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Magnetic-field effects on one- and two-hole states in parabolic quantum dots
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Using a multiband effective-mass theory, we have calculated the one- and two-hole energies in a parabolic
quantum dot in the presence of a perpendicular magnetic field. The valence-band degeneracy, the Coulomb
interaction, and the effect of finite offsets are all taken into account. The energies are calculated variationally
with an iterative relaxation technique. The single-hole levels show strong anticrossings due to the valence-band
mixing. As a result they have in general a weaker field dependence compared with the corresponding un-
coupled levels. For the two-hole states both the valence-band mixing and the Coulomb interaction are shown
to be substantial. The correlations between the holes are strong enough to change the total angular momentum
of the ground state when the magnetic field is increased.@S0163-1829~97!10907-9#
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I. INTRODUCTION

Modern lithographic techniques have made possible
fabrication of individual quantum dots.1 Such structures con
fine electrons~or holes! in all three spatial dimensions an
thus have a fully quantized energy spectrum. Usually th
width in the growth direction is much smaller than their la
eral extensions, so these quantum dots may be regarde
artificial atoms with disklike shapes. By varying the appli
gate potential over the dot, the numberN (N50,1,2,3,...! of
electrons can be controlled; increasing the gate potential
possible to charge the dot with an additionalsingleelectron.
Recently Ashooriet al. used single-electron capacitan
spectroscopy~SECS! to study theN-electron ground state o
such isolated quantum dots in a magnetic field, thus mea
ing the ground state of different ‘‘quantum-dot elements2

Their experimental results for the low-lying levels were w
described in terms of a lateral confinement potential that
parabolic. Other studies, both experimental3 and
theoretical,4,5 also support the view that in these dots t
lateral confinement potential can be approximated by a~one-
parameter adjustable! parabolic potential.

Few-electron systems in quantum dots have been ex
sively studied, both with and without an applied magne
field.4–15 For the dots in question the electron-electron int
action, the confinement energy, the Zeeman energy, and
cyclotron energy are all on the meV scale, and must con
quently be treated on an equal footing. Most studies h
therefore employed a full numerical solution, although s
cial cases exist where an analytical approach is poss
Taut9 has recently found exact solutions of the two-electr
problem for certain values of the confinement potent
El-Said13 has studied the same problem perturbatively us
the shifted 1/D expansion (D is spatial dimensionality!,
while Johnson and co-workers10,11 solved theN-electron
problem exactly forr 2 and 1/r 2 electron-electron interac
tions.

The ground states in such quantum dots exhibit interes
properties. For the two-electron case Wagner, Merkt,
550163-1829/97/55~7!/4580~9!/$10.00
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Chaplik7 found that the ground-state angular momentum
creases with the applied magnetic field in order to minim
the Coulomb repulsion. Concomitant spin-singlet–sp
triplet transitions resulted. In the high-field limit the singl
case is suppressed by the Zeeman effect, and only trip
triplet transitions occur. Maksym and Chakraborty8 studied
this spin-polarized limit for an arbitrary number of electro
and found that only certain ‘‘magic values’’ of the total a
gular momentum occurred for the ground state. These
compressible ground states are believed to be reminisce
a fractional quantum Hall system. In view of the exotic e
fects present in few-electron systems, the far-infrared~FIR!
absorption spectrum of parabolic quantum dots was surp
ingly simple, being dominated by peaks at the single-elect
energies and essentially independent of the number of e
trons on the dot as well as the specific form of the electr
electron interaction. This is no paradox however, merel
manifestation of the generalized Kohn’s theorem:6,8,17–20The
parabolic confinement potential allows for a separation of
problem into a center-of-mass~CM! and a relative part, and
the dipole operator only couples to the CM part. Since
CM spectrum is identical to the single-particle spectrum, o
sees only features at the single-electron energies. It is
difficult, however, to find situations where Kohn’s theore
is violated. Deviations from a strict parabolic confineme
potential will result in additional resonances in FI
experiments.14,15The same is true for quantum dots prepar
as nanocrystallites, as they typically have a hard-wall c
finement potential that mixes the relative and CM motion16

