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Magnetic-field effects on one- and two-hole states in parabolic quantum dots
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Using a multiband effective-mass theory, we have calculated the one- and two-hole energies in a parabolic
quantum dot in the presence of a perpendicular magnetic field. The valence-band degeneracy, the Coulomb
interaction, and the effect of finite offsets are all taken into account. The energies are calculated variationally
with an iterative relaxation technique. The single-hole levels show strong anticrossings due to the valence-band
mixing. As a result they have in general a weaker field dependence compared with the corresponding un-
coupled levels. For the two-hole states both the valence-band mixing and the Coulomb interaction are shown
to be substantial. The correlations between the holes are strong enough to change the total angular momentum
of the ground state when the magnetic field is increas®d163-18207)10907-9

I. INTRODUCTION Chaplik’ found that the ground-state angular momentum in-
creases with the applied magnetic field in order to minimize
Modern lithographic techniques have made possible théhe Coulomb repulsion. Concomitant spin-singlet—spin-
fabrication of individual quantum dotsSuch structures con- triplet transitions resulted. In the high-field limit the singlet
fine electrongor holeg in all three spatial dimensions and case is suppressed by the Zeeman effect, and only triplet-
thus have a fully quantized energy spectrum. Usually theitriplet transitions occur. Maksym and Chakrab8rsgudied
width in the growth direction is much smaller than their lat- this spin-polarized limit for an arbitrary number of electrons
eral extensions, so these quantum dots may be regarded asd found that only certain “magic values” of the total an-
artificial atoms with disklike shapes. By varying the appliedgular momentum occurred for the ground state. These in-
gate potential over the dot, the numi¢(N=0,1,2,3,.) of = compressible ground states are believed to be reminiscent of
electrons can be controlled; increasing the gate potential it ia fractional quantum Hall system. In view of the exotic ef-
possible to charge the dot with an additiosalgleelectron.  fects present in few-electron systems, the far-infreifeliR)
Recently Ashooriet al. used single-electron capacitance absorption spectrum of parabolic quantum dots was surpris-
spectroscopySECS to study theN-electron ground state of ingly simple, being dominated by peaks at the single-electron
such isolated quantum dots in a magnetic field, thus measuenergies and essentially independent of the number of elec-
ing the ground state of different “quantum-dot elements.” trons on the dot as well as the specific form of the electron-
Their experimental results for the low-lying levels were well electron interaction. This is no paradox however, merely a
described in terms of a lateral confinement potential that wasanifestation of the generalized Kohn’s theor&ft’~2°The
parabolic. Other studies, both experimehtaland parabolic confinement potential allows for a separation of the
theoreticalt® also support the view that in these dots theproblem into a center-of-mag€M) and a relative part, and
lateral confinement potential can be approximated kyre-  the dipole operator only couples to the CM part. Since the
parameter adjustabl@arabolic potential. CM spectrum is identical to the single-particle spectrum, one
Few-electron systems in quantum dots have been extersees only features at the single-electron energies. It is not
sively studied, both with and without an applied magneticdifficult, however, to find situations where Kohn’'s theorem
field *~*° For the dots in question the electron-electron inter-is violated. Deviations from a strict parabolic confinement
action, the confinement energy, the Zeeman energy, and thmtential will result in additional resonances in FIR
cyclotron energy are all on the meV scale, and must conseexperiments**®The same is true for quantum dots prepared
quently be treated on an equal footing. Most studies havas nanocrystallites, as they typically have a hard-wall con-
therefore employed a full numerical solution, although spefinement potential that mixes the relative and CM mofidn.
cial cases exist where an analytical approach is possible. In this work we study hole states in a GaAs quantum dot
Tauf has recently found exact solutions of the two-electronin the presence of a magnetic field. The dot is made from a
problem for certain values of the confinement potential. GaAs/Aly sGag 7As [001] quantum-well material. Although
El-Said has studied the same problem perturbatively usinghe lateral confinement potential is taken to be parabolic, the
the shifted 1D expansion D is spatial dimensionalily  strong mixing between the valence bands makes Kohn's
while Johnson and co-workéfs! solved theN-electron theorem invalid for hole staté$:% It is therefore essential
problem exactly forr? and 1f? electron-electron interac- to make use of a multiband effective-mass theory in this
tions. case. Using an axial approximation for the 4 degendrgte
The ground states in such quantum dots exhibit interestingtates in GaAs we calculate variationally the low-lying en-
properties. For the two-electron case Wagner, Merkt, an@rgy levels for single-hole and two-hole states as a function

