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Abstract 

A theoretical model for the transmission of a periodic signal added to a noise through a static nonlinearity is considered. 
Expressions ate derived for the gains experienced by the signal, the noise and the signal-to-noise ratio in the input- 
output nonlinear transmission. The gains am obtained in the presence of a periodic input, a noise distribution and a static 
nonlinearity, all three being arbitrary. These gains are studied as measures of the phenomenon of stochastic resonance 
whereby the transmission of the periodic signal can be improved by means of noise addition. As the noise level is raised, 
resonant evolutions for the signal and signaMo-noise gains or ~ti~on~t evolutions for the noise gain, are ~~~~~. At 
the same time, conditions are exhibited where the signal-to-noise gain is larger than unity, demonstrating several realizations 
of a signal-to-noise ratio larger at the output than at the input in stochastic resonance. @ 1997 Elsevier Science B.V. 

PACS: OUO.+j; 02.50.-r; 07.5O.Q~; 47.2O.K~ 
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1. IntxWiuC!tion 

Stochastic resonance is a nonlinear phenomenon 
whose relevance is gradually extending to a broad 
class of systems [ 1,2], In general terms, stochastic 
resonance can be defined as an enhancement of the 
transmission of a coherent signal by a nonlinear sys- 
tem, that is obtained by means of noise addition to 
the system. This paradoxical effect has now been re- 
ported in a large variety of nonlinear systems including 
lasers [ 3,43 electronic devices [ 56 J , neurons f 7-91. 

So far, the focus has essentially been placed on the 
transmission of a periodic signal, although stochas- 
tic resonance has recently been extended to aperiodic 
signals [ lO-121. Various measures can be used for 
the effkacy of the tmnsmission process receiving en- 
hancement from the noise. The measures most fre- 

quently employed for periodic stochastic resonance 
are an output signal-to-noise ratio [ 13- 151, or the am- 
plitude of the coherent component in the noisy out- 
put [ 13,16,15]. The possibility of increasing the value 
of these measures when noise is added is taken as the 
signature of stochastic resonance. Such an outcome 
signifies that the detectability of the coherent com- 
ponent in the output signal-plus-noise mixture can be 
improved by noise addition at the input. Yet, to further 
assess the potentialities of stochastic resonance leads 
to the examination of a ~~l~n~ question: Is it 
possible to have the detectability of the coherent com- 
ponent in the output signal-plus-noise mixture (shown 
to be improvable by noise addition at the input) ex- 
ceed the detectability of the coherent component in 
the input signal-plus-noise mixture? With the conven- 
tional signal-to-noise ratio (SMR) as the measure of 
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efficacy, this translates into examining the possibility 
of a larger SNR at the output than at the input of the 
stochastic resonator. 

This important issue was touched in Refs. [ 17-191 
to result in no positive answer. In Refs. [ 20,2 1 ] proofs 
were given that, in the limit of a small coherent signal 
with Gaussian noise, the output SNR cannot exceed 
that at the input. By circumventing the small-signal 
limit, Ref. [22] manages to exhibit a stochastic res- 
onator with a SNR larger at the output than at the in- 
put. The report in Ref. [ 221 is based on a numerical 
simulation of a level-crossing detector driven by a pe- 
riodic spike train. 

In the present work, we use a recently proposed the- 
ory that describes stochastic resonance in static non- 
linear systems [ 231. With this theory, we derive input- 
output gains for the signal, the noise and the signal- 
to-noise ratio in the nonlinear transmission. We study 
the evolutions of these gains with the noise level as 
measures for stochastic resonance, and focus on con- 
ditions allowing a SNR gain larger than unity. 

2. Theoretical model 

In this section, we briefly review the core of the 
theory of Ref. [23] and use it to derive expressions 
for different input-output gains characterizing the 
stochastic resonators we shall consider in the next 
sections. 

s(t) is a coherent periodic signal with the period T,. 
v(t) is a stationary white noise with the probability 
density function fV (u) and the statistical distribution 
function FV (u) = s!, f, (u’) du’. These two signals 
form the inputs to a static nonlinear system producing 
the output 

Y(t) = g[s(t> + q(t)], (1) 

where g is a function operating on real numbers. 
The coherent part in the output signal y ( t) shows up 

in the output power spectral density as spectral lines 
at integer multiples of the coherent frequency l/T,. 
The power contained in the coherent spectral line at 
frequency n/T8 is given by IF,, 12, where y,, is the order 
n Fourier coefficient of the T,-periodic nonstationary 
output mean E[y(t)], 