In this work we study hole states in a GaAs quantum
in the presence of a magnetic field. The dot is made from
GaAs/Al0.3Ga0.7As @001# quantum-well material. Although
the lateral confinement potential is taken to be parabolic,
strong mixing between the valence bands makes Koh
theorem invalid for hole states.21–23 It is therefore essentia
to make use of a multiband effective-mass theory in t
case. Using an axial approximation for the 4 degenerateG8
states in GaAs we calculate variationally the low-lying e
ergy levels for single-hole and two-hole states as a func
4580 © 1997 The American Physical Society
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55 4581MAGNETIC-FIELD EFFECTS ON ONE- AND TWO-HOLE . . .
of the magnetic field. The effect of the finite quantum-w
potential is accounted for in an approximate manner. O
results for the single-hole levels agree well with the calcu
tions of Broido, Cros, and Ro¨ssler.22 The coupling of the
various bands by the off-diagonal terms in the Lutting
Hamiltonian leads to anticrossings in the energy spectr
giving in general a weaker field dependence compared w
the uncoupled~electronic! case. The results from the two
hole calculations show that both the off-diagonal coupl
terms and the Coulomb interaction contribute substantiall
the two-hole energy. Neither effect should therefore be
glected in realistic calculations. Moreover, the Coulomb
teraction induces strong correlations between the holes.
result the symmetry of the ground state is changed with
creasing magnetic field.

In Sec. II we present the model and the basis functi
used in the variational calculation. Section III contains t
numerical results along with a discussion. A short summ
is given in Sec. IV.

II. GENERAL THEORY

This section is divided into two subsections. In the fi
subsection we present the model used. Then we cons
appropriate basis states for the single-hole and two-h
problem. As much of the theory from the field-free case s
applies, we omit some of the details. The interested read
referred to Ref. 24 for a more thorough discussion.

A. Model

In bulk GaAs the topmost valence bands consist of th
G8 states, which are degenerate atk50. They are separate
by an energy 1.5 eV from the conduction band and by 0
eV from the split-off band atk50. We are only interested in
energies less than, say, 100 meV, and it is therefore suffic
only to take theG8 states into account. In this strong spi
orbit situation theG8 quadruplet corresponds to theJ53/2,
j z561/2,63/2 states.
In the effective-mass approximation the kinetic energy

the hole is described by the Luttinger Hamiltonian25

HL5
\2

2m0 FHh R S 0

R* Hl 0 S

S* 0 Hl 2R

0 S* 2R* Hh

G , ~1!

where

Hh5~g11g2!~kx
21ky

2!1~g122g2!kz
2 ,

Hl5~g12g2!~kx
21ky

2!1~g112g2!kz
2 ,

R52A3g3ik2kz ,

S5A3gk2
2 , ~2!

and

k52 i¹2eA/\,

k65kx6 iky . ~3!
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Here g1 ,g2, and g3 are the Luttinger parameters
g51/2(g21g3), andm0 is the free-electron mass. We hav
adopted the axial approximation and the Hamiltonian is r
resented in the hole picture, where the sign of the energ
reversed.A is the vector potential, which in the symmetr
gauge reads

A5B3r /25~2y,x!B/2 ~4!

for a magnetic field in thez direction. The quantum-wel
potential in the growth direction is accounted for by a fin
potential well of widthw

V'~z!5H DEv for uzu>w/2,

0 for uzu,w/2.
~5!

The lateral confinement potential is parabolic, viz.,

Vi~r!5
1

2
Kr2 ~6!

in cylindrical coordinates. The constantK measures the
strength of the potential. We will also describe the parabo
potential in terms of its characteristic frequen
v05AK/mh and its characteristic lengthl 05A\/mhv0.
Both of these quantities are defined in terms of the~in-plane!
heavy-hole massmh5m0 /(g11g2). The hole-hole interac-
tion is modeled by a statically screened Coulomb potent

V~r1 ,r2!5
e2

4peur22r1u
. ~7!

The magnetic field also gives rise to a Zeeman energy t
EZ , which can be written as

EZ52
\e

m0
kB jz . ~8!

Herek is another Luttinger parameter.26

B. Choice of basis

The single-hole Hamiltonian is

H5HL1Vi~r!1V'~z!1EZ . ~9!

In the axial approximation the HamiltonianH is rotationally
invariant around thez axis. It therefore proves useful to in
troduce thetotal angular momentumF5J1L , whereJ is the
angular momentum of the band-edge Block function andL
the envelope angular momentum. Since nowFz is a constant
of the motion we can find simultaneous eigenstates ofH and
Fz . Labeling these states byf z , where\ f z is the eigenvalue
of Fz , a general hole state can be written as

c f z
~r !5(

j z
F j z~r,z!eif~ f z2 j z!u 32 , j z&, ~10!

whereu 32, j z& is the band-edge Bloch function andF(r,z) the
envelope function.

The diagonal terms ofH are separated into an in-plan
part and a z-dependent part, which describes a on
dimensional quantum-well problem. The in-plane problem
that of a two-dimensional~2D! harmonic oscillator in a mag
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TABLE I. Subband (s) and angular momentum states (l ) that are coupled by the off-diagonal terms in th
Kohn-Luttinger Hamiltonian. We only list the lowest subband state; all higher subband states with the
parity are also coupled.

