Available online at www.sciencedirect.com

sc.ENcE@D.REW

PHYSICS LETTERS A

ELSEVIER Physics Letters A 321 (2004) 280290

www.elsevier.com/locate/pla

Suprathreshold stochastic resonance and signal-to-noise ratio
improvement in arrays of comparators

David Rousseau, Francois Chapeau-Blondeau

Laboratoire d’ Ingénierie des Systemes Automatisés (LISA), Université d’ Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France
Received 7 October 2003; received in revised form 23 November 2003; accepted 5 December 2003

Communicated by C.R. Doering

Abstract

We consider parallel arrays of threshold comparators similar to those modelling flash analog-to-digital converters, or digital
sonar arrays, or networks of sensory neurons. Such arrays are used here for the transmission of a noisy periodic input signal,
with a performance assessed by a signal-to-noise ratio in the frequency domain. We show that independent noises injected on the
comparators can improve the performance of the array, with a nonzero optimal amount of noise that maximizes the output signal-
to-noise ratio. This represents, for periodic signals, a hew instance of the recently introduced phenomenon of suprathreshold
stochastic resonance. We also study the capability of the arrays of comparators to realize an input—output enhancement of the
signal-to-noise ratio, and show the existence of conditions where the arrays act as signal-to-noise ratio amplifiers, with a gain
maximized by a nonzero level of the injected noises.

0 2004 Elsevier B.V. All rights reserved.

Keywords: Noise; Comparators; Sensors; Nonlinear arrays; Suprathreshold stochastic resonance

1. Introduction is by itself too small or ill-conditioned to elicit a
strong response from a nonlinear system. Injection of

Stochastic resonance (SR) can be described as Jhoise then, through a cooperative interaction, brings

nonlinear phenomenon by which the action of noise as_3|_stance to the small signal n eliciting a more
) . . efficient response from the nonlinear system, for
can improve the performance of a signal-processing . . .
. o . instance by overcoming a threshold or a potential
system [1,2]. Since its introduction some twenty

years ago, SR has gradually been shown feasible barrier. . .

' . ; : Very recently, an interesting new form of SR has
under several different forms, with various types been introduced under the name of suprathreshold SR
of systems, signals, and measures of performance P k

receiving improvement from the noise [3—11]. Most since it is not restricted to a small, subthreshold, or

occurrences of SR known todav involve a sianal which ill-conditioned signal [12—14]. It operates with signals
y 9 of arbitrary amplitude. Suprathreshold SR relies on

a parallel array of identical nonlinear devices. At
T, . the location of each device, an independent noise is
Corresponding author. L . .
E-mail address: chapeau@univ-angers.fr injected in the process. The result is to make each
(F. Chapeau-Blondeau). one of the identical devices elicit a distinct output in
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response to a same common input signal. When thethat this SNR is improvable by injection of noises in
individual outputs are collected or averaged over the the comparators of the array. These conditions of pe-
array to produce a global response, it turns out that riodic signal transmission represent the configuration
a net improvement can be obtained compared to thein which conventional (subthreshold) SR was origi-
response of a single device with no noise injected. nally observed, and where it has been the most ex-
Qualitatively, the benefit comes from the diversity tensively studied. Our present results therefore, estab-
induced by the injected noises, in the responses of lish the feasibility of the new suprathreshold SR in
the individual nonlinear devices over the array. This the original conditions of conventional SR. This con-
suprathreshold SR does not involve a small signal tributes to substantiate the link and parallelism be-
receiving assistance from the noise to elicit a more tween two forms of SR, or two mechanisms for im-
efficient response from a single nonlinear system. provement by noise, which at another level are specif-
As such, suprathreshold SR represents a specificallyically distinct. In addition, we study the capability of
distinct mechanism under which an improvement by the arrays of comparators to realize an input—output
noise can take place in signal processing. enhancement of the SNR, and show the existence of
Since its recent introduction in [12], suprathresh- conditions where the arrays act as SNR amplifiers.
old SR has been shown possible in various conditions.
Essentially, suprathreshold SR has been reported in
the transmission of random aperiodic signals, quan- 2. Transmission by an array of comparators
tified by Shannon mutual information [12,13,15], or
by input—output cross-correlation [16]. Suprathreshold  An input signalx (¢) is applied onto a parallel array
SR has also been applied to arrays of sensory neu-of N threshold comparators or one-bit quantizers, fol-
rons [17], to motion detectors [18], to cochlear im- lowing the setting of [12,15]. A noisg; (¢), indepen-
plants [19], or to signal estimation tasks [20]. The most dent ofx(¢), can be added te(¢) before quantization
simple systems that have been shown to give way to by quantizei. Quantizer, with thresholdd;, delivers
suprathreshold SR, and that have been exploited to in-the output
vestigate its properties, are parallel arrays of threshold
comparators. Such simple devices as these comparai(t) = I[x() +1:(t) —6;], i=1,2,....,N, (1)
tqrs can be useful to build Iarge-s_cale arrays very effi- where " (1) is the Heaviside function, i.el (1) = 1
cient in terms of resources and time for data process- ¢ , _ g and is zero otherwise. We will consider here
ing, storage, communication, and in terms of energy o+ then noisesn; (t) are white, mutually indepen-

