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Abstract

We consider parallel arrays of threshold comparators similar to those modelling flash analog-to-digital converters, o
sonar arrays, or networks of sensory neurons. Such arrays are used here for the transmission of a noisy periodic in
with a performance assessed by a signal-to-noise ratio in the frequency domain. We show that independent noises inje
comparators can improve the performance of the array, with a nonzero optimal amount of noise that maximizes the outp
to-noise ratio. This represents, for periodic signals, a new instance of the recently introduced phenomenon of supra
stochastic resonance. We also study the capability of the arrays of comparators to realize an input–output enhancem
signal-to-noise ratio, and show the existence of conditions where the arrays act as signal-to-noise ratio amplifiers, w
maximized by a nonzero level of the injected noises.
 2004 Elsevier B.V. All rights reserved.

Keywords: Noise; Comparators; Sensors; Nonlinear arrays; Suprathreshold stochastic resonance
as a
ise
ing
ty
ible
es
nce
st
ich

a
n of
ngs
re
for
tial

as
SR,

, or
ls
on
At
e is
ach
in
1. Introduction

Stochastic resonance (SR) can be described
nonlinear phenomenon by which the action of no
can improve the performance of a signal-process
system [1,2]. Since its introduction some twen
years ago, SR has gradually been shown feas
under several different forms, with various typ
of systems, signals, and measures of performa
receiving improvement from the noise [3–11]. Mo
occurrences of SR known today involve a signal wh
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is by itself too small or ill-conditioned to elicit
strong response from a nonlinear system. Injectio
noise then, through a cooperative interaction, bri
assistance to the small signal in eliciting a mo
efficient response from the nonlinear system,
instance by overcoming a threshold or a poten
barrier.

Very recently, an interesting new form of SR h
been introduced under the name of suprathreshold
since it is not restricted to a small, subthreshold
ill-conditioned signal [12–14]. It operates with signa
of arbitrary amplitude. Suprathreshold SR relies
a parallel array of identical nonlinear devices.
the location of each device, an independent nois
injected in the process. The result is to make e
one of the identical devices elicit a distinct output
.

http://www.elsevier.com/locate/pla
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response to a same common input signal. When
individual outputs are collected or averaged over
array to produce a global response, it turns out
a net improvement can be obtained compared to
response of a single device with no noise inject
Qualitatively, the benefit comes from the divers
induced by the injected noises, in the response
the individual nonlinear devices over the array. T
suprathreshold SR does not involve a small sig
receiving assistance from the noise to elicit a m
efficient response from a single nonlinear syste
As such, suprathreshold SR represents a specific
distinct mechanism under which an improvement
noise can take place in signal processing.

Since its recent introduction in [12], suprathres
old SR has been shown possible in various conditio
Essentially, suprathreshold SR has been reporte
the transmission of random aperiodic signals, qu
tified by Shannon mutual information [12,13,15],
by input–output cross-correlation [16]. Suprathresh
SR has also been applied to arrays of sensory
rons [17], to motion detectors [18], to cochlear im
plants [19], or to signal estimation tasks [20]. The m
simple systems that have been shown to give wa
suprathreshold SR, and that have been exploited t
vestigate its properties, are parallel arrays of thresh
comparators. Such simple devices as these comp
tors can be useful to build large-scale arrays very e
cient in terms of resources and time for data proce
ing, storage, communication, and in terms of ene
supply, with possibly high density of integration
solid-state realizations. Such arrays of compara
also represent models of flash analog-to-digital c
verters and of digital sonar arrays [15]. Such arr
of threshold devices also mimic, in a crude way,
nonlinear behavior that can be present in network
sensory neurons. These arrays are therefore spec
appealing for devising novel strategies based on m
tisensor networks for nonlinear signal and informat
processing.