0163-1829/97/5)/45809)/$10.00 55 4580 © 1997 The American Physical Society



55 MAGNETIC-FIELD EFFECTS ON ONE- AND TWO-HOLE ...

4581

of the magnetic field. The effect of the finite quantum-well Here +v,,y,, and y; are the Luttinger parameters,
potential is accounted for in an approximate manner. Our=1/2(y,+ v3), andm is the free-electron mass. We have
results for the single-hole levels agree well with the calcula-adopted the axial approximation and the Hamiltonian is rep-
tions of Broido, Cros, and Rsler?? The coupling of the resented in the hole picture, where the sign of the energy is
various bands by the off-diagonal terms in the LuttingerreversedA is the vector potential, which in the symmetric
Hamiltonian leads to anticrossings in the energy spectrungauge reads
giving in general a weaker field dependence compared with

the uncoupledelectroni¢ case. The results from the two-

hole calculations show that both the off-diagonal couplingfor a magnetic field in the direction. The quantum-well

terms and the Coulomb interaction contribute substantially t?)otential in the growth direction is accounted for by a finite
the two-hole energy. Neither effect should therefore be nebotential well of widthw

glected in realistic calculations. Moreover, the Coulomb in-
teraction induces strong correlations between the holes. As a

A=BXr/2=(—y,x)B/2 (4)

AE, for |z|=w/2,

result the symmetry of the ground state is changed with in- V,(2)= (5
creasing magnetic field. ) 0 for |z|<w/2.

In Sec. Il we present the model and the basis functionghe lateral confinement potential is parabolic, viz.,
used in the variational calculation. Section IIl contains the
numerical results along with a discussion. A short summary 1,
is given in Sec. IV. Vip)=5Kp )

in cylindrical coordinates. The constait measures the
strength of the potential. We will also describe the parabolic
This section is divided into two subsections. In the firstpotential in terms of its characteristic frequency
subsection we present the model used. Then we construgf = \/K/m, and its characteristic lengthy= \7%/m,w,.
appropriate basis states for the single-hole and two-holgoth of these quantities are defined in terms of(iheplane
problem. As much of the theory from the field-free case stillheavy-hole mass,=mgy/(y;+ v,). The hole-hole interac-

applies, we omit some of the details. The interested reader ifon is modeled by a statically screened Coulomb potential:
referred to Ref. 24 for a more thorough discussion.

Il. GENERAL THEORY

e2

V(rl.rz)zm- (7)

In bulk GaAs the topmost valence bands consist of the 4rpe magnetic field also gives rise to a Zeeman energy term
I'g states, which are degeneratekat0. They are separated E,, which can be written as
by an energy 1.5 eV from the conduction band and by 0.35
eV from the split-off band ak=0. We are only interested in he
energies less than, say, 100 meV, and it is therefore sufficient Ez=— m—Ksz- ®
only to take thel'g states into account. In this strong spin- 0
orbit situation thel'g quadruplet corresponds to tle=3/2,
j,=*1/2,*=3/2 states.

In the effective-mass approximation the kinetic energy of
the hole is described by the Luttinger Hamiltorffan

A. Model

Here « is another Luttinger paramet&t.

B. Choice of basis

The single-hole Hamiltonian is
H, R S 0

H=H_ +V +V,(2)+E;. 9
w2 R H 0 s Lt V)(p)+V.o(2)+Ez 9

Ho=5— , (1) Inthe axial approximation the Hamiltoniat is rotationally
2my| S 0 H -R
0 ' invariant around the axis. It therefore proves useful to in-
0 S —-R* H, troduce thdotal angular momenturf=J+ L, wherelJ is the
wh angular momentum of the band-edge Block function &nd
ere - .
the envelope angular momentum. Since rfewis a constant
Hi=(y1+ 72) (K + k) + (y1—272)kZ , of the motion we can find simultaneous eigenstated aid
F,. Labeling these states by, where# f, is the eigenvalue
Hi=(y1— v2) (K2+ k)2/)+(7,1+272)k§, of F,, a general hole state can be written as
R=23ysik_k,, g (D=2 Flz(p,z)ei#f-id|2 j ), (10
z Iz
_ 2
S= ‘/§7k— ' 2) where|3,],) is the band-edge Bloch function afdp,z) the
and envelope function.
The diagonal terms oH are separated into an in-plane
k=—-iV—eAlh, part and az-dependent part, which describes a one-

Ko =Kyt ik, . (3)

dimensional quantum-well problem. The in-plane problem is
that of a two-dimensiondRD) harmonic oscillator in a mag-
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TABLE I. Subband §) and angular momentum statd$ that are coupled by the off-diagonal terms in the
Kohn-Luttinger Hamiltonian. We only list the lowest subband state; all higher subband states with the same
parity are also coupled.