supply, with possibly high density of integration in  jent and identically distributed with cumulative distri-
solid-state realizations. Such arrays of comparators p tion functionF, () and probability density function
also represent models of flash analog-to-digital con- f,(u) = dF, /du. The respons(t) of the array is ob-
verters and of digital sonar arrays [15]. Such arrays ta?ined by sﬁmming the outputs of all the comparators,
of threshold devices also mimic, in a crude way, the ,¢

nonlinear behavior that can be present in networks of

sensory neurons. These arrays are therefore specially N

appealing for devising novel strategies based on mul- ¥ ) = > . @
tisensor networks for nonlinear signal and information i=1

processing. In the present study, we consider the case where

In the present Letter, we extend the investigation the input signalx(¢) is formed by the signal-plus-
of the capabilities of arrays of comparators for noise- noise mixturex(¢) = s(t) + £(¢t), wheres() is a
enhanced transmission of information via suprathresh- deterministic signal with periody, and £(¢) is a
old SR. We demonstrate that these arrays enablestationary white noise, independent of beth) and
suprathreshold SR in the transmission of periodic de- then; (¢), and with probability density functioff («).
terministic signals also. We quantify the effect by a The performance of the array for the transmission
signal-to-noise ratio (SNR) defined in the frequency of the periodic input(z) can be assessed by the output
domain from the output of the array, and we show signal-to-noise ratio (SNR) as used for conventional
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stochastic resonance systems [1]. Due to the presence

of the Ts-periodic inputs(¢), the output’ (¢) is a signal
with a power spectral density formed [21] by spectral
lines at integer multiples of /IT; emerging out of

a broadband continuous noise background. The SNR

Rout(m/ Ty) for the harmonien / T; at the output of the
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+00

/ CN[1-Fy0 -]

—00

PlY(t)=n}=

x Fp(0 — x)N_"fg (x — s(t)) dx.
(7)

According to properties of the binomial distribution

array, is defined as the power contained in the coherent[zz] expectation B ()] = 3V o1 PHY (1) = n} fol-
H n=

spectral line ain/ T, divided by the power contained
in the noise background in a small frequency bagi
aroundm/ T;. According to the theory of [21], which
deals with arbitrary static nonlinearities, this SNR
Rout(m/ Ts) at the output of the array, is expressable
as

(ELY (1)) exp(—im2nt/ Ty)) |2

m
RO“‘(E) - (variY 1)))AtAB ®)
In Eqg. (3), atime average is defined as
Ty
(...):Tis/...dt’ (4)

0

E[Y ()] and valY (¢)] represent, respectively, the ex-
pectation and the variance of the outpit) at a fixed
time ¢; and At is the time resolution of the measure-
ment (i.e., the signal sampling period in a discrete
time implementation), throughout this study we take
AtAB =103,

At time ¢, for a fixed given valuex of the in-
put signalx(¢), we have, according to Eq. (1), the
conditional probability Pfy; (r) = O|x} which is also
Pr{x + n; (t) < 6;}, this amounting to

Pryi(t) = 0lx} = F,(0; — x). ©)

In the same way, we have Pf(t) = 1jx} =1 —
Fy(6; —x).