In the present Letter, we extend the investigat
of the capabilities of arrays of comparators for noi
enhanced transmission of information via suprathre
old SR. We demonstrate that these arrays en
suprathreshold SR in the transmission of periodic
terministic signals also. We quantify the effect by
signal-to-noise ratio (SNR) defined in the frequen
domain from the output of the array, and we sh
-

that this SNR is improvable by injection of noises
the comparators of the array. These conditions of
riodic signal transmission represent the configura
in which conventional (subthreshold) SR was ori
nally observed, and where it has been the most
tensively studied. Our present results therefore, es
lish the feasibility of the new suprathreshold SR
the original conditions of conventional SR. This co
tributes to substantiate the link and parallelism
tween two forms of SR, or two mechanisms for im
provement by noise, which at another level are spe
ically distinct. In addition, we study the capability
the arrays of comparators to realize an input–ou
enhancement of the SNR, and show the existenc
conditions where the arrays act as SNR amplifiers

2. Transmission by an array of comparators

An input signalx(t) is applied onto a parallel arra
of N threshold comparators or one-bit quantizers,
lowing the setting of [12,15]. A noiseηi(t), indepen-
dent ofx(t), can be added tox(t) before quantization
by quantizeri. Quantizeri, with thresholdθi , delivers
the output

(1)yi(t)= Γ
[
x(t)+ ηi(t)− θi

]
, i = 1,2, . . . ,N,

whereΓ (u) is the Heaviside function, i.e.,Γ (u) = 1
if u > 0 and is zero otherwise. We will consider he
that theN noisesηi(t) are white, mutually indepen
dent and identically distributed with cumulative dist
bution functionFη(u) and probability density function
fη(u)= dFη/du. The responseY (t) of the array is ob-
tained by summing the outputs of all the comparat
as

(2)Y (t)=
N∑
i=1

yi(t).

In the present study, we consider the case wh
the input signalx(t) is formed by the signal-plus
noise mixturex(t) = s(t) + ξ(t), where s(t) is a
deterministic signal with periodTs , and ξ(t) is a
stationary white noise, independent of boths(t) and
theηi(t), and with probability density functionfξ (u).

The performance of the array for the transmiss
of the periodic inputs(t) can be assessed by the outp
signal-to-noise ratio (SNR) as used for conventio
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stochastic resonance systems [1]. Due to the pres
of theTs -periodic inputs(t), the outputY (t) is a signal
with a power spectral density formed [21] by spect
lines at integer multiples of 1/Ts emerging out of
a broadband continuous noise background. The S
Rout(m/Ts) for the harmonicm/Ts at the output of the
array, is defined as the power contained in the cohe
spectral line atm/Ts divided by the power containe
in the noise background in a small frequency band∆B

aroundm/Ts . According to the theory of [21], which
deals with arbitrary static nonlinearities, this SN
Rout(m/Ts) at the output of the array, is expressa
as

(3)Rout

(
m

Ts

)
= |〈E[Y (t)]exp(−ım2πt/Ts)〉|2

〈var[Y (t)]〉∆t∆B .

In Eq. (3), a time average is defined as

(4)〈· · ·〉 = 1

Ts

Ts∫
0

· · · dt,

E[Y (t)] and var[Y (t)] represent, respectively, the e
pectation and the variance of the outputY (t) at a fixed
time t ; and∆t is the time resolution of the measur
ment (i.e., the signal sampling period in a discr
time implementation), throughout this study we ta
∆t∆B = 10−3.

At time t , for a fixed given valuex of the in-
put signalx(t), we have, according to Eq. (1), th
conditional probability Pr{yi(t) = 0|x} which is also
Pr{x + ηi(t)� θi}, this amounting to

(5)Pr{yi(t)= 0|x} = Fη(θi − x).
In the same way, we have Pr{yi(t) = 1|x} = 1 −
Fη(θi − x).

