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Hydrogenic impurities in parabolic quantum-well wires in a magnetic field
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The properties of a hydrogenic impurity in a parabolic GaAs quantum-well wire in the presence of
the magnetic field are investigated using the finite-difference method within the
quasi-one-dimensional effective potential model. The magnetic effects on the energies and binding
energies of the ground and lowest excited states of a hydrogenic impurity in a parabolic GaAs
quantum-well wire are studied for various parabolic potentials. The calculated results indicate that
the interplay of the spatial confinement and the magnetic confinement of electrons in the
quantum-well wires leads to complicated binding energies of the hydrogenic impurity, and high
magnetic fields significantly increase the binding energies of the hydrogenic impurity in the case of
weak spatial confinement. © 2006 American Institute of Physics. �DOI: 10.1063/1.2206415�
I. INTRODUCTION

Recent advances in semiconductor technology have
made possible the fabrication of low-dimensional semicon-
ductor heterostructures such as two-dimensional semicon-
ductor quantum wells �QWs�, one-dimensional semiconduc-
tor quantum-well wires �QWWs�, and zero-dimensional
semiconductor quantum dots �QDs�. The investigation of
these structures has attracted much attention because of their
potential applications in high performance devices since they
are predicted to offer superior optical and electrical
characteristics.1,2

During the past few decades, the properties of low-
dimensional systems composed of semiconductor materials
have been extensively investigated.3–19 Among the various
systems currently under investigation, quasi-one-dimensional
�1D� QWWs have received considerable attention. The the-
oretical and experimental studies of the electronic properties
of shallow donor impurities in 1D QWWs are essential for
understanding the behavior of these systems. A number of
studies concerning hydrogenic impurities in cylindrical and
rectangular QWWs in the absence of a magnetic field have
been carried out.3–5 The large binding energies of a hydro-
genic impurity result from enhanced Coulomb coupling be-
tween electrons and donors due to the localization of elec-
trons in the nanostructures. The achievement of large binding
energies of hydrogenic impurities is considered as an impor-
tant goal in the field of semiconductor nanostructures. As in
all other nanostructures, the spatial confinement of the wave
function, which depends on both the shape of the potential
and the position of the impurity in the structure, plays an
important role in these QWWs. An applied uniform magnetic
field is one of the main probes used for studying the physical
properties of nanostructures. The application of a magnetic
field modifies the symmetry of the electron motion and the
nature of the electron wave function. The quantizations
caused by the magnetic field and the spatial confinement of
electrons overlap in low-dimensional semiconductor hetero-
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structures. These effects lead to more complicated energy
levels and binding energies of the hydrogenic impurity and
produce several interesting physical phenomena.6–8 The
problems of a hydrogenic impurity or an exciton in QWWs
with various potential barriers in the presence of a magnetic
field have been treated by many authors.9–13 Zounoubi et al.
has estimated the binding energy and the polarizability of a
shallow donor confined to a GaAs QWW with a rectangular
cross section in the presence of an axial magnetic field.9

Kyrychenko and Kossut have studied the dependence of ex-
citon binding energy on a magnetic field in T-shaped QWW
structures.10 Branis et al. performed a calculation of the
ground-state binding energy of a hydrogenic impurity in a
cylindrical QWW with infinite or finite confining potentials
in a magnetic field parallel to the wire.11 Aktas and co-
workers investigated the effects of both electric and magnetic
fields on the binding energy of a shallow donor impurity in a
coaxial GaAs–�Ga, Al�As QWW. They calculated the bind-
ing energy as a function of impurity position and barrier
thickness for various values of the applied magnetic and
electric fields.12,13 Recently, Bednarek et al. have proposed
an analytical 1D formula for the effective interaction poten-
tial between confined charge carriers. They applied both the
1D model with an effective potential and the full three-
dimensional �3D� approach to an exciton confined in a
QWW and discussed the applicability of the effective 1D
interaction potential to real 3D nanostructures by comparing
the results of the 1D and 3D approaches.14 There are rela-
tively few quantitative studies on parabolic QWWs in a mag-
netic field.