We assume for the present time, as done in [13,16],
that all the thresholdsg; share the same val#e =6
for all i. The conditional probability RY (1) = n|x}
then follows, according to the binomial distribution
[22], as
Pr{Y(t) = n|x}

=CN[1-F,0 —x)]"F6 — )N, (6)

where C,ﬁ" is the binomial coefficient. Since(r) =
s(t) + &(1), the probability density for the value is
fe(x —s(1)). We therefore obtain the probability

lows as
+00
E[v] = f N[1-F,® —x)]fi(x —s(®)) dx,

(8)
and the expectation[B (1)2] = Y n? Pr{Y () = n}
as
+00

E[Y (2] = / (N[l— Fy (0 — x)]Fy (0 — x)

+ N2[1— Fy(6 — x)]z)

X fe (x — s(t)) dx. 9)

The variance required in Eq. (3) is V&r)] =
E[Y (1)?] — E[Y(r)]?. Thanks to Egs. (8) and (9),
the SNR of Eq. (3) at the output of the array is then
obtainable, possibly through numerical integration, in
broad conditions concerning the noisg$t) and the
input signalx () = s(t) + £(¢).

For illustration of the possibility of a suprathresh-
old SR in the output SNR, we consider the case where
s(t) =coq2rt/T,) andé(¢) is a zero-mean noise with
rms amplituder; . Fig. 1 displays evolutions of the re-
sulting output SNRRoui(1/ Ty) of Eq. (3), as a func-
tion of the rms amplitude, of the threshold noises
n; (1), in some typical conditions.

The results of Fig. 1 reveal that the character-
istic behaviors that identify suprathreshold SR, are
precisely exhibited by the evolutions of the SNR.
In Fig. 1, the periodic input signad(z) is always
suprathreshold, with an amplitude of oscillation larger
than the threshold. At N = 1, with a single com-
parator, addition of the threshold noige(z) always
degrades the output SNRoui(1/ 7). This is because
the inputs(¢) being suprathreshold, is by itself strong
enough to overcome the threshold of a single compara-
tor and to impose synchronous transitions to its output
(apart from the perturbation k§(1)); s () needs no as-
sistance for this from the threshold noiggr) which
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Fig. 1. Output SNRRout(1/ Ts) of Eq. (3), as a function of the rms amplitudg of the threshold noises (1) chosen zero-mean Gaussian. The
periodic input iss () = cog2r ¢/ Ty) buried in a zero-mean Gaussian najge) with rms amplitudese = 1. All thresholds in the array are set
to 6 =0 (panel (a))p = 0.5 (panel (b)).

is always felt as a nuisance spoiling the synchronous and
output transitions. FoN > 1, with no added noises

n;i (t) on the thresholds, all the comparators switch in 2
unison and the array acts just like a single one-bit 12() = /[1— Fp@ = 0] fe(x —s®)dx.  (12)
quantizer. It is when the threshold noises:) are —o0

added that the comparator outpugsstart to behave
differently for differenti. The outcome is to give ac-
cess to a richer representation of the suprathreshold
input s(7), by the outputs of the comparators which
somehow are able collectively to extract more infor-
mation from the input, thanks to the diversity allowed
by the noises;; (t). This is conveyed in Fig. 1, by
an output SNRRut(1/ T5) which increases when the
level o,, of the threshold noises; () grows, up to

an optimal nonzera, where Rout(1/Ty) is maxi-
mized. For increasingv, the efficiency of the array
and the maximum output SNR also increase. A dis-
tinguishing feature of the present theoretical treatment
of suprathreshold SR, is that it makes possible an ex-
plicit computation of the asymptotic behavior in large
arrays. At largeV, Egs. (8) and (9) allow us to deduce
that the evolution of the output SNR is given by

+00

The asymptotic casl¥ — oo is also shown in the con-
ditions of Fig. 1. It fixes the most efficient behavior, in
terms of output SNR, that can be achieved by large ar-
rays.

Comparingto previous forms of suprathreshold SR,
with other types of input signals associated to other
measures of performance, it is remarkable that the
evolutions of the output SNR depicted in Fig. 1 are
quite reminiscent of those, for instance, of the Shan-
non information in [12,13,15] or of the Fisher in-
formation in [20]. These observations tend to prove
that suprathreshold SR, much like conventional (sub-
threshold) SR (although the mechanism is different), is
a general nonlinear phenomenon which can occur and
be quantified in many different ways. It expresses that
an array of nonlinear devices, in charge of the trans-
mission of a suprathreshold signal, will be more effi-

m [(I1(t) exp(—im2mt) Ty))|? cient if the devices of the array are allowed to respond
ROUt(TS) N oo (I(t) — I2(1)) At AB in a nonuniform way, thanks to injection of indepen-
1 (10) dent noises on the devices, with an efficiency which
with the integrals can be a priori assessed via different measures of per-
formance.
+00 A significant difference, though, of the present

