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We present the results of variational calculations of the binding energy of a neutral donor in a quantum well
sQWd in the presence of a magnetic field tilted relative to the QW plane. Assuming that the donor is located in
the center of the QW, we perform calculations for parameters of a rectangular CdTe quantum well with
CdMgTe barriers. We present the dependence of the binding energy of a neutral donor on the tilt angle and on
the magnitude of the applied magnetic field. As a key result, we show that measurement of the binding energy
of a donor at two angles of the magnetic field with respect to the quantum well plane can be used to
unambiguously determine the conduction band offset of the materials building up heterostructure.
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Much work has already been done on calculating the en-
ergies and wave functions of electronic states in semiconduc-
tor quantum wellssQW’sd in the presence of an applied mag-
netic field. Most of these theoretical studies have focused on
the binding energy of the neutral donor1–4 sD0d, charged
donor,1,5,6 neutral exciton,7–10 and charged exciton9–12 striond
states as a function of magnetic field. The vast majority of
these calculations treat the most straightforward case, where
the magnetic field is applied parallel to the direction of
growth of the QW. Experimental and theoretical results show
that in this geometry the binding energy of the above com-
plexes increases with increasing magnetic field.9,12 In spite of
considerable progress in this area, little attention has been
paid to the dependence of the binding energy on the tilt angle
of the field relative to the QW plane.13–15

The objective of the present work is to determine the de-
pendence of the binding energy of a neutral donor on the tilt
angleu between two limiting geometries, the first geometry
sdenoted below as case Id corresponding to the magnetic field

BW aligned along the growth axis of the QWsdesignated as the
z directiond; and the second limitsdenoted as case IId corre-
sponding to external magnetic field applied in the plane of
the QW. In our notation described below, in case I we define
the tilt angle asu=0° and in case II asu=90° ssee Fig. 1 for

detailsd.
It is well established that the binding energy of different

electronic complexes stemming from the Coulomb interac-
tion increases as the dimensionality of the quantum structure
decreases—i.e., as we progress from quasi-two- to quasi-
one- and eventually to quasi-zero-dimensional quantum
structures.16 An external magnetic field localizes the charged

particles in the plane perpendicular toBW in the form of its
cyclotron motion, while the particle can move freely in the
direction of the applied field, constituting in effect one-
dimensional localization.17 One should note that in this case
the density of states also has the character of a one-
dimensional system, manifesting itself as peaks at the Lan-
dau level positions. For an electron subjected simultaneously
to the potential of the QW and of an external magnetic field,
“total” localization of a particle is different in the two limit-
ing cases defined above. In case I, the combined action of
QW confinement and magnetic localization have different
directions, which then manifests itself as quasi-zero-
dimensional localization. In case II, the QW and the mag-
netic confinements have the same direction, so that the elec-
tron retains its quasi-one-dimensional character associated
with the magnetic confinement. This implies that the binding
energy of a donor should be larger in case I than in case II.
When the tilt angleu increases, we can then say that the
dimensionality of an electron is between quasi-zero and
quasi-one, and we expect the binding energy ofD0 to be a
monotonicfunction of the tilt angleu.

The Hamiltonian of a shallow donor embedded in a sym-
metric square quantum well is modeled by the Hamiltonian

H =
fpW − eAW srWdg2

2me
* + VQWszd −

e2

4pee0

1

urW − RW 0u
− mBge

*BWsW.

s1d

The first part of the Hamiltonian is the kinetic energy of a
delocalized conduction electronswhere e is the electron
charge andme