S3/2
1 S23/2

1 S1/2
1 S21/2

1 S1/2
2 S21/2

2 P5/2
1 P25/2

1

s l s l s l s l s l s l s l s l

HH1 0 HH2 -3 HH2 -1 HH1 -2 HH1 -1 HH2 -2 HH2 1 HH1 -4
LH2 1 LH1 -2 LH1 0 LH2 -1 LH2 0 LH1 -1 LH1 2 LH2 -3
LH1 2 LH2 -1 LH2 1 LH1 0 LH1 1 LH2 0 LH2 3 LH1 -2
HH2 3 HH1 0 HH1 2 HH2 1 HH2 2 HH1 1 HH1 4 HH2 -1
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netic field, and we use its solutions for the heavy-hole par
a basis for the in-plane part. These oscillator functions can
written as27

Fnl~r,f!5Cnl~ ir! u l ue2r2/2a2eilfLn
u l u~r2/a2!. ~11!

HereCnl is a normalization constant~see Appendix A! and
Ln
l is a generalized Laguerre polynomial. The lengtha is

related to the magnetic lengthac5(\/eB)1/2 and the har-
monic lengthl 05(\/mhv0)

1/2 by

a252
l 0
2ac

2

~ l 0
414ac

4!1/2
. ~12!

The energy levels of the 2D oscillator are27

Enl5~2n1u l u11!\v2 1
2 \vcl , ~13!

wherev5(v0
21vc

2/4)1/2 and vc5eB/mh is the cyclotron
frequency in terms of the heavy-hole mass. In the lim
B→0 we have thata5 l 0 andv5v0, so the wave functions
~11! and the energy levels~13! reduce to the correspondin
quantities in the field-free case.24 With no parabolic confine-
ment potentiala5A2ac . In this limit Enl5@n1(u l u2 l )/
211/2#\vc5(N11/2)\vc , whereN is the Landau-level
index. So with no confinement potential the levels areinde-
pendentof l ~for positive l ).

As a convenient basis for the subband part we use sim
trigonometric functions, viz.,

f s~z!5A2/Wsin@sp~z1W/2!/W#, uzu<W/2, ~14!

and zero otherwise.W is allowed to be slightly larger than
the width of the quantum well. These functions lead
simple integrals and avoid the use of continuum functions
the subband basis. This set, however, is not complete.
for large offsets the wave function decays rapidly inside
barrier material. The neglect of the wave-function tail f
uzu.W/2 results therefore only in an exponentially small e
ror. The optimum expansion width~for a fixed number of
subbands in the basis! could be treated as a variational p
rameter. A good first estimate can be found by minimizi
the energy for a single subband. To lowest order one t
finds

W5w~112/VOff
1/2!, ~15!

whereVOff52mw2DEv /\
2, w is the actual quantum-wel

width, andm is the effective mass of the subband in que
tion.
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In terms of the in-plane basis~11! and subband basis~14!
the hole wave function is expanded as

c f z
6~r !5 (

j z ,n,s
C~n,s, j z!Fn, f z2 j z

~r,f! f s~z!u 3
2 , j z&

~16!

for states with even (1) and odd (2) parity and total angu-
lar momentum f z . The energy is found variationally by
minimizing with respect to the expansion coefficien
C(n,s, j z). It is convenient to label the states in Eq.~16! in a
spectroscopic manner. Usually the term with smallestu l u is
dominant, and we use it to label the expansion. Thus, st
with an l50 term and total angular momentumf z will be
referred to asSfz, etc. The various terms that are coupled
the axial approximation have been listed in Table I.

In the present basisall matrix elements of the single-hol
Hamiltonian can be found analytically. This is accomplish
by using the operator relations in Appendix A for the o
diagonal terms in the Luttinger Hamiltonian. These relatio
are also used to calculate the matrix elements of the lig
hole kinetic energy within the heavy-hole basis. Since
used a large number of heavy-hole basis functions, the l
lying light-hole states are adequately described in this ba

With two holes in the dot interacting via a Coulomb p
tential we expand the two-hole wave function in terms
antisymmetrized single-hole product states. Since the C
lomb interaction is invariant with respect to simultaneo
rotations of both holes the total~two-hole! angular momen-
tum in thez direction is still conserved. The Bloch part no
contributes an angular momentumJz5 j z1 j z8 so a state with
total angular momentumFz has an envelope momentum
Lz5Fz2Jz . Since Lz5 l z1 l z8, infinitely many single-hole
envelopes enter into the expansion. But from Eq.~13! we see
that the energy levels increase withu l u so we keep the basi
finite by only retaining terms withu l u< lmax. As the Cou-
lomb potential is rotationally invariant it only couples stat
with the sameLz . Furthermore, it is diagonal in spin-spac
In the actual calculation the Coulomb matrix elements
reduced to one-dimensional integrals that must be d
numerically.24