(2) 

where, for a static nonlinearity g(u), the mean 
E[y(t)] at a fixed time t is computable as 

+OO 

E[Y(Ol = J g(u)f,[u - s(t)1 du. 
--oo 

(3) 

The incoherent statistical fluctuations in the output 
signal y(t) , which control the continuous noise back- 
ground in the output power spectral density, are mea- 
sured by the stationary output variance 

w(y) = + J Wy(Ol dt, (4) 
s 

0 

where the nonstationary variance var [ y( t) ] at a fixed 
time t is computable as 

+a, 

vdy(t)l = 
I 

g2<w?@ - s(t)1 du 
-02 

2 

- g(u).f,[u - s(r) 1 du . (5) 

In the same way, the coherent part at frequency n/T8 in 
the noisy input s(t) + q(t), is measured by the spec- 
tral line at frequency n/Ts in the input power spectral 
density, which contains the coherent power l&l2 with 
the order n Fourier coefficient of s(c) , 

,S,, = k/s(t)exp(-ingt) dt. (6) 

The ratio of the amplitudes of the output and input co- 
herent spectral lines at frequency n/T,, which defines 
the input-output gain GG, for the coherent component 
at frequency n/T,, follows as 

Gsig F = -. 0 ITll 
s IS”1 

(7) 

The incoherent statistical fluctuations in the input 
s(t) + v(t), which control the continuous noise 
background in the input power spectral density, are 
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measured by the variance ai of the input white noise 
v(t) . We define an input-output gain Gnoi for the 
amplitude of the noise fluctuations as 

t/VMY) . 
a;l 

(8) 

The ratio of the output and input SNRs, which defines 
the input-output gain Gsm for the SNR, follows for 
the coherent component at frequency n/T,, as 

The input-output gains of Eqs. (7)-(g) can thus be 
explicitly computed, from Eqs. (2) -( 6). for any pe- 
riodic waveform s(t) added to any noise distribution 
f,(z~) and transmitted by any nonlin~ty g(g). In 
this model of nonlinear signal obsession, we shall 
now demonstrate the existence of conditions realiz- 
ing the double property of (i) a stochastic resonance 
effect characterized by the gains Gsis or Gs~n which 
increase, or the gain G,,i which decreases, when the 
input noise level is raised, and (ii) the obtaining of a 
gain Gsnn larger than unity. 

3. lkmmission of a pulse train 

For a first i~lus~~ion, we shall consider the case 
where tbe nonlinearity g(u) is a hard threshold with 
A, > 0: 

g(u) = 0 for u < 8, 

=A, for u > 8. ( 10) 

Application of Eq. (IO) into Eqs. (3) and (5) leads, 
respectively, to 

W’(t)1 = A,{1 - F,[@ - WI} 

and 

(11) 

var[y(t)l =A;F,[B - s(t)] (1 -F,[@- s(t)]}. 

(12) 

For the Y&-periodic signal s(t) we choose a train of 
square pulses of ~plitude A, > 0 and duration T, 

sf t) = A, fort E [O,T[, 

=o fort E [T,T,[, (13) 

whose Fourier coefficients S,, follow from E?q. (6) as 

S,, =A~~sin~(~*~) exp(-i-g) , (14) 

with the cardinal sine function sinc( u) = sin(u) /u, 
with such a simple s(t) the time integrations in 

EQs. (2), (4) can be explicitly performed to yield 

~n=Ay~~F?(B)-~~(B-A,)]sinc 
s 

(1% 

and 

(16) 
The input~utput gains of Eqs. (7)-(9) then follow 
as 

- Fq<e -A,)], (17) 

(B-A,)[l-F&B-A,)] 

and 

112 
zq(e)ri -F,(e)] 

I 
(18) 