* is its effective massd in the presence of a tilted

magnetic fieldBW =B(sinsud ,0 ,cossud) lying in the XZ plane
ssee Fig. 1d. We have chosen an asymmetric gauge for vector

potentialAW srWd=B(0,x cossud−zsinsud ,0). For u=0° scase Id,

FIG. 1. Proposed experimental geometry. CdTe QW is grown in
the z direction: L is the QW width andVe is the QW height. The
donors are incorporated into the system by thed-doping technique
only in the center of the well. The edge of the conduction band is

sketched on the right-hand side. The magnetic fieldBW lies in theXZ

plane. Case I corresponds toBW =BeWz and case II corresponds toBW

=BeWx.
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the magnetic fieldBW is parallel to theOZ axis, and foru
=90° scase IId it lies in theXY planesi.e., in the plane of the
QWd ssee Fig. 1d. The profile of the potential energy of the
QW is described by the second term in Eq.s1d: VQWszd=0 if
uzu.L /2 andVQWszd=−Ve if uzu,L /2, whereL is the width
of the QW andVe is the height of its barrier. The energy
scale is chosen by defining the conduction band edge of the
barriers as zero. The third term in Eq.s1d is the Coulomb

energy of a shallow donor located at pointRW 0. We assumed
that the donor center is located at the center of the QW, so

we can setRW 0=0W without losing physical generality. The last
expression in Eq.s1d is the Zeeman Hamiltonian, in whichge

*

is the effectiveg factor of conduction electrons.
So far the problem of the Hamiltonian of a donor in a QW

has not been solved analyticallyseven the case of a free
electron in a QW in a tilted magnetic field remains analyti-
cally unsolved18–20d, so that in our work we have used a
variational approach. We propose the following form of the
trial wave function of a two-component spinor,

C± = f±srWd · x± = o
i=0

N1

o
j=0

N2

o
k=0

N3

Cijk
± fisaxdf jsaydfksazd · x±,

s2d

wherefi are one-dimensional harmonic oscillator functions
sGaussian functionsd andx± are spin states. Note that Gauss-
ian trial wave functions have been successfully used in Refs.
1 and 10 for calculating donor and trion states, respectively.
The nonlinear variational parametera sthe scaling param-
eterd and the linear variational parametersCijk

± were deter-
mined using the Ritz variational method. In Eq.s2d the num-
ber of the basis functions has to be finite, and in this
connection we have checked thatN1=N2=N3=10 are suffi-
cient to ensure that the results do not depend on the cutoff of
the number of basis functions.

The orbital part of the total wave function of a donorC±,
Eq. s2d, is denoted byf±srWd , x± being the spin part. It is easy
to show by direct substitution that the two spinorsx†

=(cossu /2d ,sinsu /2d) and x†=(−sinsu /2d ,cossu /2d) solve
the Schrödinger equation that contains the Hamiltonian given
by Eq. s1d. Then the orbital partf±srWd of the spinor function
C± satisfies the following eigenequation:

HfpW − eAW srWdg2

2me
* + VQWszd −

e2

4pee0

1

urWu
7

1

2
mBge

*BJ f±srWd

= E± f±srWd. s3d

Additionally, as seen from the above equation,f±srWd has
the same functional form for both spin configurationsx±.

In order to demonstrate the tilt angle dependence of the
binding energy ofD0, we performed calculations for two
barrier heights,Ve=200 meV and 20 meV. These two
choices of barrier heights correspond to a 19% and 2% con-
tent of manganese in the barriers, respectively. Additionally,
for eachVe we choseL=100 and 300 Å andB=0, 1, 4, 9,
and 16 T, corresponding to magnetic lengthslc=`, 256,
130, 85, and 65 Å. Finally, results forL=50 Å QW and
different barrier heights are presented. In calculations we

used:me
* =0.1 of free electron mass for both the QW and the

barrier, and dielectric constante=10.4, which give the char-
acteristic Coulomb scales: Ry* =12.6 meV andaB

* =55 Å.
The donor binding energyEb is obtained as a difference

between the ground-state energies of the free electron and of
the donorsE±d with the same electron spin configuration.17

This definition implies that the Zeeman Hamiltonian does
not contribute to the binding energy ofD0.

We will be interested mainly in the variation ofEb with
the inclinationu and the magnitude of the magnetic field,
Eb=Ebsu ,Bd. It must be noted thatEb also depends on other
parameters—e.g., the barrier height—but these are kept con-
stant in each variational process.