L) = / [1_ F,(6 — x)]fs (x — s(z))dx, (11) form of suprathreshold SR compared to those of [12,
13,16], is that here the parallel array operates on a

—00
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62 transmission by the array of a single random input
x(t) (with no input noise), essentially assessed the
5l suprathreshold SR by means of the Shannon mutual
information. Yet, in addition, [13] also defined an out-
a4l A put SNR adapted to the case of a random input, and
< it was shown in [13] that this SNR does not display
ZH suprathreshold SR. Although the definition of the SNR
*g is different in [13] and here foRqt, the outcome is
*g ol similar: no suprathreshold SR occurs in absence of the

input noise&(r). This outcome is somehow natural.
In absence of input noise, the input SNR is infinite;
and with no threshold noises, the output SNR is also
(already) infinite, because the input is suprathreshold.
. . . ) : . s s . There is therefore no improvement to be expected on
0 01 02 03 04 05 ?.-te d0-7 08 09 1 the output SNR, when the threshold noises are added.
NOISE rmS amplitude oy It is only when the output SNR is not at its maximum
Fig. 2. Output SNRRou(1/Ty) of Eq. (3), as a function of the ~ With no threshold noises, because of the presence of
rms amplitudeo;, of the threshold noises; (1) chosen zero-mean  a@n input noise, that an improvement of the output SNR
Gaussian. The periodic input ist) = cos(2rt/Ty) buried in a can be envisaged. This is precisely such an improve-
zero-mean Gaussian noisé) with rms amplitude varying from  ment that the injection of threshold noises in the array
o¢ =1 down toog =0. All thresholds are set6=0inanamay 4 achieve, as we reveal here. This present form of
of N = 15 comparators. ' . . . .
suprathreshold SR in arrays is operative for a noisy
periodic input.
noisy input signals(z) + &£(t) = x(¢t) where it is the With a noisy input, when the thresholdsin the
deterministic componentr) alone whichis the signal  array share a common valde it is in general when
of interest to be recovered in the processing. This is 6 is located at the mean value of the input) that
the situation, often met in practice, of a noisy input the performance of the array is at its best. This is
signal observed from the environment, which has then what is observed in Fig. 1(a) with = 0, although
to be processed by some device, here the parallelFig. 1(b) with6 = 0.5 shows that the suprathreshold
array of comparators. By contrast, in the previous SR is preserved whehis not at the mean of the input,
forms of suprathreshold SR of [12,13,16], a random yet with a slightly smaller efficacy in the region of
input signal x(¢) is alone the signal of interest to the maximum output SNR. This optimal value at the
be recovered, and there is no input noise similar mean of the input for a common threshealdis also
to £(¢). For a comparison purpose, we show in Fig. 2 found in previous instances of suprathreshold SR [12,
the behavior of the output SNRqt, when the rms 13,15,16]. We shall now examine the case where the
amplitudeos of the input noisé () goes to zero. This  threshold®); can be separately adjusted.
is the case where our input noisg) vanishes. Fig. 2
shows that the nonmonotonic behavioidy:, which
was the mark here of the suprathreshold SR, tends to
disappear agz — 0. Wheno; = 0, the input noise
no longer exists, and the output SN&,,: comes to

3. Distribution of thresholds

experience a monotonic degradation as the leyealf The case where the thresholilscan be separately
the threshold noises increases: the suprathreshold SRadjusted corresponds a priori to a more efficient
is suppressed. configuration of the array oV comparators. This

The results of Fig. 2 tend to suggest that the pres- is what is done, for instance, in flash analog-to-
ence of the input nois&(z) is an essential ingredient  digital converters. When the thresholds i = 1 to
for the suprathreshold SR effect in the output SNR. N, no longer share the same valigthe conditional
As we already mentioned, the study of [13], for the probability P{Y () = n|x} of Eq. (6) has to be
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Fig. 3. Output SNRRout(1/ 7y) of Eq. (3), as a function of the rms amplituag of the threshold noises (1) chosen zero-mean Gaussian. The
threshold®; are uniformly distributed over—1, 1] according to Eq. (15), far=1to N = 7. The periodic input is(¢) = C + Acoq2rt/T)
buried in a zero-mean Gaussian najge with rms amplitudesg = 1, with C =0 (panel (a))A = 1 (panel (b)).