We assume for the present time, as done in [13,
that all the thresholdsθi share the same valueθi = θ

for all i. The conditional probability Pr{Y (t) = n|x}
then follows, according to the binomial distributio
[22], as

Pr
{
Y (t)= n|x}

(6)= CNn
[
1− Fη(θ − x)]nFη(θ − x)N−n,

whereCNn is the binomial coefficient. Sincex(t) =
s(t) + ξ(t), the probability density for the valuex is
fξ (x − s(t)). We therefore obtain the probability
Pr
{
Y (t)= n} =

+∞∫
−∞

CNn
[
1− Fη(θ − x)]n

(7)
× Fη(θ − x)N−nfξ

(
x − s(t))dx.

According to properties of the binomial distributio
[22], expectation E[Y (t)] = ∑N

n=0nPr{Y (t)= n} fol-
lows as

(8)

E
[
Y (t)

] =
+∞∫

−∞
N

[
1− Fη(θ − x)]fξ (x − s(t)) dx,

and the expectation E[Y (t)2] = ∑N
n=0n

2 Pr{Y (t)= n}
as

E
[
Y (t)2

] =
+∞∫

−∞

(
N

[
1− Fη(θ − x)]Fη(θ − x)

+N2[1− Fη(θ − x)]2
)

(9)× fξ
(
x − s(t)) dx.

The variance required in Eq. (3) is var[Y (t)] =
E[Y (t)2] − E[Y (t)]2. Thanks to Eqs. (8) and (9
the SNR of Eq. (3) at the output of the array is th
obtainable, possibly through numerical integration
broad conditions concerning the noisesηi(t) and the
input signalx(t)= s(t)+ ξ(t).

For illustration of the possibility of a suprathres
old SR in the output SNR, we consider the case wh
s(t)= cos(2πt/Ts) andξ(t) is a zero-mean noise wit
rms amplitudeσξ . Fig. 1 displays evolutions of the re
sulting output SNRRout(1/Ts) of Eq. (3), as a func
tion of the rms amplitudeση of the threshold noise
ηi(t), in some typical conditions.

The results of Fig. 1 reveal that the charact
istic behaviors that identify suprathreshold SR,
precisely exhibited by the evolutions of the SN
In Fig. 1, the periodic input signals(t) is always
suprathreshold, with an amplitude of oscillation larg
than the thresholdθ . At N = 1, with a single com-
parator, addition of the threshold noiseη1(t) always
degrades the output SNRRout(1/Ts). This is because
the inputs(t) being suprathreshold, is by itself stro
enough to overcome the threshold of a single comp
tor and to impose synchronous transitions to its ou
(apart from the perturbation byξ(t)); s(t) needs no as
sistance for this from the threshold noiseη1(t) which
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Fig. 1. Output SNRRout(1/Ts) of Eq. (3), as a function of the rms amplitudeση of the threshold noisesηi (t) chosen zero-mean Gaussian. T
periodic input iss(t)= cos(2πt/Ts) buried in a zero-mean Gaussian noiseξ(t) with rms amplitudeσξ = 1. All thresholds in the array are s
to θ = 0 (panel (a)),θ = 0.5 (panel (b)).
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is always felt as a nuisance spoiling the synchron
output transitions. ForN > 1, with no added noise
ηi(t) on the thresholds, all the comparators switch
unison and the array acts just like a single one
quantizer. It is when the threshold noisesηi(t) are
added that the comparator outputsyi start to behave
differently for differenti. The outcome is to give ac
cess to a richer representation of the suprathres
input s(t), by the outputs of the comparators whi
somehow are able collectively to extract more inf
mation from the input, thanks to the diversity allow
by the noisesηi(t). This is conveyed in Fig. 1, b
an output SNRRout(1/Ts) which increases when th
level ση of the threshold noisesηi(t) grows, up to
an optimal nonzeroση whereRout(1/Ts) is maxi-
mized. For increasingN , the efficiency of the array
and the maximum output SNR also increase. A d
tinguishing feature of the present theoretical treatm
of suprathreshold SR, is that it makes possible an
plicit computation of the asymptotic behavior in lar
arrays. At largeN , Eqs. (8) and (9) allow us to deduc
that the evolution of the output SNR is given by