III. RESULTS AND DISCUSSION

This section contains the results from the numerical c
culations. For the single-hole problem we use a standard
agonalization technique to compute the energy levels. T
approach, however, is inadequate for the two-hole prob
as it requires a large number of basis functions. Instead
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55 4583MAGNETIC-FIELD EFFECTS ON ONE- AND TWO-HOLE . . .
resort to the iterative relaxation technique used previou
for the field-free case. It is both simple and capable of fin
ing eigenvalues of large matrices efficiently. As shown
Ref. 24 it provides~in its simplest form! the ground-state
energies for the different symmetries.

For the GaAs quantum dot we use the mate
parameters28

g156.85, g252.1, g352.9, k51.2, ~17!

and a static dielectric constante512.74e0. To ease the com
putational effort we also use these material parameters
the AlxGa12xAs barrier material. This avoids the compl
cated matching of the hole wave function at the mate
interfaces. The justification of this simplification comes
two parts. First, the mismatch of the material parameters
tween the well and barrier materials is relatively small. B
more importantly, we are by assumption in the situation
strong confinement in the growth direction. The contributi
to the energy functional from the wave-function penetrat
into the barrier material is consequently subordinate. Hav
tailored our subband basis to this situation it is theref
consistent to ignore the mismatch between the material
rameters.

The confinement in the growth direction is caused by
valence-band offsetDEv . Assuming a 65/35 division of the
band-gap differenceDEg(x)51247x between the conduc
tion and valence bands, the offset follows from the relat
DEv50.35DEg(x)5436x meV when x,0.45. For alloys
with x50.3 we thus haveDEv5130 meV. ~The resulting
in-plane dispersion relation for a 100-Å-wide quantum w
is shown in Ref. 24.! For the 100-Å-thick quantum well tha
we will be studying, the lowest subband edges then occu
the following energies: HH157.18 meV, LH1522.10 meV,
HH2528.46 meV, and HH3562.81 meV.29 Here HHs ~LH
s) refers to thesth heavy-hole~light-hole! subband edge.

In the absence of the magnetic field the single-hole lev
are twofold Kramer’s degenerate: States with6 f z have the
same energy. The magnetic field can lift this degenera
The energy fulfills now instead the time-reversal symmet
relation

Efz
~B!5E2 f z

~2B!. ~18!

Very few experiments have been performed on hole st
in quantum dots. As far as we know there have been
experiments on hole levels in GaAs quantum dots with pa
bolic confinement potentials. In the experiments by Asho
et al.2 on electronsin parabolic GaAs quantum dots a goo
agreement between experiment and a simple model of e
trons in a parabolic potential was obtained. In particular
lowest-energy state was well described by a parabolic c
finement potential with\v055.4. We tentatively use this
value for the confinement potential acting on the holes,
sulting in uncoupled heavy-hole and light-hole oscillator e
ergies~in zero field! of 5.4 and 3.9 meV, respectively. W
note that\v05\vc for Bc55.2 T: ForB@Bc the magnetic-
field confinement dominates the confinement potential,
B!Bc the situation is reversed.
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A. Single-hole energies

In Fig. 1 we consider a parabolic quantum dot made fr
a 100-Å-thick GaAs/Al0.3Ga0.7As @001# quantum well. Fig-
ure 1~a! displays the 14 lowest-energy levels of theS3/2

1 state
as a function of the magnetic field. As symmetry forbids t
coupled levels to cross we see instead strong anticrossing
the levels. In Fig. 1~b! we show the lowest energy levels o
the two states withS3/2

1 andS23/2
1 symmetry, which are de-

generate atB50 and split at nonzero magnetic field. Th
symmetry relation~18! is evident from the figure. For com
parison we have also included in Fig. 1~b! some related un-
coupled levels~which are obtained with the off-diagona
terms inHL set to zero! corresponding to HH1 (l50) and
LH1 ( l562). We see that the inclusion of coupling due t

FIG. 1. Energy levels as a function of magnetic field. T
quantum-well thickness is 100 Å and the valence-band of
DEv5130 meV. The parabolic confinement potential is\v055.4
meV. ~a! Energy levels of the symmetry stateS3/2