+ 1-g ( > 
-1 

F,(e) f I- F,te)i I . (19) 
s 

To illustrate the evolutions of these gains, we con- 
sider the case where the input noise q(t) is zero-mean 
Gaussian with the distribution function 
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Fig. 1. Input-output gains as a function of the rms amplitude cr, of the input white noise v(t) chosen to be zero-mean Gaussian, with 
g(u) of E!Q_ ( 10) with B = 1 and A, = 1. The coherent input signal of Q. (13) is with T = 10-zTS and (a) A, = 0.6, (b) A, = 0.8, (c) 
A, = 0.9, (d) As = 0.95 and (e) As = 0.97.PanelAisthesignalgainG,~stkOmEq.(17)~dpanelBtfienoi~gainG~imEq.(18). 
For the case (a) in panels A and B, the set of discrete data points (open circles) results from a numerical simulation of the system. 
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Fig. 2. Input-ou~ut SNR gain Gsm from Eq. (19) as a function of the rms ~p~mde un of the input whb noise q(t) chosen to be 
zero-mean Gaussian, with g(u) of Eq. ( 10) with B = 1 and A, = 1. Panel A is Gsm corresponding to Fig. 1, with the coherent input 
signal of FQ. (13) with T = lo-*T, and (a) As = 0.6, (b) A, = 0.8, (c) A, = 0.9, (d) As = 0.95 and (e) A, = 0.97. Panel B is with 
A, = 0.95 and (a) T = lO?F,, (b) T = 5 x 10R3TS, (c) T = 2 x 10v3T, and (d) T = 10q3T,. For the case (a) in panel A, the set of 
discrete data points (open circles) results from a numerical simulation of the system. 

with the error function erf( u) = 2 $ exp( -&) du’ 
/fi. Figs. 1 and 2 represent the evolutions of the 
gains with the input noise rms amplitude a,, as pre- 
dicted by the theoretical analysis, for different val- 
ues of the parameters A, and T of the periodic input 
s(t). Numerical and experimental tests can be found 
in Refs. [23,24] for the theory on which we base the 
present calculations of the gains. In addition, Rigs. I 
and 2 also present results from a numerical simulation 
of the system, in which we have estimated the quan- 
tities E[ y( t) ] and var(y) that determine the gains, 
directly from a simulation of y(t) with a very small 
time step At < T. Figs. 1 and 2 show an excellent 

match between the theoretical and numerical results, 
since the theoretical analysis is established without 
approximations. 

The results of Fig. 1A clearly show a range where 
the signal gain Gtis increases as the input noise level 
a,, increases, up to an optimal noise level where Gds 
is maximized. Since it takes place at a constant input 
signal amplitude, the resonant evolution of Gds with 
ug is equivalent to a resonant evolution of the output 
signal amplitude with a,,. Further, the present model 
gives us the possibility to observe that the noise gain 
GnOi can undergo an “antiresonant” evolution, with a 
range where l;.oi can decrease as the input noise level 
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Wg. 3. Input-output gaias as a function of the rms amplitude a,, of the input white. noise v(t) chosen to be zero-mean uniform, with 
g(u) of Eq, (10) with ~9 = 1 and A, = 1. The coherent input signal of Fq. (13) is with T = 10-2TS and (a) A, = 0.9, (b) AS = 0.5 aad 
fc) As = 0.1. Panel A is the signal gain Gsis from Eq. (17), and panel 3 the noise gain G.o~ from Eq. (18). 

is raised, as visible in Fig. IB. We did not find it pos- 

sible, for the output noise level measured by d- 
from Eq. ( 16) to decrease as the input noise level a7 

increases. Yet, it is quite possible to have /- 
which increases more slowly than aV, and more and 
more slowly as aV increases. This translates into a gain 
Gnei which decreases as “II increases. We note that the 
absolute values of the gains Gnoi and G+ especially 
relative to 1, have no intrinsic meaning since these val- 
ues can be directly controlled by A, in Rqs. ( 18) and 
f 17). What matters here is the nonmonotonic evolu- 
tions of these gains with the input noise level. 

The evolutions of the gains Gnoi and Gsis combine, 
according to Rqs. (9) and ( 19), to yield a resonant 
evolution of the SNR gain C;SNR with the input noise 
rms amplitude, as visible in Fig. 2 in various condi- 
tions. What is also remarkable in Fig. 2 is the possibil- 
ity of obtaining a SNR gain larger than unity, proving 
the ability of the present stochastic resonator to de- 
liver a larger SNR at the output than at the input. As 
also observed in Ref. 1221, the SNR gain gets higher 
when the filling factor T/T, of the coherent input gets 
smaller (Fig. 2B). In order to obtain Gsm > 1, our 
resonator, as that of Ref. [ 221, operates in the large- 
signal regime where the signal amplitude A, is higher 
than the noise rms upside frII. This conforms with 
the proofs of Refs. [ 20,211 that, with Gaussian noise 
and in the small-signal regime, the SNR gain can 
never be made larger than 1. The large-signal regime 
is one way to circumvent the limitation of the proofs 
of Refs, [ 20,211. In the following, we show that aban- 