computed as

Pr{Y(t) =n|x}

N
=Y [T Fy — 0] Fy 6 — )™, (13)

(n) i=1

where} ) stands for the sum over the configurations
accessible to th& comparators for which the number
of y; equal to 1 is exactly:, among the 2 distinct
configurations accessible to tthecomparators. After
this replacement of Eq. (6) by Eq. (13) is done, the
probability P{Y (r) = n} follows in the same way as

+00

PﬂYO):n}z‘/FﬂYU):nM}&(x—sO»dL
—0oQ
(14)

Knowledge of P{Y (t) = n} from Eq. (14) allows the
calculation of EY (r)] and HY (r)2], providing access
to the SNR of Eq. (3).

To proceed, some criterion has to be introduced
to specify the distribution of the thresholds. If
an optimal distribution is sought for the thresholds,
usually this distribution will be specific to the given
criterion, and it will depend upon the distribution of
the amplitudes taken by both the input signal and
the input noise, and upon the si2e of the array. In
definite conditions, this optimization problem may be

over which the input signai(¢) is expected to vary,
provided this interval can be known. For instance, if
this interval is taken ag—1, 1], the resulting uniform
distribution of theN thresholds is

0 1+ 2
i=—-1+4+1 Nil
Fors(z) uniformly distributed over its interval of vari-
ation, and no input noisé(¢), the distribution of
Eq. (15) maximizes the entropy of the outputs, which
guarantees an efficient representation, as discussed in
[15,23]. It is also the simple choice that is imple-
mented by flash analog-to-digital converters.

We select this simple distribution of Eq. (15), to il-
lustrate that a suprathreshold SR is still possible with
distributed thresholds, in definite conditions. We con-
sider in Fig. 3, the transmission by the array, of a sine
waves (1) = C + Acog2rt/Ty) buried in a zero-mean
Gaussian input noisg(z). The values of the amplitude
A and offsetC determine how the input(z) is seen by
the array of thresholdg; uniformly distributed over
[—1, 1]. We chose a numbe¥ = 7 of thresholds ac-
cording to Eg. (15), this especially yieldirgg = 0.
Fig. 3 shows various evolutions of the SNR at the out-
put of the array, for different values of the constants
A andC. For the values ofA andC tested in Fig. 3,
the periodic inpus (¢) is always suprathreshold, in the
sense that the time variationssgf) take place on both

i=1,2... N. (15)

uneasy to solve. A reasonable choice for the thresholdssides of at least one threshadg, meaning thak (¢)

6; is a uniform distribution covering the interval

over one periodly is always capable by itself to in-
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duce transitions in the output(s). WhenA =1 and 1'4_

C =0, all the variations of the periodic inpsr) ex- o

actly take place in the intervg1, 1]. In such condi- = |

tions the threshold noiseg(¢) are always detrimen- f’)_, 1t

tal, as expressed by the monotonic decay of the output 3+

SNR Rout(1/Ty) in Fig. 3, aso,, grows. By contrast, E \
for largerA or C, the periodic input (¢) progressively o g
becomes less and less well centered in relation to the% [ 3T N63
array of thresholds, with excursions outside the inter- 50'5: _ s15 2 ~
val [—1, 1]. In such conditions, the threshold noises & | Nao “N=3

n; (¢) bring the possibility of some shift in the array of 3

threshold®;, broadening the region of effective trans- 01l N=1

mission, and this on average, tends to be beneficial to 0 05 : s 5 o5 3

the periodic inpuk(z). This is conveyed by an output

SNR Rout(1/Ty) in Fig. 3, which gradually departs,

with increasingA or C, from the monotonic decay, Fig. 4. Input-output SNR gaisnr(1/Ts) of Eq. (17), as a func-

to experience nonmonotonic evolutions as the level tion of the rms amplituder;, of the threshold noises; (1) cho-

o, of the threshold noises is increased. This is an in- ZE;eZ;fi‘:]'“;ejgrfz‘f;iafiéggiig‘;”;’g:ggpﬁtﬂﬁTﬂ?;’iﬁ;ﬁtﬁe

stance of suprathreshold SR, under the form of a noise- .