1 . Note that no
levels cross.~b! Energy levels of the lowest-lyingS3/2

1 ~solid line!
andS23/2

1 ~dashed line! states. Also shown are the related uncoup
levels for HH1 (l50) and LH1 (l562) ~dash-dotted lines for
f z53/2 and dotted lines forf z523/2).
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4584 55F. B. PEDERSEN AND YIA-CHUNG CHANG
off-diagonal terms ofHL lowers the energies of the tw
states, a fact that follows directly from the variational pri
ciple as these are the lowest-energy states of that partic
symmetry. Furthermore, as levels of the same symmetry
forbidden to cross, they show in general a weaker field
pendence compared to the uncoupled ones. From Fig.~b!
we also notice that the levelS3/2

1 (S23/2
1 ) is very close to the

uncoupled HH1 level withl50 for B*10(B&210) T. As
shown in Appendix B, this state approaches a Landau le
that is completely decoupled in the strong-field limit.30 Note
that forB.0, the stateS3/2

1 is higher in energy thanS23/2
1 ,

while the opposite is true for the uncoupled levels, which
ordered according to their Zeeman terms. We shall disc
this behavior together with Figs. 2 and 3.

Figure 2 displays the lowest energy levels for the six d
ferent symmetriesS63/2

1 , S61/2
1 , and P65/2

1 , all of which

FIG. 2. The lowest-energy levels for the six different symm
triesS3/2

1 , S23/2
1 , S1/2

1 , S21/2
1 , P5/2

1 , andP25/2
1 . The quantum well is

the same as in Fig. 1.

FIG. 3. Same as Fig. 2, but now for the lowest-energy levels
the odd-parity statesS3/2

2 , S23/2
2 , S1/2

2 , S21/2
2 , P5/2

2 , andP25/2
2 .
lar
re
-

el

e
ss
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have even parity. The corresponding odd-parity symmet
are shown in Fig. 3. The relative importance of the differe
terms in the Hamiltonian can qualitatively be classified in
three different regimes: a subband-dominated reg
(DEsub@\v0 ,\vc), a confinement-dominated regim
(\v0@DEsub,\vc), and a Landau-regime (\vc
@DEsub,\v0). In the subband-dominated regime the o
diagonal terms in the Kohn-Luttinger Hamiltonian are le
important and all states approach the subband minim
HH1. The ordering of the magnetic-field split levels is th
same as in the uncoupled case; i.e., the state where the
subband is associated with an in-plane envelope with
largest ~and positive! l is lowest in energy~see Table I!.
Thus S61/2

6 (P5/2
1 ) will be lower in energy compared with

S71/2
6 (P25/2

1 ). An exceptional case occurs forS63/2
1 as then

HH1 is coupled to an envelope withl50. In this case the
ordering is simply given by the Zeeman term, andS3/2

1 is
lower thanS23/2

1 in the absence of couplings. With cou
plings, the ordering is inverted, andS23/2

1 becomes lower
~mainly! due to strong coupling with the LH1 (l522) level.

In the confinement-dominated regime there is strong
tersubband coupling and the dominant contribution to
energy comes from the envelope with the smallest ang
momentumu l u. In the Landau regime the magnetic field
the dominant factor, and the levels approach a Landau-le
structure~see Appendix B!.

The present case (\v055.4 meV! is intermediate be-
tween the subband-dominated and confinement-domin
regimes, at least for small magnetic fields. The ordering
the single-hole levels follows the above analysis for t
subband-dominated regime, with the exception of theS63/2

1

states. The strong couplings induced by the confinement
tentials and the magnetic field invert the ordering such t
the S23/2

1 state is lower thanS3/2
1 for all values of the mag-

netic field. We have also examined the case with sma
values of\v0. For 0,\v0,2.5 meV theS63/2

1 states cross
at a finite magnetic field in addition to the crossing at t
zero field. For\v0.2.5 meV these two points of crossin
confluence, andS23/2

1 becomes the ground state for all pos
tive values of B.

For strong magnetic fields the states in Figs. 2 and 3
proach the corresponding Landau-level structure treate
Appendix B. Here we simply note the following: In the field
free case it was found that the ground state became prim
light-hole-like in the strong confinement limit. This was e
plained as a mass-induced crossover from quasi-2D
quasi-1D behavior. Even though the magnetic field a
gives rise to a parabolic confinement potential, the stro
field limit is different. The wave functions in the Landa
regime are mass independent. In this limit the ground stat
degenerate and it can be chosen as either heavy-hole
light-hole-like. There is consequently no mass-induced sy
metry change of the ground state in the high-magnetic-fi
limit.

B. Two-hole energies

We now add a second hole to the dot and calculate
resulting two-hole energies. The presence of both the C
lomb interaction and the off-diagonal terms in the Lutting
Hamiltonian necessitates the use of a large basis set.