In this paper, we report the calculation of the energies
and binding energies of the ground and lowest excited states
of a hydrogenic impurity in parabolic GaAs QWWs in a
magnetic field parallel to the wire. We also calculate the
distance between the electron and the donor. These calcula-
tions are done using the finite-difference method within the
1D effective potential model.14 The calculated results indi-
cate that the interplay of the spatial confinement and the
magnetic confinement of the electron in the QWW leads to

complicated binding energies of the hydrogenic impurity,
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and high magnetic fields significantly enhance the binding
energies of the hydrogenic impurity in the case of weak spa-
tial confinement. The paper is organized as follows: In Sec.
II we present our theoretical model, our numerical results
and discussion are presented in Sec. III, and finally in Sec.
IV the conclusions obtained are summarized briefly.

II. THEORY AND CALCULATION

For simplicity, we assume that the hydrogenic impurity
is located at the center of the wire along the z direction. In
this problem the electron is free to move in the longitudinal
direction �which is the direction of the z axis� and is confined
by parabolic lateral confinement along the x and y axes.
Within the effective-mass approximation, the system is de-
scribed by the Hamiltonian

H =
1

2me
*�p +

e

c
A�2

+
1

2
me

*�2�2 −
e2

�r
, �1�

where e and me
* are, respectively, the electronic charge and

the effective mass, p is the momentum, � is the dielectric
constant of the material of the parabolic GaAs QWW, � is
the harmonic oscillator frequency, � is the distance from the
axis of the wire, and r=��2+z2 gives the distance of the
electron from the donor. A is the potential vector of the mag-
netic field, which is written as A= 1

2B�r, with B=Bẑ. We
have used the effective electron Bohr radius in GaAs, a*

=�2� /me
*e2, as the unit of length and the effective electron

Rydberg Ry=e2 /2�a* as the unit of energy. In these units,
the Hamiltonian �1� can be rewritten as

H = − �2 + �Lz + � 1
4�2 + �p

2��2 −
2

r
. �2�

Here, Lz is the z component of the angular momentum op-
erator of an electron �in unit of ��. The � and �p are dimen-
sionless measures of the magnetic field and the parabolic
potential, respectively, which are defined as �=e�B /
2me

*cRy and �p=�� /2Ry.

A. The ground state

We assume that the electron is in the ground state of
transverse motion. The electron wave function for this poten-
tial can be separated in cylindrical coordinates as14

��r� = ����,�����z� , �3�

where

����,�� =
� 1

4�2 + �p
2�1/4

�	
exp�− 1

2
�1

4�2 + �p
2�2� , �4�

and ���z� is the electron’s longitudinal wave function. We
can obtain the effective interaction potential energy

Veff�z� = 2�	� 1
4�2 + �p

2�1/4 erfc x�� 1
4�2 + �p

2�1/4	z	� . �5�

Here, erfc x�t�=exp�t2�erfc�t� is the exponentially scaled
complementary error function, which can be calculated using
standard numerical procedures, and erfc�t� is the comple-

mentary error function. We define the operator H� as the
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Hamiltonian for the longitudinal motion which satisfies the
equation

H����z� =
 �d�d���
* ��,��H����,�����z� . �6�

Equation �6� yields

H� = 2�1
4�2 + �p

2 −
�2

�z2 − Veff�z� . �7�

The eigenvalue problem for Hamiltonian �7� depends on
only one coordinate. Therefore, it can be treated with the
finite-difference method on a one-dimensional mesh.

The ground-state binding energy Eb of the impurity is
defined as the ground-state energy of the system without the
impurity minus the ground-state energy with the impurity
�Emin�:

Eb = E0 − Emin. �8�

Here, E0 is the ground-state energy of the system without the
impurity, which can be shown to be

E0 = ��2 + 4�p
2. �9�

The ground-state energy Emin of the system described by
Hamiltonian �7� can be evaluated using the finite-difference
method with a one-dimensional mesh.