In Fig. 2 we present the binding energy of the donor
ground state as a function of tilt angleu for Ve=200 meV at
different magnetic fields, as well as for two different QW
widths L=100 and 300 Å. First we discuss theL=100 Å
case, represented by solid lines in Fig. 2. AtB=0 T, the
binding energy of the neutral donor is about 1.7 Ry*
=21.4 meV and is increased by 70% compared to the bind-
ing energy of a donor in three dimensionssin this caseL
,2aBd. Next, forBÞ0 T, the binding energy is amonotoni-
cally decreasing function of the tilt angle: at a given mag-
netic fieldB=const, the binding energy is highest foru=0°
and decreases foru.0°. Inspection of Fig. 2 shows that for
u=0° the differenceEbsB=16Td−EbsB=0Td is 0.6 Ry*
=8 meV, while foru=90° it is only 0.05 Ry* =0.6 meVssee
also Fig. 3d. These totaly different values in the two limiting
field orientationsscases I and IId are related to the fact that
the QW width is smaller thansor comparable tod the charac-
teristic magnetic lengthlc at fields up to 16 T. If the mag-
netic field is applied along thez direction su=0°d, the elec-
tron is localized in x and y directions by the external
magnetic field, as discussed at the outsetsthe bigger the field,
the larger the magnetic localizationd. When this effect is
combined with QW confinement, the electron becomes local-
ized in all three directions. As the magnetic field is changing
from 0 T to 16 T, the initially quasi-two-dimensional electron
is becoming increasingly quasi-zero-dimensional. We thus

FIG. 2. Donor binding energy Eb in a rectangular
CdTe/Cd0.81Mg0.19Te QW as a function of tilt angleu of external
magnetic fieldB for different magnetic field valuessdifferent sym-
bolsd, calculated for two QW widthsL. Solid lines correspond to
L=100 Å and dashed lines toL=300 Å. Lines without symbols
correspond toB=0 T.
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expect that the binding energy will increase substantially in
this situation. On the other hand, if the magnetic field is
aligned in thex direction, magnetic localization involves the
y and z directions with characteristic lengthslc. Since the
QW also confines the electron motion in thez direction and
does not restrict its motion alongx, the combined effects of
magnetic and of QW localization now result in a one-
dimensional motion. As seen in Fig. 2, even up toB=16 T
the magnetic localization now has practically no effect, and
binding energy practically does not depend onB.

In contrast withL=100 Å, for a wider QWsL=300 Åd
the changes in binding energy produced by the magnetic
field are quite visible atu=90°, as seen in Fig. 2. For such a
wide QW, the change ofEb asB increases from 0 to 16 T is
0.3 Ry* =4 meV. NowL=300 Å and the binding energy is
only 1.2 Ry* swithout a magnetic fieldd so that the system is
nearly three dimensionalsaB!Ld, in contrast to the two-
dimensional character obtained forL=100 Å. Thus for all
values ofu the magnetic field effectively localizes the par-
ticle in both dimensions perpendicular to the direction of the
applied field. This explains why the curves forEb are much
more flat for L=300 Å than forL=100 Å, particularly at
higher values ofB. We expect that, when we increase the
QW width even more,Eb should become even more flat,
eventually approaching the three-dimensional limit, where it
ceases to depend on the tilt angle even for largeB. Our
calculations clearly confirm this trend.

In Fig. 3 we show the dependence of the donor binding
energy Eb for a CdTe/Cd0.81Mg0.19Te quantum well as a
function of the magnetic fieldB, for five different values of
the tilt angleu. As before we have chosen the magnetic field
range to be 0øBø16 T, which is the most widely acces-
sible field range in photoluminescencesPLd spectroscopy.
For case I, the increase in magnetic field has a clearly visible
impact onEbsBd. In contrast,Eb is practically constant for
case II. While the series of curves presented in Fig. 3 seems
to be linear, our results for the binding energy have, in fact,
a square-root dependence on the external magnetic field.
Such a dependence is in accordance with the results obtained
in Ref. 1. The apparent linearity of the curves is due to the
fact that at the highest field we considersB=16 Td the ratio

g;"vc/2Ry* is only 0.74. TheEbsBd~ÎB scaling behavior
becomes apparent for a much wider range of magnetic fields:
0øgø5, and note thatg=5 corresponds toB=108 T.