S;/Z SJ: 3/2 S1+I2 St 1/2 SI/Z S: 1/2 PEJ:rIZ PJ:SIZ
s I s I s I s I s I s | s | s |
HHL 0 HH2 -3 HH2 -1 HH1 -2 HH1 -1 HH2 -2 HH2 1 HH1 -4
LH2 1 LH1 -2 LH1 0 LH2 -1 LH2 0 LH1 -1 LH1 2 LH2 -3
LH1 2 LH2 -1 LH2 1 LH1 0 LH1 1 LH2 0 LH2 3 LH1 -2
HH2 3 HH1I O HH1 2 HH2 1 HH2 2 HH1 1 HH1 4 HH2 -1

netic field, and we use its solutions for the heavy-hole part as In terms of the in-plane bas{d¢1) and subband basi44)
a basis for the in-plane part. These oscillator functions can bthe hole wave function is expanded as
written ag’

®(p.d)=Culip)lle=r"2Ce oL p2/a2).  (11) U= 3 CnsiDPni i (b4 3,00
(16)

for states with even<{) and odd () parity and total angu-
lar momentumf,. The energy is found variationally by
minimizing with respect to the expansion coefficients
C(n,s,j,). Itis convenient to label the states in Ed6) in a
1282 spectroscopic manner. Usually the term with smallésts

HereC,, is a normalization constarisee Appendix A and

L'n is a generalized Laguerre polynomial. The lengths

related to the magnetic length.= (%/eB)Y? and the har-
monic lengthl o= (&/Mywe) Y2 by

aZZZW. (12  dominant, and we use it to label the expansion. Thus, states
(lot4a; with an1=0 term and total angular momentufp will be
The energy levels of the 2D oscillator &afe referred to asS; , etc. The various terms that are coupled in
the axial approximation have been listed in Table I.
En=02n+|l|+Dio— hod, (13 In the present basill matrix elements of the single-hole

Hamiltonian can be found analytically. This is accomplished
where o= (wj+ w3/4)*? and w.=eB/m, is the cyclotron by using the operator relations in Appendix A for the off-
frequency in terms of the heavy-hole mass. In the limitdiagonal terms in the Luttinger Hamiltonian. These relations
B— 0 we have that=1, and w= w,, S0 the wave functions are also used to calculate the matrix elements of the light-
(11) and the energy level&l3) reduce to the corresponding hole kinetic energy within the heavy-hole basis. Since we
quantities in the field-free ca$éWith no parabolic confine- used a large number of heavy-hole basis functions, the low-
ment potentiala=\2a,. In this limit E,=[n+(|I|=1)/  lying light-hole states are adequately described in this basis.

2+ 1/2lhw.,=(N+1/2)hw., whereN is the Landau-level With two holes in the dot interacting via a Coulomb po-
index. So with no confinement potential the levels imde-  tential we expand the two-hole wave function in terms of
pendentof | (for positivel). antisymmetrized single-hole product states. Since the Cou-
As a convenient basis for the subband part we use simpllmb interaction is invariant with respect to simultaneous
trigonometric functions, viz., rotations of both holes the toté@wo-hole angular momen-

tum in thez direction is still conserved. The Bloch part now

fo(z)=\2Msinsm(z+WI2)/W], |z]<W/2, (14  contributes an angular momentuly=j,+ . so a state with
total angular momentunt, has an envelope momentum
L,=F,—J,. SincelL,=I,+1,, infinitely many single-hole
envelopes enter into the expansion. But from @4) we see

at the energy levels increase wjth so we keep the basis
inite by only retaining terms withl|<I .. As the Cou-
omb potential is rotationally invariant it only couples states
with the samd_,. Furthermore, it is diagonal in spin-space.
In the actual calculation the Coulomb matrix elements are
reduced to one-dimensional integrals that must be done
numerically®*

and zero otherwiselV is allowed to be slightly larger than

the width of the quantum well. These functions lead to
simple integrals and avoid the use of continuum functions i
the subband basis. This set, however, is not complete. B
for large offsets the wave function decays rapidly inside th
barrier material. The neglect of the wave-function tail for
|z| >WI/2 results therefore only in an exponentially small er-
ror. The optimum expansion widtffor a fixed number of

subbands in the basisould be treated as a variational pa-
rameter. A good first estimate can be found by minimizing
the energy for a single subband. To lowest order one then

finds IIl. RESULTS AND DISCUSSION

W=w(1+2/VE2), (15) This section contains the results from the numerical cal-

culations. For the single-hole problem we use a standard di-

where Vog=2mwPAE, /A2, w is the actual quantum-well agonalization technique to compute the energy levels. This
width, andm is the effective mass of the subband in ques-approach, however, is inadequate for the two-hole problem
tion. as it requires a large number of basis functions. Instead we
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resort to the iterative relaxation technique used previously 50
for the field-free case. It is both simple and capable of find-
ing eigenvalues of large matrices efficiently. As shown in
Ref. 24 it provides(in its simplest form the ground-state 40

