPA(2v) equals the size-

independent constant (4p/5)(Q/P)2e2I /(v2«v
1/2\2c),

whereasKTPA(v)/KOPA(2v) increases with the decreasing
average radius of the QD. Consequently, the main channel of
the two-photon transition and the constantQ could be deter-
mined from the size dependence of two- and one-photon
absorption coefficient ratios at fixedI andv.

It should be emphasized that only one channel of two-
photon transitions exists in the QD ofOh semiconductors.
Since the selection rules for these transitions and one-photon
transitions differ, the more pronounced distinctions in the
peak positions of one- and two-photon absorption spectra
will be manifested as compared with the QD’s ofTd semi-
conductors.

The lack of experimental data on two-photon transitions
in QD’s of cubic semiconductors at strong confinement do
not allow us to compare our results with experimental ones
in detail. The experimental two-photon absorption spectra
have been observed only for the QD’s based on hexagonal
CdS.1 In that work, the energies of two-photon absorption
peaks coincided with those of the one-photon absorption
spectra; this fact was interpreted as a result of the valence-
band mixing. Let us briefly consider Ref. 1 in the light of our
results. Both channels of two-photon transitions discussed
above exist in hexagonal crystals. In addition, a third channel
of two-photon transitions with the same selection rules as
one-photon ones exists forC6v semiconductors. This channel
is related to dipole-allowed two-photon transitions involving
states fromc andhj bands, and thus it cannot be described
by the v-independent constantQ. The competition of the
three types of two-photon transitions in combination with a
very complicated band structure and large homogeneous and
inhomogeneous broadening leads to the conclusion that spec-
troscopy of two-photon absorption has little promise for a
study of QD’s ofC6v semiconductors. It is possible that, for
these reasons, a spectral shift between the peak positions of
one- and two-photon absorption for the QD of hexagonal
CdS has not been found.1 We hope that a completely differ-
ent situation will occur in QD’s of cubic semiconductors due
to the fairly simple structure of energy bands and the exist-
ence of only two-photon transitions or even one channel of
two-photon transitions. Consequently, an experimental study
of two-photon absorption as well as other multiphoton ef-
fects is of great interest in such systems.
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