-

f
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55 4585MAGNETIC-FIELD EFFECTS ON ONE- AND TWO-HOLE . . .
each hole we consequently include the four lowest subba
with the correct parity. In the lateral direction we use the
lowest oscillator states, corresponding to different angu
momentum states withl50,61,62,63. This gives a total
basis of 23 552 functions, half of which have even and o
parity. The large number of angular states included in
basis is essential in order to model important correlati
between the holes as well as to obtain an accurate descri
of the single-hole states. Using the relaxation method~as
described in Ref. 24! we can efficiently obtain the energy o
the lowest-lying level for each specified symmetry, ev
with such a large basis.

We consider the same quantum well as before, which
a thickness of 100 Å. The expansion widthW for the sub-
band basis remains to be determined. The estimate~15!,
based on a single subband, givesW5117 Å. As we include
four subbands the optimum expansion width~used in the
calculation! is found to beW5165 Å.

In Fig. 4 the two-hole stateS0
1 is shown~solid line! as a

function of the magnetic field. We know that this is th
ground state in zero field,24 and expect it to be the groun
state also in the presence of the magnetic field, at least in
weak-field limit. To assess the importance of the Coulo
interaction and the off-diagonal terms in the Lutting
Hamiltonian we have also included in Fig. 4 the two-ho
energy without these effects. The dotted line is the energ
two noninteracting holes, while the dashed line is the tw
hole energy neglecting the coupling terms in the Lutting
Hamiltonian ~a one-band model!.31 The energy of the one
band model is substantially higher, which is not surprising
light of Fig. 1~b!. There we saw the importance of the of
diagonal coupling terms in the Luttinger Hamiltonian, b
the inclusion of the Coulomb interaction is also essential a

FIG. 4. The two-hole energy for the stateS0
1 as a function of the

magnetic field~solid line!. The quantum-well thickness is 100 Å
and the valence-band offsetDEv5130 meV. The dashed line i
obtained ignoring all off-diagonal terms in the Luttinger Ham
tonian, hence using a one-band model. The dotted line is the en
of two noninteracting holes~including the off-diagonal couplings in
the Luttinger Hamiltonian!. The Coulomb interaction raises the e
ergy by 8.88 meV atB50 and 13.37 meV atB530 T.
ds
8
r

d
e
s
ion

n

d

he
b

of
-
r

n

t
it

raises the energy due to the mutual repulsion between
two holes. As expected both these effects become m
prominent as the magnetic field increases.

To further elucidate the importance of the Coulomb int
action on the two-hole states we present in Figure 5 the l
est two-hole states belonging to different symmetries.
notice that theS0

1 state is indeed the ground state for sm
magnetic fields, but it gives place toS21

1 atB.3.95 T. As a
simple step in understanding Fig. 5 we have listed in Tabl
the dominant single-hole products that build up the two-h
states. Based on these dominant single-hole products we
qualitatively understand the ordering of the two-hole lev
of Fig. 5.

For sufficiently weak magnetic fields theS63/2
1 levels are

the lowest single-hole states~see Figs. 2 and 3!. The two-
hole ground state should in this limit thus consist primar
of the product stateS3/2

1 S23/2
1 , which belongs to theS0

1 state.
~The other two-hole statesS63

1 lie higher in energy due to the
Pauli exclusion principle.! With increasing magnetic fields
we see from Figs. 2 and 3 that the ordering of the single-h
levels is changed. WhileS23/2

1 remains the lowest single-hol
state at all magnetic fields, stateS3/2

1 crossesS21/2
2 at B.11

T andS1/2
1 atB.16 T ~see Fig. 2!. It is therefore not surpris-

ing thatS0
1 ceases to be the ground state at higher magn

fields. However, to fully understand the ordering of the tw
hole states in Fig. 5 we must also take into account the ef
of the Coulomb interaction: Neglecting this effect one wou
erroneously conclude thatS22

2 would be the ground state fo
11 T &B&16 T. From Table II we see that the domina
single-hole product states for moderate magnetic fields
S3/2

1 S23/2
1 for S0

1 , S1/2
1 S23/2

1 for S21
1 , and S21/2

2 S23/2
1 for

S22
2 , which differ only in the first single-hole factor. Th
angular momentum dependence of the different single-h
states are shown in Table I. The dominant contribut
comes from the angular momentum state associated with
HH1 subband, which arel50 for S3/2

1 , l51 for S21/2
2 , and

gy

FIG. 5. The lowest two-hole energies for the statesS0
6 , S21

6 ,
andS22

6 . The quantum well is the same as in Fig. 4. The grou
state in zero field isS0

1 . It crosses the stateS21
1 at B.3.95 T as

explained in the text.
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TABLE II. The dominant single-hole product states that couple to form the two-hole states in Fig. 5.
the contributions from theS-like ~i.e., l50) single-hole envelopes are listed.