The average distance between the ground-state electron
and the donor along the quantum wire can be obtained by

�	z	� =
 ��

*�z�	z	���z�dz

 	���z�	2dz
. �10�

B. The lowest excited state

If the electron is in the lowest excited state of transverse
motion, the electron wave function of the lowest excited
state can be approximated in cylindrical coordinates by the
product

�sp�r� = ��
sp��,����

sp�z� , �11�

where

��
sp��,�� =� 1

4�2 + �p
2

	
� exp�− 1

2
�1

4�2 + �p
2�2�ei� �12�

and ��
sp�z� is the electron’s longitudinal wave function. We

can obtain the effective interaction potential energy of the
lowest excited state as

Veff
sp �z� = ��	� 1

4�2 + �p
2�1/4 − 2�	� 1

4�2 + �p
2�3/4�

�erfc�� 1
4�2 + �p

2�1/4	z	� + 2�1
4�2 + �p

2	z	 . �13�

Similarly as in Sec. II A, the Hamiltonian for the longitudi-
nal motion is

H�
sp = 4�1

4�2 + �p
2 + � −

�2

�z2 − Veff
sp �z� . �14�

The binding energy Eb
sp of the lowest excited state of the
impurity is defined as the energy of the lowest excited state
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of the system without the impurity minus the energy of the
lowest excited state with the impurity �Emin

sp �:

Eb
sp = E0

sp − Emin
sp . �15�

Here, E0
sp is the energy of the lowest excited state of the

system without the impurity, which can be shown to be

E0
sp = ��2 + 4�p

2 + � . �16�

The energy Emin
sp of the lowest excited state of the system

described by Hamiltonian �14� can be evaluated using the
finite-difference method with a one-dimensional mesh.

III. RESULTS AND DISCUSSION

We have calculated the energies and binding energies of
the ground and lowest excited states of a hydrogenic impu-
rity located at the center of a parabolic GaAs QWW in a
magnetic field parallel to the wire. We also calculated the
distance between the electron and the donor. The values of
the parameters for GaAs QWWs used in our calculations are
�=12.5 and me

*=0.067m0,15where m0 is the free-electron
mass. For these parameter values, a*=98.7 Å and Ry
=5.83 meV.

Figure 1 shows the ground-state binding energy of a hy-
drogenic impurity in a parabolic GaAs QWW as a function
of the parabolic potential �p for various values of the mag-
netic field. The binding energy of the hydrogenic impurity
increases with increasing the parabolic potential which con-
fines the electron close to the donor. In the strong spatial
confinement range ��p
6�, the binding energy of the hydro-
genic impurity is insensitive to magnetic fields and diverges
as the parabolic potential approaches infinity, indicating that
the main contribution to the binding energies of the hydro-
genic impurity comes from the spatial confinement of elec-
trons, which prevails over the magnetic confinement of elec-
trons. In the intermediate range of the spatial confinement
�2��p�6�, the effect of the magnetic confinement of elec-
trons combines with the effect of the spatial confinement of

FIG. 1. Ground-state binding energy of a hydrogenic impurity in a parabolic
GaAs QWW as a function of the parabolic potential �p for various values of
the magnetic field.
electrons, and the effect of the magnetic confinement on the
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binding energy of the hydrogenic impurity becomes more
apparent with the decrease of the parabolic potentials. In the
weak spatial confinement range ��p�2�, the binding energy
of the hydrogenic impurity increases with the increasing
magnetic field and converges asymptotically to the corre-
sponding bulk value as the parabolic potential is further de-
creased. In the limit of weak confinement, the binding energy
of the ground state for �=0 approaches the bulk case result:
the Rydberg constant Ry.

In Fig. 2, the ground-state binding energy of a hydro-
genic impurity in a parabolic GaAs QWW is plotted as a
function of the magnetic field for various parabolic potentials
�p. Since the electron is strongly confined in a small volume
by the strong parabolic potential, in the case of strong spatial
confinement ��p
6�, the binding energy of the hydrogenic
impurity is totally insensitive to the magnetic field. As the
spatial confinement decreases, the binding energy of the hy-
drogenic impurity increases slowly firstly and then increases
linearly with the increasing magnetic field. This phenomenon
stems from the complicated interplay of the magnetic con-
finement and the spatial confinement of electrons. The spatial
confinement plays a more important role than the magnetic
confinement for diluted magnetic fields, which leads to the
complicated binding energies of the hydrogenic impurity. For
weak spatial confinement, it is clear that high magnetic fields
increase the binding energies of the hydrogenic impurity. In-
creasing magnetic field decreases the cyclotron radius of the
electron and increases the binding energy.