:M/
energies for the different symmetries. %
For the GaAs quantum dot we use the material /\/
parameterd 30 \4%
7
T

o

y1=6.85, y,=2.1, =29, xk=12, (17

Energy (meV)

20

and a static dielectric constaat 12.74¢,. To ease the com-

putational effort we also use these material parameters for

the ALGa _,As barrier material. This avoids the compli- 10
cated matching of the hole wave function at the material (@)
interfaces. The justification of this simplification comes in

two parts. First, the mismatch of the material parameters be- 0_30 20 10 0 10 20 30
tween the well and barrier materials is relatively small. But Magnetic Field (T)
more importantly, we are by assumption in the situation of
strong confinement in the growth direction. The contribution 50 T T
to the energy functional from the wave-function penetration
into the barrier material is consequently subordinate. Having °
tailored our subband basis to this situation it is therefore
consistent to ignore the mismatch between the material pa-
rameters.

The confinement in the growth direction is caused by the
valence-band offsehE,. Assuming a 65/35 division of the
band-gap difference\E4(x)=1247% between the conduc-
tion and valence bands, the offset follows from the relation
AE,=0.3%AEy(x) =436k meV whenx<0.45. For alloys
with x=0.3 we thus haveA\E,=130 meV. (The resulting
in-plane dispersion relation for a 100-A-wide quantum well
is shown in Ref. 24.For the 100-A-thick quantum well that
we will be studying, the lowest subband edges then occur at (b)
the following energies: HH£7.18 meV, LHE22.10 meV, 0 , , , ,
HH2=28.46 meV, and HH362.81 me\?® Here HHs (LH 30 20 -10 0 10 20 30
s) refers to thesth heavy-hole(light-hole) subband edge. Magnetic Field (T)

In the absence of the magnetic field the single-hole levels
are twofold Kramer’'s degenerate: States witli, have the FIG. 1. Energy levels as a function of magnetic field. The
same energy. The magnetic field can lift this degeneracyuantum-well thickness is 100 A and the valence-band offset

The energy fulfills now instead the time-reversal symmetry-AE, =130 meV. The parabolic confinement potentiafii®,=5.4
relation meV. (a) Energy levels of the symmetry stag,. Note that no

levels cross(b) Energy levels of the Iowest-lyin@;’,2 (solid line)
andS! ,, (dashed lingstates. Also shown are the related uncoupled

E¢(B)=E_;(—B). (18)  levels for HH1 (=0) and LH1 (==*2) (dash-dotted lines for
f,=3/2 and dotted lines fof ,= —3/2).

Energy (meV)

Very few experiments have been performed on hole states
in quantum dots. As far as we know there have been no ) ] )
experiments on hole levels in GaAs quantum dots with para- !N Fig. 1 we consider a parabolic quantum dot made from
bolic confinement potentials. In the experiments by Ashoor® 100-A-thick GaAs/Aj {Ga, ;As [001] quantum well. Fig-
et al2 on electronsin parabolic GaAs quantum dots a good ure 1@ displays the 14 lowest-energy levels of (88, state
agreement between experiment and a simple model of ele@s a function of the magnetic field. As symmetry forbids the
trons in a parabolic potential was obtained. In particular thecoupled levels to cross we see instead strong anticrossings of
lowest-energy state was well described by a parabolic corthe levels. In Fig. (b) we show the lowest energy levels of
finement potential withiwo="5.4. We tentatively use this the two states wittS;, and S’ 5, symmetry, which are de-
value for the confinement potential acting on the holes, regenerate aB=0 and split at nonzero magnetic field. The
sulting in uncoupled heavy-hole and light-hole oscillator en-symmetry relation(18) is evident from the figure. For com-
ergies(in zero field of 5.4 and 3.9 meV, respectively. We parison we have also included in Fighl some related un-
note thath wy=%w. for B,=5.2 T: ForB> B the magnetic- coupled levels(which are obtained with the off-diagonal
field confinement dominates the confinement potential, foterms inH, set to zer® corresponding to HH1IE0) and
B<B, the situation is reversed. LH1 (I==*=2). We see that the inclusion of coupling due the