S0
1 S0

2 S21
1 S21

2 S22
1 S22

2

S3/2
1 S23/2

1 S3/2
1 S23/2

2 S23/2
1 S1/2

1 S23/2
1 S1/2

2 S23/2
1 S21/2

1 S23/2
1 S21/2

2

S3/2
2 S23/2

2 S3/2
2 S23/2

1 S23/2
2 S1/2

2 S23/2
2 S1/2

1 S23/2
2 S21/2

2 S23/2
2 S21/2

1

S1/2
1 S21/2

1 S1/2
1 S21/2

2 S21/2
1 S21/2

1 S21/2
1 S21/2

2 S21/2
1 S23/2

1 S21/2
1 S23/2

2

S1/2
2 S21/2

2 S1/2
2 S21/2

1 S21/2
2 S21/2

2 S21/2
2 S21/2

1 S21/2
2 S23/2

2 S21/2
2 S23/2

1
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l52 for S1/2
1 . With increasing magnetic fields the holes a

squeezed closer together, and it becomes energetically fa
able to have one of the holes enter a higher angular mom
tum state in order to minimize the Coulomb repulsion. T
effect is greater for theS21

1 state compared withS22
2 , so it

becomes the two-hole ground state for a sufficiently stro
magnetic field.

The inclusion of the Coulomb interaction is therefore e
sential for an understanding of the two-hole spectra.

IV. SUMMARY

We have calculated the single-hole and two-hole state
a parabolic quantum dot in the presence of a perpendic
magnetic field. The inclusion of the off-diagonal terms in t
Luttinger Hamiltonian is shown to be important, leading
anticrossings of the single-hole levels and in genera
weaker field dependence. The Coulomb interaction betw
the holes leads to strong correlation effects. As the app
magnetic field is increased the total angular momentum
the ground state changes in order for the holes to minim
their total energy.

Both the valence-band mixing and the effect of the Co
lomb interaction increase as the magnetic field is increa
As far as the quantum-well width is concerned, the dots c
sidered experimentally in Ref. 1 were slightly wider~150 –
200 Å! than the ones treated here. In wider dots the Coulo
energies decrease, but the valence-band mixing and cor
tion effects become even more important.

In the field-free case of Ref. 24 it was found that t
symmetry of the single-hole and two-hole states chan
from primarily heavy-hole-like to primarily light-hole-like
for sufficiently strong parabolic confinement potential. In t
high-field limit there is no such symmetry change induced
the magnetic field.
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APPENDIX A: OPERATOR RELATIONS FOR THE 2D
HARMONIC OSCILLATOR IN A MAGNETIC FIELD

In this appendix we generalize the operator relations
k65kx6 iky for the field-free case considered in Ref. 24.
or-
n-
s

g

-

of
ar

a
en
d
f
e

-
d.
-

b
la-

d

y

e

/

r

cylindrical coordinates these operators take the form

k652 ie6 ifS ]

]r
6
i

r

]

]f
6

r

2ac
2D ~A1!

in the presence of a magnetic field. The wave functio
un,l & can be written as

Fnl~r,f!5Cnl~ ir! u l ue2r2/2a2eilfLn
u l u~r2/a2!, ~A2!

with the normalization constant

Cnl5A n!

p~n1u l u!! S 1aD
u l u11

. ~A3!

The phase in Eq.~A2! is chosen so as to simplify the oper
tor relations. The lengtha is related to the magnetic lengt
ac and oscillator lengthl 0 by Eq. ~12! in the text.

It proves useful to introduce the dimensionless quan
L by

L52S aca D 2. ~A4!

Using the properties of the Laguerre polynomial we find t
following relations forl.0:

ack1un,l &5
1

A2
~L1/21L21/2!Anun21,l11&

1
1

A2
~L1/22L21/2!An1 l11un,l11&,

~A5!

ack2un,l &5
1

A2
~L1/21L21/2!An11un11,l21&

1
1

A2
~L1/22L21/2!An1 l un,l21&,

~A6!

and whenl,0

ack1un,l &5
1

A2
~L1/21L21/2!An2 l un,l11&

1
1

A2
~L1/22L21/2!An11un11,l11&,

~A7!
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ack2un,l &5
1

A2
~L1/21L21/2!An2 l11un,l21&

1
1

A2
~L1/22L21/2!Anun21,l21&,

~A8!

and finally for l50:

ack1un,0&5
1

A2
~L1/21L21/2!Anun21,1&

1
1

A2
~L1/22L21/2!An11un,1&, ~A9!

ack2un,0&5
1

A2
~L1/21L21/2!An11un,21&

1
1

A2
~L1/22L21/2!Anun21,21&.