In Figs. 3 and 4 the energies and binding energies of the
ground state �solid curve� and the lowest excited state
�dashed curve� of a hydrogenic impurity in a parabolic GaAs
QWW are plotted as functions of the magnetic field for the
parabolic potentials of �p=0.3, 1, 2, and 3, respectively. The
energies of the ground state are lower than those of the low-
est excited state for certain parabolic potentials, while the
binding energies of the ground state are higher than those of
the lowest excited state for certain parabolic potentials. The
reason is that the average distance between the electron and

FIG. 2. Ground-state binding energy of a hydrogenic impurity in a parabolic
GaAs QWW as a function of the magnetic field for various values of the
parabolic potential.
the donor in the lowest excited state is greater than that in the
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ground state. From Fig. 3, we can see that the energy of the
hydrogenic impurity increases with the increasing magnetic
field and the energy levels of the hydrogenic impurity in two
states in different parabolic QWWs cross. The complex in-
terplay of the magnetic confinement and the spatial confine-
ment of electrons in QWWs leads to a rich structure of the
hydrogenic impurity energy spectrum. The effect of the mag-
netic field on the binding energy of the lowest excited state is
similar to that of the ground state.

In Fig. 5, we plot the ground-state binding energy of a
hydrogenic impurity in parabolic GaAs QWWs, parabolic
GaAs QWs,16 and parabolic GaAs QDs �Ref. 17� for various
parabolic potentials with �=0. We can determine the appli-
cability of 1D effective interaction potential. The ground-
state binding energies in our results are larger than those in
parabolic GaAs QWs and smaller than those in parabolic
GaAs QDs. It is well known that the reduction of dimension-

FIG. 3. The energies of the ground state �solid curve� and the lowest excited
state �dashed curve� of a hydrogenic impurity in a parabolic GaAs QWW as
functions of the magnetic field for parabolic potentials of �p=0.3, 1, 2, and
3.

FIG. 4. The binding energies of the ground state �solid curve� and the lowest
excited state �dashed curve� of a hydrogenic impurity in a parabolic GaAs
QWW as a function of the magnetic field for parabolic potentials of �p
=0.3, 1, 2, and 3.
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ality increases the effective strength of the Coulomb interac-
tion. The binding energy of a hydrogenic impurity is in-
creased by the reduction of dimensionality.

Figure 6 shows the average distance between the
ground-state electron and the donor along the quantum wire
axis as a function of the parabolic potential �p for various
values of the magnetic field. The electron becomes more
localized with the increase of the parabolic potential. Figure
7 shows the distance as a function of the magnetic field for
various values of the parabolic potential �p. The magnetic
field shrinks the distance between the electron and the donor
in parabolic GaAs QWWs, and the distance becomes more
sensitive to the magnetic field with the decrease of the para-
bolic potential.

IV. CONCLUSIONS

In the presence of the magnetic field, the energies and
binding energies of the ground and lowest excited states of a

FIG. 5. Ground-state binding energy of a hydrogenic impurity in a parabolic
GaAs QWW ��, our results�, parabolic GaAs QW ��, Ref. 16�, and para-
bolic GaAs QD ��, Ref. 17� with various values of parabolic potential in a
magnetic field of �=0.

FIG. 6. The average distance between the ground-state electron and the
donor along the quantum wire as a function of the parabolic potential �p for

various values of the magnetic field.
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hydrogenic impurity in a parabolic GaAs QWW have been
calculated using the finite-difference method within the 1D
effective potential model. We have considered the spatial
confinement and the magnetic confinement of electrons and
the Coulomb interaction between electrons and donors. The
complex interplay of the spatial confinement and the mag-
netic confinement of electrons leads to the complicated mag-
netic field dependence of the binding energy of the hydro-
genic impurity in parabolic GaAs QWWs. The calculated
distance between the electron and the donor provides a clear
picture of the behavior of a hydrogenic impurity in a para-
bolic potential QWW. The calculation method provides a nu-

FIG. 7. The average distance between the ground-state electron and the
donor along the quantum wire as a function of the magnetic field for various
values of the parabolic potential �p.
merical solution for the parabolic QWW system in the pres-
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ence of a magnetic field. The theoretical model of the
parabolic potential QWW and the calculation method can be
extended to other low-dimensional quantum systems in the
presence of a magnetic field.
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