A. Single-hole energies
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30 — . . ; , have even parity. The corresponding odd-parity symmetries
are shown in Fig. 3. The relative importance of the different
terms in the Hamiltonian can qualitatively be classified into

-------- Sy three different regimes: a subband-dominated regime
25 | S 1 (AEgy>fiwg,hwe), a confinement-dominated regime
................. S (hwo>AEgphew), and a Landau-regime fi,

>AEgp,hwo). In the subband-dominated regime the off-
diagonal terms in the Kohn-Luttinger Hamiltonian are less
20+ T P T important and all states approach the subband minimum
HH1. The ordering of the magnetic-field split levels is the
same as in the uncoupled case; i.e., the state where the HH1
subband is associated with an in-plane envelope with the
largest(and positive | is lowest in energy(see Table )l
Thus S; (P4, will be lower in energy compared with
S: AP 55). An exceptional case occurs f& 5, as then
HH1 is coupled to an envelope wilh=0. In this case the
0 5 10 15 20 25 30 ordering is simply given by the Zeeman term, aﬁ}jz is
Magnetic Field () lower thanS!,, in the absence of couplings. With cou-
plings, the ordering is inverted, arl’;, becomes lower
(mainly) due to strong coupling with the LH1€ —2) level.

In the confinement-dominated regime there is strong in-
tersubband coupling and the dominant contribution to the
energy comes from the envelope with the smallest angular
momentum|l|. In the Landau regime the magnetic field is
g?e dominant factor, and the levels approach a Landau-level

Energy (meV)

FIG. 2. The lowest-energy levels for the six different symme-
triesS3,, S 4, Sijp, ST, Pajp, andP . The quantum well is
the same as in Fig. 1.

off-diagonal terms ofH, lowers the energies of the two

states, a fact that follows directly from the variational prin-
ciple as these are the lowest-energy states of that particul :
symmetry. Furthermore, as levels of the same symmetry a@tructure(see Appendix B

forbidden to cross, they show in general a weaker field de- The ﬁresenk;cbca(sje(fji@o_:SAdme\g is ir;_termedia;e b?' d
pendence compared to the uncoupled ones. From Fiy. 1 tween the subband-dominated and confinement-cominate

: + ot : regimes, at least for small magnetic fields. The ordering of
:/Jvr?cg:fsler:j()t:HeltTs\t/érsvilt?ivﬁolzf‘g;gi |1502/§r<y_cllo§,)e_;o ;ge the single-hole levels follows the above analysis for the
shown in Appendix B, this state approaches a Landau Ieveﬁubband-dommated regime, W'th the exception (.)fﬂ%’Z
that is completely decoupled in the strong-field liffitNote states. The strong couplings induced by the confinement po-
that forB>0, the stateS., is higher in energy thas" tentials and the magnetic field invert the ordering such that

! /2 —3/2;

+ : +
while the opposite is true for the uncoupled levels, which ard€ S- 32 State is lower thars,, for all values of the mag-

ordered according to their Zeeman terms. We shall discus'%etIC field. We have also examined the case with smaller

+
this behavior together with Figs. 2 and 3. values offi wg. For 0<# wy<2.5 meV theS; 5, states cross

Figure 2 displays the lowest energy levels for the six gif-at a fi.nite magnetic field in addition to the_ crossing at_ the
ferent symmetriesS! 5, S'1,, and Piey, all of which 2670 field. Foriwg=2.5 meV these two points of crossing
- - - confluence, an&” 5, becomes the ground state for all posi-
tive values of B.

% ST ' ' For strong magnetic fields the states in Figs. 2 and 3 ap-
28+ — 5, - proach the corresponding Landau-level structure treated in
g | S | Appendix B. Here we simply note the following: In the field-
__________ S free case it was found that the ground state became primarily
24+ .- 4 light-hole-like in the strong confinement limit. This was ex-
s e plained as a mass-induced crossover from quasi-2D to
® 22 oo Py ] quasi-1D behavior. Even though the magnetic field also
T sl T Py gives rise to a parabolic confinement potential, the strong-
g field limit is different. The wave functions in the Landau
5 1871 regime are mass independent. In this limit the ground state is
16 Lo degenerate and it can be chosen as either heavy-hole- or
light-hole-like. There is consequently no mass-induced sym-
14 (2 metry change of the ground state in the high-magnetic-field
10 L : B. Two-hole energies