(10)

Rout

(
m

Ts

)
−−−−−−→
N→∞

|〈I1(t)exp(−ım2πt/Ts)〉|2
〈I2(t)− I2

1 (t)〉∆t∆B
,

with the integrals

(11)I1(t)=
+∞∫ [

1− Fη(θ − x)]fξ (x − s(t)) dx,

−∞
and

(12)I2(t)=
+∞∫

−∞

[
1− Fη(θ − x)]2

fξ
(
x − s(t))dx.

The asymptotic caseN → ∞ is also shown in the con
ditions of Fig. 1. It fixes the most efficient behavior,
terms of output SNR, that can be achieved by large
rays.

Comparing to previous forms of suprathreshold S
with other types of input signals associated to ot
measures of performance, it is remarkable that
evolutions of the output SNR depicted in Fig. 1 a
quite reminiscent of those, for instance, of the Sh
non information in [12,13,15] or of the Fisher in
formation in [20]. These observations tend to pro
that suprathreshold SR, much like conventional (s
threshold) SR (although the mechanism is different
a general nonlinear phenomenon which can occur
be quantified in many different ways. It expresses
an array of nonlinear devices, in charge of the tra
mission of a suprathreshold signal, will be more e
cient if the devices of the array are allowed to respo
in a nonuniform way, thanks to injection of indepe
dent noises on the devices, with an efficiency wh
can be a priori assessed via different measures of
formance.

A significant difference, though, of the prese
form of suprathreshold SR compared to those of [
13,16], is that here the parallel array operates o
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Fig. 2. Output SNRRout(1/Ts) of Eq. (3), as a function of the
rms amplitudeση of the threshold noisesηi(t) chosen zero-mean
Gaussian. The periodic input iss(t) = cos(2πt/Ts) buried in a
zero-mean Gaussian noiseξ(t) with rms amplitude varying from
σξ = 1 down toσξ = 0. All thresholds are set toθ = 0 in an array
of N = 15 comparators.

noisy input signals(t) + ξ(t) = x(t) where it is the
deterministic components(t) alone which is the signa
of interest to be recovered in the processing. Thi
the situation, often met in practice, of a noisy inp
signal observed from the environment, which has t
to be processed by some device, here the par
array of comparators. By contrast, in the previo
forms of suprathreshold SR of [12,13,16], a rand
input signal x(t) is alone the signal of interest t
be recovered, and there is no input noise sim
to ξ(t). For a comparison purpose, we show in Fig
the behavior of the output SNRRout, when the rms
amplitudeσξ of the input noiseξ(t) goes to zero. This
is the case where our input noiseξ(t) vanishes. Fig. 2
shows that the nonmonotonic behavior ofRout, which
was the mark here of the suprathreshold SR, tend
disappear asσξ → 0. Whenσξ = 0, the input noise
no longer exists, and the output SNRRout comes to
experience a monotonic degradation as the levelση of
the threshold noises increases: the suprathreshol
is suppressed.

The results of Fig. 2 tend to suggest that the pr
ence of the input noiseξ(t) is an essential ingredien
for the suprathreshold SR effect in the output SN
As we already mentioned, the study of [13], for t
transmission by the array of a single random in
x(t) (with no input noise), essentially assessed
suprathreshold SR by means of the Shannon mu
information. Yet, in addition, [13] also defined an ou
put SNR adapted to the case of a random input,
it was shown in [13] that this SNR does not displ
suprathreshold SR. Although the definition of the SN
is different in [13] and here forRout, the outcome is
similar: no suprathreshold SR occurs in absence o
input noiseξ(t). This outcome is somehow natura
In absence of input noise, the input SNR is infini
and with no threshold noises, the output SNR is a
(already) infinite, because the input is suprathresh
There is therefore no improvement to be expected
the output SNR, when the threshold noises are ad
It is only when the output SNR is not at its maximu
with no threshold noises, because of the presenc
an input noise, that an improvement of the output S
can be envisaged. This is precisely such an impro
ment that the injection of threshold noises in the ar
can achieve, as we reveal here. This present form
suprathreshold SR in arrays is operative for a no
periodic input.