In Fig. 4 we present results forVe=20 meV. Comparing
Figs. 2 and 4, we see that the binding energy of the donor is
larger for Ve=200 meV than forVe=20 meV. This well-
known fact originates from the larger quantum confinement
of the deeper QW. The characteristics of the results in Fig. 4
are similar to those in Fig. 2, including themonotonicbehav-
ior of Eb. Comparing the curves in Fig. 2 with corresponding
curves in Fig. 4, we see that the latter clearly are more flat.
This again confirms that in the three-dimensional case; i.e.,
as Ve→0, we should have nou dependencesstraight hori-
zontal linesd.

In Fig. 5 we show the differenceEdif f between the binding
energy of a donor atu=0° and its binding energy atu=90°
as a function of the height of the barrierVe—i.e., Edif f
=Esu=0°d−Esu=90°d. At B=7 T andVe.50 meV, the dif-
ferenceEdif f is practically constant and relatively smallsonly
3.7 meVd, but at B=16 T it does not saturate untilVe
<75 meV and its value is twice as high—i.e., 7.5 meV. This

FIG. 3. Donor binding energyEb in a CdTe/Cd0.81Mg0.19Te
QW sL=100 Åd as a function of a magnetic fieldB for u=0° scase
Id and 30°, 45°, 60°, and 90°scase IId. In case II, the binding energy
is practically independent of the magnetic fieldB sB,16 Td.

FIG. 4. Donor binding energy Eb in a rectangular
CdTe/Cd0.98Mg0.02Te QW as a function of tilt angleu of external
magnetic fieldB for different magnetic field valuessdifferent sym-
bolsd, calculated for two QW widthsL. Solid lines correspond to
L=100 Å and dashed lines toL=300 Å. Lines without symbols
correspond toB=0 T.

FIG. 5. DifferenceEdif f of the binding energy of a donor foru
=0 andu=90° in a QW withL=50 Å as a function of barrier height
Ve. Solid symbols correspond toB=7 T and open symbols toB
=16 T.
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feature can be utilized as a tool for determining the conduc-
tion band offset, at least in QW’s with moderate barrier
heights.21 Note that the bigger the magnetic field, the larger
the offset which can be measured using this method.

In Ref. 15, Fig. 6, the binding energy of the donor as a
function of tilt angle is a nonmonotonic function showing a
maximum atu=45°, in contrast to the monotonic behavior
reported here. In our opinion this is related to the approach
employed by the authors of Ref. 15, in which a real QW is
transformed into two QW’s oriented at right angles to one
another. In Ref. 13 the same group, using the same approxi-
mation, calculated the exciton binding energy as a function
of tilt angle ssee Fig. 7 in Ref. 13d. Unfortunately, the ap-
proach used in the latter reference does not provide the re-
sults for the range ofu between 0° and 15° and between 75°
and 90°, which appears to be an artifact of the technique
used in Refs. 13 and 15.

We have shown the results of variational calculations of
the binding energy of a neutral donor in a rectangular QW as
a function of the angle of an external magnetic field tilted
with respect to the growth direction of the QW. For a given
magnetic field, the largest binding energy is found to corre-

spond to the case when the magnetic field is perpendicular to
the plane of the QW. We find that the binding energy ofD0 is
a monotonic function of the tilt angleu, decreasing with
increasing tilt angle, in contrast with earlier calculations re-
ported in Refs. 13 and 15. Our results reduce to the three-
dimensional limit when either the QW width increases or the
barrier height decreases, providing a “reality check” of the
method used. We have shown that for the CdTe/Cd1−xMgxTe
quantum wellsx,0.1d, the conduction band offset can be
determined by measuring the binding energy of the neutral
donor at two perpendicular directions of the applied mag-
netic field,u=0 and 90°. To our knowledge this technique of
determining conduction band offsets has not been previously
recognized.
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