0 5 10 15 20 25 30
Magnetic Field (T) We now add a second hole to the dot and calculate the

resulting two-hole energies. The presence of both the Cou-
FIG. 3. Same as Fig. 2, but now for the lowest-energy levels olomb interaction and the off-diagonal terms in the Luttinger
the odd-parity stateSs;,, S_z5, Sy S_1/2: Psjp, andP_g,. Hamiltonian necessitates the use of a large basis set. For
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Energy (meV)

30

20

10 15 20
Magnetic Field (T)

25

30

Energy (meV)

30

10 15 20 25 30
Magnetic Field (T)

FIG. 4. The two-hole energy for the sta8g as a function of the FIG. 5. The lowest two-hole energies for the stags S~ ,
magnetic field(solid ling). The quantum-well thickness is 100 A andSZ,. The quantum well is the same as in Fig. 4. The ground
and the valence-band offsatE, =130 meV. The dashed line is state in zero field isSj . It crosses the stat8’; at B=3.95 T as
obtained ignoring all off-diagonal terms in the Luttinger Hamil- explained in the text.
tonian, hence using a one-band model. The dotted line is the energy
of two noninteracting holeéncluding the off-diagonal couplings in - rajses the energy due to the mutual repulsion between the
the Luttinger Hamiltonia}] The Coulomb interaction raises the en- two holes. As expected both these effects become more
ergy by 8.88 meV aB=0 and 13.37 meV aB=30 T. prominent as the magnetic field increases.

To further elucidate the importance of the Coulomb inter-
each hole we consequently include the four lowest subbandsction on the two-hole states we present in Figure 5 the low-
with the correct parity. In the lateral direction we use the 28est two-hole states belonging to different symmetries. We
lowest oscillator states, corresponding to different angulanotice that theS; state is indeed the ground state for small
momentum states with=0,+1,=2,+3. This gives a total magnetic fields, but it gives place & , atB=3.95T. As a
basis of 23 552 functions, half of which have even and oddsimple step in understanding Fig. 5 we have listed in Table II
parity. The large number of angular states included in thehe dominant single-hole products that build up the two-hole
basis is essential in order to model important correlationsitates. Based on these dominant single-hole products we can
between the holes as well as to obtain an accurate descriptiualitatively understand the ordering of the two-hole levels
of the single-hole states. Using the relaxation metiiasl  of Fig. 5.
described in Ref. 24we can efficiently obtain the energy of  For sufficiently weak magnetic fields tes 5, levels are
the lowest-lying level for each specified symmetry, evenpe |owest single-hole statdsee Figs. 2 and)3 The two-
with such a large basis. _ hole ground state should in this limit thus consist primarily

We consider the same quantum.well as before, which hags ihe product stat&,S" 5, which belongs to th&; state.

a th|ckne§s of 109 A. The expansion widh for the sub- (The other two-hole statess ; lie higher in energy due to the
band basis remains to be determined. The estinia Pauli exclusion principle.With increasing magnetic fields

:)ased %T)a Séingtlﬁ subl;and, ginrs- 11.7 A. Asﬂ\évedir_]cltige we see from Figs. 2 and 3 that the ordering of the single-hole
our subbands the optimum expansion widtised in the levels is changed. Whilg” 5, remains the lowest single-hole

calculapoﬁ 'S found to bew= 195 A - state at all magnetic fields, steg), crossesS_,,, at B=11

In Fig. 4 the two-hole stat&; is shown(solid line) as a T andS?, atB~16 T (see Fig. 2 It is therefore not surpris-
function of the magnetic field. We know that this is the 12 f 9: . P .
ground state in zero fieRf,and expect it to be the ground ing thatS; ceases to be the ground state at higher magnetic

state also in the presence of the magnetic field, at least in tHie!ds- However, to fully understand the ordering of the two-
weak-field limit. To assess the importance of the Coulomp0!€ States in Fig. 5 we must also take into account the effect
interaction and the off-diagonal terms in the LuttingerOf the Coulomb interaction: Neglecting this effect one would
Hamiltonian we have also included in Fig. 4 the two-hole &roneously conclude th&r , would be the ground state for
energy without these effects. The dotted line is the energy ol T =B=16 T. From Table Il we see that the dominant
two noninteracting holes, while the dashed line is the two-Single-hole product states for moderate magnetic fields are
hole energy neglecting the coupling terms in the LuttingerSs2S-32 for Sy, S1;,873, for SZ;, and S_;,S” 5, for
Hamiltonian (a one-band modgf! The energy of the one- S_,, which differ only in the first single-hole factor. The
band model is substantially higher, which is not surprising inangular momentum dependence of the different single-hole
light of Fig. 1(b). There we saw the importance of the off- states are shown in Table I. The dominant contribution
diagonal coupling terms in the Luttinger Hamiltonian, but comes from the angular momentum state associated with the
the inclusion of the Coulomb interaction is also essential as iHH1 subband, which are=0 for S,, I=1 for S~,,,, and
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TABLE Il. The dominant single-hole product states that couple to form the two-hole states in Fig. 5. Only
the contributions from th&-like (i.e.,1=0) single-hole envelopes are listed.