enhanced Sﬁ)\lR at the output of an array of distributed % =05. All thresholds In the array are setfto=0.

thresholds. When a suprathreshold signal to be trans- ) ) ) N )

mitted is not well positioned in relation to the array Mean Laplacian noise with probability density

of thresholds, addition of noise to the thresholds can 1 lu|

bring improvement in the efficacy of the transmission. f&(u) = exp(—\/é—). (18)
Gg«/z O¢

noise rms amplitude oy,

It can be observed in Fig. 4 that the suprathresh-
4. Input—output SNR gain old SR effect is also registered via the SNR gain
Gsnr(1/Ty) as it was via the SNRRqyt, with im-

So far, we have shown that the array of comparators provement ofGsnr(1/7;) with o, as soon a®v > 1.
can improve its output SNR thanks to noises injected This is natural since the input SNRi, of Eq. (16) is
onto the thresholds. Another distinct issue is to exam- unaffected by the threshold noisg$), therefore both
ine how the output SNR achieved by the array com- R, andGgsng vary in the same way with, . The in-
pares to the input SNR available prior to the operation teresting aspect of Fig. 4 is that it reveals the impor-
of the array. With the input signal-plus-noise mixture tant possibility of raising the SNR gai@snr(1/ Ts)
x(t) =s(t) + &(t), the input SNR for the periodic sig-  above unity. This especially occurs in Fig. 4 when the
nal s(z) buried in the white input noisé(z) with rms array has high efficacy at largé. This demonstrates
amplitudeog, is that the array of nonlinear devices can play the role
- (m> \(s(6) exp(—tm25t | Ty)) 12 of an SNR amplifier, in definite conditions. This pos-

n\ -

(16) sibility of an input—output amplification of the SNR

T UsZAtAB was previously shown to exist in conventional SR for
at the harmoniez/ ;. The input—output SNR gain in ~ subthreshold signals [24-26]. We prove here that it
the transmission by the array, defined as extends to suprathreshold SR for suprathreshold sig-

nals, and with an efficacy of amplification which in-
GSNR(K) — M (17) creases as the numb@r of comparators increases.
Ts Rin(m/Ty) We have observed here that this important property of

is then explicitly accessible through Egs. (3) and (16). Gsnr(1/7Ts) > 1 is not critically dependent upon the
An illustration of the evolution of the SNR gainis  distribution f,(«) of the array noisey; (r), provided
given in Fig. 4, when the input noisg¢) is a zero- a sufficient levelo, is applied. On the contrary, we
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Fig. 5. Input-output SNR gaitGgnr(1/Ts) of Eq. (17), as a
function of the rms amplituder, of the threshold noises; (1)
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Fig. 6. Same as in Fig. 4, except = 1.

chosen zero-mean Gaussian. The periodic input is the square wave

s(t) = sign(sin(2rt/ Ty)] buried in a zero-mean Gaussian najse
with rms amplitudeog = 1. All thresholds in the array are set to
6 =0.

have observed that the possibility GEnr(1/Ts) > 1
depends on the distributioft («) of the input noise
&(t). For a Gaussian input noisg(r), we did not
find it possible in the tested configurations, when
s(t) is a sine wave, to obtailrsnr(1/Ty) > 1; at
best, Gsnr(1/T;) tends to culminate at 1 wheN
becomes large. When(z) is a sine wave, we ob-
served that a gaittGsnr(1/Ts) larger than unity is
possible for densitieg: (1) with tails decaying more
slowly than the Gaussian, like the Laplacian density
of Fig. 4. When the periodic input(z) ceases to be
a sine wave, the possibility afsnr(1/Ts) > 1 with
a Gaussian input noisgr) can be recovered. An ex-
ample is given in Fig. 5, which shows the SNR gain
Gsnr(1/Ty) whens(t) is a square wave, half a pe-
riod at +1 and half a period at-1, expressable as
s(t) = signsin(2rt/T)], buried in a Gaussian input
noise&(t).

The evolutions of the SNR gaiwsnr(1/Ty) of

harmonicsm/T;. Because of the symmetry of the
square waves(r) used in Fig. 5, when the level,

of the threshold noises is varied, it can be verified
that the SNR gairGsnr(m/T;) defined by Eq. (17)

at harmonicm/T;, behaves in the same way as
Gsnr(1/Ty), the SNR gain at the fundamental 7.
This means that each frequency component of the
square-wave input(¢z) experiences the same type
of suprathreshold SR with SNR amplification in the
transmission by the array. A more global SNR could
have been defined, as done for instance in [26], to
collect all the energy contained in all the harmonics
m/ T, and this global SNR would also have shown the
suprathreshold SR with amplification in the way which
is quantified by Fig. 5.