doning the Gaussianity of the noise is another way. 
The present model has the ability to describe the 

influence of the distribution of the input noise q(t) 
on the input-output gains. For illustration, Figs. 3 
and 4 show the gains when v(t) is a zero-mean uni- 
form noise. Complex influences of the parameters of 
the system are revealed on the gains. For instance, 
with the uniform noise Gsm increases as A, decreases 
(Fig. 4A), while with the Gaussian noise Gm in- 
creases with A, (Fig. 2A). The results of Fig. 4A(c) 
and Fig. 4B show the possibility of Gsm > 1 in the 
small-signal regime (A, sufficiently smaller than a;), 
when the noise ceases to be Gaussian. 

4. Ransmimion of a sine wave 

To show the possibility of a SNR gain Gmu larger 
than unity in the obsession of a sine wave, we con- 
sider the two-threshold nonlinearity with t9 > 0: 

g(u) = -1 for u < -0, 

=o for -e<‘u<b, 

= 1 for I( > 0. (21) 

Application of Eq. (21) into Eqs. (3) and (5) leads, 
respectively, to 

Ely(t)l = I-F,[B-s(t)] -&I-6--f(f)] (22) 

and 
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0 0.2 0.8 

Fig. 4. Input-output SNR gain Gsm from IQ. (19) as a function of the rms amplitude q of the input white noise q(t) chosen to be 
zero-mean uniform, with g(u) of Eq. (10) with B = 1 and AY = 1. Panel A is Gsm corresponding to FSg. 3, with the coherent input 
sienal of Ea. (131 with T = lo-*G and (a) AS = 0.9, (b) A s = 0.5 and (c) As = 0.1. PaneI B is with As = 0.2 and (a) T = 10v2TS, 
(;) 2’ = 5 x’ lb+,, (c) T = 2 x lo-%, -and (d) T = 10-3T,. 

v=[y(t)l = {I- &[@ - Wl}$[e - s(t)1 

+ (1 -q--e - s(t)f)F,[-e - s(f)) 

+2{1-F,[e-s(f)]}F,[-e-s(t)]. (23) 

With the sine wave s(t) = A,cos(Zlrt/T,), the 
Fourier coefficients S, of Eq. (6) reduce to Sk. = 
A,/2, and the time integrations in Eqs. (2), (4) 
have usually to be performed numerically for a given 
Fq (u) . The values of the input-output gains then fol- 
low from Eqs. (7)-( 9) and are represented in Figs. 5 
and 6. 

With a Gaussian q(t). in contrast to the case of the 
pulse train s(t) shown in Fig. 2, we did not find it 
possible, with a sinusoidal sf t) and g(u) of Eq. (21)) 
to observe a SNR gain Gs~s larger than unity. Yet, this 
became quite possible with a uniform I as shown 
by the results of Fig. 6. 

To have a concise view of the influence of the distri- 
bution of the noise q( t) on the input-output gains, it is 
interesting to consider for q ( t ) the family of centered 
~s~~tions obtained by passing a zero-mean unit- 
variance Gaussian noise t(t) through the transforma- 
tion 7j = A,, erf( fit/&) parameterized by A,, > 0 
and @> 0. This results in a noise v(r) with the prob- 
ability density function 

for-u El -A,,A,[, 

=o otherwise, (24) 

and the distribution function 

F,(U) =o foruf] -m-A,], 

= i{ l+erf[ierf-’ (-f--l} 
foruc] -A,,A,[, 

= I for u E [A,, +oo[. (25) 

Varying @ from 0 to +o3 allows us to implement a 
large variety of distributions for q(f). For /3 < 1, 
q(t) tends to a Gaussian noise with rms amplitude 
A&a. For j3 = 1, v(t) is a uniform noise over 
] - A,,A,[. For j3 >> 1, s(t) tends to concentrate 
around the two modes -A, and A,, and at the limit 
p = +oo, v(t) becomes a dichotomous noise with 
two discrete levels {-A,, Av}. 