Ss S st S, s, s,
S?JEIZSJE 3/2 S?JEIZSJE 3/2 S; 3/281?2 SJE 3/282112 Si: 3/283r 1/2 SJE 3/28£ 1/2
83/257 3/2 83/257 3/2 S- 3/281/2 S- 3/231/2 S- 3/287 1/2 S- 3/287 1/2
+ o+t + o + + + — + + + —
51/257 1/2 S1/281 1/2 S° 1/237 1/2 St 1/281 1/2 ST 1/287 3/2 St 1/251 3/2
81/287 1/2 Sl/zsf 1/2 S- 1/257 1/2 S- 1/287 1/2 S- 1/287 3/2 S- 1/287 3/2

|=2 for S],,. With increasing magnetic fields the holes arecylindrical coordinates these operators take the form
squeezed closer together, and it becomes energetically favor-
able to have one of the holes enter a higher angular momen- - xig
tum state in order to minimize the Coulomb repulsion. This
effect is greater for th&”,; state compared witl$_,, so it
becomes the two-hole ground state for a sufficiently stron
magnetic field.

The inclusion of the Coulomb interaction is therefore es-
sential for an understanding of the two-hole spectra.

(A1)

in the presence of a magnetic field. The wave functions
g{’n,l) can be written as

Dpi(p,d)=Cu(ip)le e (p2a2),  (A2)

with the normalization constant
V. SUMMARY

n!
We have calculated the single-hole and two-hole states of Cn= \/W
a :

a parabolic quantum dot in the presence of a perpendicular
magnetic field. The inclusion of the off-diagonal terms in theThe phase in Eq(A2) is chosen so as to simplify the opera-
Luttinger Hamiltonian is shown to be important, leading totor relations. The length is related to the magnetic length
anticrossings of the single-hole levels and in general & and oscillator lengtt, by Eq.(12) in the text.
weaker field dependence. The Coulomb interaction between It proves useful to introduce the dimensionless quantity
the holes leads to strong correlation effects. As the applied, py
magnetic field is increased the total angular momentum of
the ground state changes in order for the holes to minimize
their total energy. A=2
Both the valence-band mixing and the effect of the Cou-
lomb interaction increase as the magnetic field is increasedlsing the properties of the Laguerre polynomial we find the
As far as the quantum-well width is concerned, the dots confollowing relations forl >0:
sidered experimentally in Ref. 1 were slightly wida50 —
200 A) than the ones treated here. In wider dots the Coulomb 1 o e
energies decrease, but the valence-band mixing and correla- ack|n,1)= E(A +A Y9 nin-1]+1)
tion effects become even more important.
In the field-free case of Ref. 24 it was found that the

1 I+1

a

(A3)

ag\?

. (A%)

1
symmetry of the single-hole and two-hole states changed + —(AY2— A2 yn+1+1|n,1+1),
from primarily heavy-hole-like to primarily light-hole-like V2
for sufficiently strong parabolic confinement potential. In the (A5)

high-field limit there is no such symmetry change induced by
the magnetic field. 1
ack_|n,ly= E(A1’2+A*1’2)\/n+ 1n+1)]-1)

ACKNOWLEDGMENTS
One of us(F.B.P) is grateful to Norges Forskningstdor 1 o i
financial support during his stay at the University of Illinois. + E(A —A9Vn+ln,I-1),
He would also like to thank Y.-C. Chang’s group for their
hospitality during his visit. The authors acknowledge the use (AB)

of computing facilities provided by the University of lllinois,

Materials Research Laboratory under Contract No. NSF
DMR-89-20538, as well as the use of the CRAY Y-MP4D/ 1
464 at the University of Trondheim. ack+|n,|>=E(A1/2+A*1/2)\/n_ l[n,I+1)

?nd when <0

APPENDIX A: OPERATOR RELATIONS FOR THE 2D L
HARMONIC OSCILLATOR IN A MAGNETIC FIELD + _2(A1/2_A71/2) JnEIint1)+1),

In this appendix we generalize the operator relations for
k. =k, * ik, for the field-free case considered in Ref. 24. In (A7)
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eigenfunctions are easily found to be of the form