Also, depending on the conditions, especially the
level o¢ of the input noise&(z), the input-output
SNR gainGsngr can already be above unity when
no threshold noises; (r) are added. Addition of the
noisesn; (r) then will bring further improvement to
the SNR gainGsnr. This possibility is illustrated in
Figs.6and 7.

Three distinct aspects here can be emphasized: the

Fig. 5 demonstrate the possibility of a suprathreshold possibility of an input—output SNR amplification; the

SR with amplificationGsnr(1/Ts) > 1, occurring
with Gaussian input noisé(t), in the transmission
of a T;-periodic square wave. It is to note that Fig. 5
shows the SNR gaiwsnr(1/Ty) at the fundamental
frequency YT, of the square wave(r). Yet, as
a square waves(r) also contains energy in higher

possibility, systematically, of maximizing the efficacy
of this amplification by injection of threshold noises;
the possibility, systematically, of increasing the effi-
cacy of the amplification by enlarging the array (in-
creasingN). Together, these properties are specific to
the nonlinear arrays we consider here. There are es-
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85 put SNR. This contrasts suprathreshold SR in arrays
o 3t/ to conventional (subthreshold) SR in single devices.
= In conventional SR, for a given transmission device,
D5t if the input noise level is already too high, the sys-

tem is overloaded and there is no benefit to be gained
through further addition of input noise. By contrast,
with suprathreshold SR in arrays, generally there is al-
ways some benefit to be gained by adding noises to
Neoco | the thresholds, no matter how large the level of the in-
put noise is. This is due to the intrinsic mechanism of
suprathreshold SR, which relies on the enrichment of
the response of the array via the diversity induced by
injection of the threshold noises, which is operative
whatever the (nonzero) level of input noise is. The op-
timal level of the threshold noises that maximizes the
Fig. 7. Same as in Fig. 5, except = 0.5. The curves appear inthe  output SNR, as visible from the results reported here,
same succession, froni=1, 2, 3,7, 15, 31, t&V = 63, oo. is usually dependent on the specific conditions, espe-
cially the input noise, the siz¥ of the array, the value
of the common threshold. In particular, as indicated by
pecially not present in linear systems nor linear ar- Fig. 2, the optimal leveb, ™ of the threshold noises
rays. The behavior of the SNR gafisnr (and also  tends to decrease as the lewel of the input noise
of the output SNRR.oyr) can be studied in many other  gqes 1o zero: and,?pt reaches zero when vanishes,
conditions, especially concerning the shape of the in- \yhere the suprathreshold SR is suppressed. In definite
put signals(r) and the distributiory: (1) of the input conditions, the optimal amoum?pt of the threshold
noise, thanks to the general theory we have developedppises can be computed from the theory developed
here. This will provide a deeper understanding of the pere. Alternatively, some adaptive procedure could
potentialities of such nonlinear arrays for information e envisaged, allowing the array to automatically in-
processing. crease the threshold noises above zero until an opti-
mum is reached. Such adaptive strategies have been
_ _ introduced for conventional SR [3,27,28], but again,
5. Discussion they cannot be systematically applied, if the system
is already overloaded by noise. They could serve as
We have investigated the capabilities of parallel ar- a basis for extension to suprathreshold SR. Here, with
rays of comparators for noise-enhanced transmissionsuprathreshold SR on a noisy periodic input, an adap-
of a noisy periodic signal via suprathreshold SR. We tive procedure based on experimental evaluation of the
have developed a general theory for periodic-signal output SNRR oy could be specially effective since the
transmission by such arrays. We have used this the-evaluation ofR oyt 0nly requires, according to Eq. (3),
ory, in representative conditions, to establish that these the (simple) evaluation of the two average'&)]
arrays can produce both an output SNR and an input-and gY (r)2], while, by contrast, experimental evalua-
output SNR amplification which can be maximized by  tion of the Shannon information of suprathreshold SR
injection of threshold noises onto the comparators. of [12,13,15] would require the more costly evaluation
The possibility of enhancing the output SNBy of the complete probability distribution df(r). Such
is accessible, systematically, when the thresholds in adaptive procedures constitute an open perspective to
the array are constrained to be the same and cannot behe present results on suprathreshold SR in arrays.
separately adjusted. In this case, there is always some We have seen in Section 3 that if the thresholds
benefit in adding the threshold noises (provided the in- can be separately adjusted, usually the array achieves