As we mentioned, for j3 < 1, when q( t) is close 
to a Gaussian noise, the maximum SNR gain Gsm at 
the resonance remains below 1. But as /3 increases, 
the maximum Csm rapidly exceeds 1. As soon as 
j3 N 1, when q(t) is close to a uniform noise, max- 
imum Gsm’s well above 1 can be obtained, as visi- 
ble in Fig. 6A. As /3 is further increased above 1, the 
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Fip. 5. kkput-output gains as a function of the ems amplitude o;, of the input white noise q(t) chosen to be zero-mean u&&n, with 
g(u) of E!q. (21) and 6 = 1. The coherent input is the sinusoid s(t) = A,cos(2lrr/jr,) with (a) A, = 0.5, (b) AS = 0.3, (c) As = 0.2 
and (d) A, = 0.1, Panel A is the signal gain G&s from Eq. (7) and panel B the noise gain Gti from Eq. (8). 
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Fig. 6. cutout SNR gaia Gsm fium Eq. (9) as a function of the rms amptitude CT* of the iaput white noise q(t), with g(u) of 
4. (21) with B = 1 and a sinusoidal cohereot input s(r) = As cos(2lri/‘l;). Paael A is Gm corresponding to Fig. 5, with (a) A, = 0.5, 
(b) A* =0.3, (c) As = 0.2 and (d) A, = 0.1. Panel B is GsNR with As =O.landwhenr.~(t)belongstothefamilyofnoisesofEqs.(24), 
(25) with (a) @= 1 (uniform noise), (b) /3 = 2, (c) #I = 5, (d) /3 = 10 and (e) /3 = +oo (dichotomous noise). 

maximum Gm is raised well above 1, up to ,8 = +CQ 
where GSNR is maximized, as shown in Fig. 6B, for 
the present system of Eq. (21) with a sinusoidal in- 
put s(t) . For the case of the dichotomous noise (#3 = 
+oo) , similar results were reported in Ref. [ 231 show- 
ing a SNR gain larger than unity. 

5. -on 

The present study derives theoretical expressions for 
different input-output gains characterizing the trans- 
mission of a signal-plus-noise mixture by static non- 
linear&s. Complex dependence of these gains with 
the noise level are revealed, including resonant or an- 

tiresonant evolutions, establishing these gains as ap- 
propriate measures for the phenom~on of stochastic 
resonance. Special attention has been devoted to ex- 
hibiting conditions realizing the important property, 
very seldom reported for stochastic resonators, of a 
SNR gain Gsm larger than unity. 

The property of Gsm > I is here reported for 
the ~s~ssion of a periodic pulse train by a static 
nonlinearity. This is the same property that was ob- 
served in Ref. 1221 with a different stochastic res- 
onator. Ref. [ 22 ] operates with a level-crossing detec- 
tor, whose dynamics involves a stochastic triggering 
followed by a deterministic resetting under the form 
of a square pulse emitted at the output. This system 
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is easy to simulate, but the mixed character of its dy- 
namics makes its theoretical analysis difficult, and the 
report of Ref. [ 221 relies on simulation results. In con- 
trast, for the stochastic resonators considered here, we 
were able to develop a complete theoretical analysis. 

As in Ref. [ 221, we also found here that the SNR 
gain increases as the pulse duration T within a period 
T, (the filling factor) is reduced (see Fig. 2B). The 
study in Ref. [ 221, to obtain its results, imposes that 
the output pulses emitted by the level-crossing detector 
are of the same duration as the coherent input pulses. 
This, somehow, amounts to forcing, in an external a 
priori manner, known characteristics of the coherent 
input into the random output, what may play a part in 
the improvement reported in Ref. [22] for the SNR. 
In contrast, the stochastic resonators we consider here 
are free from such a priori tuning to some property of 
the coherent input. 

According to Ref. [ 221, the “spiky” nature of the 
coherent input is an essential ingredient to obtain an 
improvement of the SNR by a level-crossing detector, 
which is unable to improve the SNR of a sinusoidal 
input. In our study that deals with another type of 
static resonator, we were able to report SNR gains 
larger than unity in the transmission of a sinusoidal 
input, although not with a Gaussian noise in the case 
considered. 

The present results extend the class of systems 
and the conditions under which stochastic res- 
onators can realize SNR gains larger than unity. 
A unique feature is that these results are derived 
here in a general theoretical framework where 
the gains can be evaluated in the presence of a 
static nonlinearity, a periodic input and a noise 
distribution, all three being arbitrary. This pro- 
vides means for direct examination of the influ- 
ence of these parameters on the gains and to op- 
timize gain improvements for a complete class 
of stochastic resonators. Further, this framework 

is useful to progress in the assessment of the benefits 
of stochastic resonance for signal processing. 
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