1
ack_|n,ly= E(A”%A*l’z) yn—=1+1/n,I—-1)

cif1(2)Pn(y)
1 ; ; Cof2(2)Pp-1(Y)
+E(A12—A’1Z)\/ﬁ|n—1,l—1), V=| cafa(2) Dy oY) | (B1)
(A8) Cafa(2)Pp_3(y)
and finally for|=0: wheref; are subband functions; are constants, andty 1D
1 harmonic oscillator functic.)ns.'We have here only inclgded
acks|n,0)= —=(AL2+ A ~172) \/ﬁ|n—1,1) the lowest subband function in each product as this is the

dominant contribution. For the solutidiB1) to be valid we
need to takec;=0 in the products;f;(z)®\(y) whenever
1 B N<O. It then follows immediately that foN=0, we must
+E(A1/2_A YHVn+1nD, (A9 gy c,=c3=c,=0, and we have a completely decoupled
Landau level as a solution.
The Landau solutiongB1) and in particular the un-
1 coupled level should also be found as the asymptotic limit of
ack-[n,0)= E(A1/2+A_1/2)\/n+ 1[n,—1) our solutions for high magnetic fields. In this limit the op-
erator relationgA5)—(A10) reduce to

1
+E(Al/2—/\fl/2)\/ﬁ|n—1a—1>- acky|n,ly=\2ynjn-1]+1), 1=0,
(A10) ak_|ny=\2yn+1n+1/-1), 1>0,
From these relations follows the effect of the off-diagonal _ —
terms in the Luttinger Hamiltonian on the basis functions. In ack.[n,1)= V2 n—ln,l1+1), 1<0,
the field-free case bothA and a. diverge such that
Ala2=2/12. The relationgA5)—(A10) then reduce to those ack_[n1)=+2yn=1+1n,1-1), 1<0, (B2

of Ref. 24. With no parabolic confinement potentia=1  hile the corresponding energy levels now become
and we recover the relations used in the Landau-level treat-

ment of magneto-excitons.
The light-hole diagonal elements can be related to the E=
heavy-hole part by

n+—2 +§

-1 1 L
how.=(N+3)hog, (B3)

) whereN is the Landau-level index used in E@@1);

Hl=Hl— = (K2+K2) (A1)
I h m072 x T Ryl {n, =0

N=

n—1I, 1=<0. (B4)

whereH! refers to the in-plane part only. With the magnetic
field present we have that A general solution based on the spherical oscillators can then
be written as

Ki+ko=k, k- —i[ky k =k, k- —1/@Z. (A12)
c,f1(2)[ny,l)

The matrix elements of the light-hole kinetic energy within Wy = C2f2(2)[nz 1 +1) (B5)
the heavy-hole basis then follow immediately combining csfa(2)|n3,1+2)
(A12) with (A5)—(A10). caf4(2)|ny,1+3)

since the operator relatioriB2) now only coupletwo oscil-
lator levels.

The simplest cases to consider are those wher@ or

In Ref. 24 the field-free problem was addressed. In thig<—3. For =0 it follows from Egs.(B1) and (B5) that
Appendix we consider the opposite limit, viz., no parabolicn;=N, n,=N—1, n3=N—2, andn,=N—3 and we must
confinement potential. It is then convenient to use the Lantake  ¢;=0 whenever n;<0. For I<-3,
dau gaugeA=B(—Yy,0,0). All discussions given here only n;=n,=n3=n,=N+I. The relations between, | and N
apply forB>0. ForB<0, we can use the time-reversal re- for intermediatel values follow from the operator relations
lation (18) to deal with states with opposite angular momem-(B2).
tum. The motion in thex direction is now just plane waves, It is now clear that uncoupled levels in the spherical-
while they direction corresponds to a 1D harmonic oscilla- oscillator formulation only occur for=0 andn;=0, corre-
tor. Representing the magnetic field in terms of the raisinggponding toN=0. This is to be coupled to the lowest sub-
and lowering operators for the 1D oscillator the Landauband state to give the uncoupled level. Thus, in the high

APPENDIX B: LANDAU-LEVEL LIMIT
OF THE 2D OSCILLATOR
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magnetic-field limit the levels with symmetrie§ s, (e.g., From the above analysis we can also deduce the degen-
552,p5—/2,D7+/2, ...) approaches the corresponding un-€racy in the high-field limit. Since the Landau-level index
coupled level. However, it is important to keep in mind thatN isLindependent df for positivel we have that all the states
for these symmetries the coupled levels will in general bd_(,_l)g,z,(L=0,1,2,3,. .. ) will approach the same energy in

lower in energy compared to the uncoupled ones.

the high-field limit.
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