~A10!

From these relations follows the effect of the off-diagon
terms in the Luttinger Hamiltonian on the basis functions.
the field-free case bothL and ac diverge such that
L/ac

252/l 0
2 . The relations~A5!–~A10! then reduce to those

of Ref. 24. With no parabolic confinement potentialL51
and we recover the relations used in the Landau-level tr
ment of magneto-excitons.32

The light-hole diagonal elements can be related to
heavy-hole part by

Hl
i5Hh

i 2
\2

m0
g2~kx

21ky
2!, ~A11!

whereH i refers to the in-plane part only. With the magne
field present we have that

kx
21ky

25k1k22 i @kx ,ky#5k1k221/ac
2 . ~A12!

The matrix elements of the light-hole kinetic energy with
the heavy-hole basis then follow immediately combini
~A12! with ~A5!–~A10!.

APPENDIX B: LANDAU-LEVEL LIMIT
OF THE 2D OSCILLATOR

In Ref. 24 the field-free problem was addressed. In t
Appendix we consider the opposite limit, viz., no parabo
confinement potential. It is then convenient to use the L
dau gaugeA5B(2y,0,0). All discussions given here onl
apply forB.0. ForB,0, we can use the time-reversal r
lation ~18! to deal with states with opposite angular mome
tum. The motion in thex direction is now just plane waves
while they direction corresponds to a 1D harmonic oscil
tor. Representing the magnetic field in terms of the rais
and lowering operators for the 1D oscillator the Land
l

t-

e

s

-

-

g

eigenfunctions are easily found to be of the form

C5F c1f 1~z!FN~y!

c2f 2~z!FN21~y!

c3f 3~z!FN22~y!

c4f 4~z!FN23~y!
G , ~B1!

wheref i are subband functions,ci are constants, andFN 1D
harmonic oscillator functions. We have here only includ
the lowest subband function in each product as this is
dominant contribution. For the solution~B1! to be valid we
need to takeci[0 in the productsci f i(z)FN(y) whenever
N,0. It then follows immediately that forN50, we must
put c25c35c450, and we have a completely decouple
Landau level as a solution.

The Landau solutions~B1! and in particular the un-
coupled level should also be found as the asymptotic limi
our solutions for high magnetic fields. In this limit the op
erator relations~A5!–~A10! reduce to

ack1un,l &5A2Anun21,l11&, l>0,

ack2un,l &5A2An11un11,l21&, l.0,

ack1un,l &5A2An2 l un,l11&, l,0,

ack2un,l &5A2An2 l11un,l21&, l<0, ~B2!

while the corresponding energy levels now become

E5S n1
u l u2 l

2
1
1

2D\vc5~N1 1
2 !\vc , ~B3!

whereN is the Landau-level index used in Eq.~B1!;

N5H n, l>0

n2 l , l<0.
~B4!

A general solution based on the spherical oscillators can t
be written as

C5F c1f 1~z!un1 ,l &
c2f 2~z!un2 ,l11&
c3f 3~z!un3 ,l12&
c4f 4~z!un4 ,l13&

G ~B5!

since the operator relations~B2! now only coupletwo oscil-
lator levels.

The simplest cases to consider are those wherel>0 or
l<23. For l>0 it follows from Eqs.~B1! and ~B5! that
n15N, n25N21, n35N22, andn45N23 and we must
take ci50 whenever ni,0. For l<23,
n15n25n35n45N1 l . The relations betweenn, l andN
for intermediatel values follow from the operator relation
~B2!.

It is now clear that uncoupled levels in the spheric
oscillator formulation only occur forl>0 andn150, corre-
sponding toN50. This is to be coupled to the lowest su
band state to give the uncoupled level. Thus, in the h
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magnetic-field limit the levels with symmetriesLL13/2
(2)L ~e.g.,

S3/2
1 ,P5/2

2 ,D7/2
1 , . . . ! approaches the corresponding u

coupled level. However, it is important to keep in mind th
for these symmetries the coupled levels will in general
lower in energy compared to the uncoupled ones.
J.

.

t
e

From the above analysis we can also deduce the de
eracy in the high-field limit. Since the Landau-level inde
N is independent ofl for positivel we have that all the state

LL13/2
(2)L ,(L50,1,2,3,. . . ) will approach the same energy i

the high-field limit.
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