put noise is nonzero). There is especially an optimal a better output SNRR o, the array can even perform
amount of the threshold noises that maximizes the out- optimally, and in this case, addition of the threshold

output SNR/inpu
n

o
o

N=63

0 05 1 15 2 25
noise rms amplitude oy,
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noises only degrades the performance. Yet, as we havethis way, only faithful reproduction is targeted, and lit-
indicated, the determination of the optimal thresh- tle or nothingis actually started at this level in terms of
olds may not be an easily solvable problem, and the information processing. The faithful signal representa-
solution will be specific to given conditions. If we tion has to be further processed by higher-level oper-
depart from the optimal conditions with distributed ators, in order to achieve some information process-
thresholds, it may become possible to recover some ing task, for instance assessing the presence of a pe-
benefit through addition of the threshold noises, as riodic componentin a signal-noise mixture as consid-
seen in Fig. 3. Operating the array with a fixed com- ered here. If the high-level task to be achieved is tar-
mon threshold and exploiting addition of threshold  geted from the very beginning, it appears that the faith-
noises, although not optimal, may result in more ro- ful representation of the physical signal in the process-
bust and flexible solutions, more easily adaptable to ing system is only an intermediary step, which may not
changes in the input signa{s) and input noise (¢). be necessary in itself, nor even useful, to the high-level
These conditions of a common threshold, are those information processing task, and sometimes maybe
that can be encountered in natural systems such as neubetter avoided. Therefore, it may not be always inter-
rons organized in parallel arrays for sensory process- esting to try to operate our arrays of comparators in
ing. A form of suprathreshold SR measured by the conditions that would bring them the closest possible
input—output mutual information has been shown pos- to perfect quantizers targeting the possibility of quasi-
sible in arrays of sensory neurons [17]. It is likely that perfect reconstruction, because in this case, while tar-
the present form of suprathreshold SR in periodic sig- geting perfect reconstruction, higher-level capabilities
nal transmission, can also take place in neuronal arraysmay be missed like an SNR gain larger than unity. This
in charge of sensory processing. capability of the arrays with a fixed common thresh-

Another important property that we have reported, old of producing an SNR gain larger than unity, can be
is the capability of the arrays of comparators to pro- seen as an “intelligent” preprocessing afforded by the
duce an input—output enhancement of the SNR, in def- nonlinear arrays, and which is not present in devices
inite conditions, and therefore to act as SNR ampli- seeking the quasi-linear behavior associated to perfect
fiers, with a gain which is always maximized by a reconstruction. The action of the nonlinear compara-
nonzero level of the threshold noises. This property tors represents a drastic reduction of the information
has been obtained essentially with a common thresh- contained in the analog input signdt) but also of the
old 6 for the comparators, revealing an intrinsic capa- fluctuations of the input nois&(z). An input—output
bility of the arrays, to act as SNR amplifiers in such SNR gain above unity signifies somehow that this re-
conditions. If instead, an optimal distribution of the duction is more pronounced for the noise) than for
thresholds had been selected, for instance like in flashthe signals(z), whence the SNR amplification. Such
analog-to-digital converters, it would have been pos- type of “intelligent” behaviors, based on highly non-
sible to come close, especially with a large array, to linear devices assembled in cooperative arrays to en-
a quasi-exact reconstruction of the input signal-plus- hance their performance, and capable of exploiting the
noise mixtures(¢) + £(z). From this, an output SNR  noise through suprathreshold SR, may be at the root of
Rout quasi-identical to the input SNR;, would have the very efficient operations implemented by networks
been recovered. But no SNR gain would have been ob- of sensory neurons, this altogether forming an exciting
tained. This shows an intrinsic superiority of the ar- area of investigation with rich potentialities for infor-
ray, when it performs some hard clipping on the input mation processing.
with a fixed threshold, compared to a “softer” opera-
tion that would aim at preserving, as much as possible,
the integrity of the analog input(z) + £(¢). Usually, References
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