With a noisy input, when the thresholdsθi in the
array share a common valueθ , it is in general when
θ is located at the mean value of the inputx(t) that
the performance of the array is at its best. This
what is observed in Fig. 1(a) withθ = 0, although
Fig. 1(b) with θ = 0.5 shows that the suprathresho
SR is preserved whenθ is not at the mean of the inpu
yet with a slightly smaller efficacy in the region
the maximum output SNR. This optimal value at t
mean of the input for a common thresholdθ , is also
found in previous instances of suprathreshold SR
13,15,16]. We shall now examine the case where
thresholdsθi can be separately adjusted.

3. Distribution of thresholds

The case where the thresholdsθi can be separatel
adjusted corresponds a priori to a more effici
configuration of the array ofN comparators. This
is what is done, for instance, in flash analog-
digital converters. When the thresholdsθi , i = 1 to
N , no longer share the same valueθ , the conditional
probability Pr{Y (t) = n|x} of Eq. (6) has to be
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Fig. 3. Output SNRRout(1/Ts) of Eq. (3), as a function of the rms amplitudeση of the threshold noisesηi (t) chosen zero-mean Gaussian. T
thresholdsθi are uniformly distributed over[−1,1] according to Eq. (15), fori = 1 toN = 7. The periodic input iss(t)= C +Acos(2πt/Ts)
buried in a zero-mean Gaussian noiseξ(t) with rms amplitudeσξ = 1, withC = 0 (panel (a)),A= 1 (panel (b)).
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computed as

Pr
{
Y (t)= n|x}

(13)=
∑
(n)

N∏
i=1

[
1−Fη(θi − x)

]yiFη(θi − x)1−yi ,

where
∑
(n) stands for the sum over the configuratio

accessible to theN comparators for which the numb
of yi equal to 1 is exactlyn, among the 2N distinct
configurations accessible to theN comparators. After
this replacement of Eq. (6) by Eq. (13) is done,
probability Pr{Y (t)= n} follows in the same way as

(14)

Pr
{
Y (t)= n} =

+∞∫
−∞

Pr
{
Y (t)= n|x}fξ (x − s(t))dx.

Knowledge of Pr{Y (t) = n} from Eq. (14) allows the
calculation of E[Y (t)] and E[Y (t)2], providing access
to the SNR of Eq. (3).

To proceed, some criterion has to be introdu
to specify the distribution of the thresholdsθi . If
an optimal distribution is sought for the threshol
usually this distribution will be specific to the give
criterion, and it will depend upon the distribution
the amplitudes taken by both the input signal a
the input noise, and upon the sizeN of the array. In
definite conditions, this optimization problem may
uneasy to solve. A reasonable choice for the thresh
θi is a uniform distribution covering the interv
over which the input signals(t) is expected to vary
provided this interval can be known. For instance
this interval is taken as[−1,1], the resulting uniform
distribution of theN thresholds is

(15)θi = −1+ i 2

N + 1
, i = 1,2, . . . ,N.

For s(t) uniformly distributed over its interval of vari
ation, and no input noiseξ(t), the distribution of
Eq. (15) maximizes the entropy of the outputs, wh
guarantees an efficient representation, as discuss
[15,23]. It is also the simple choice that is impl
mented by flash analog-to-digital converters.

We select this simple distribution of Eq. (15), to
lustrate that a suprathreshold SR is still possible w
distributed thresholds, in definite conditions. We co
sider in Fig. 3, the transmission by the array, of a s
waves(t)= C+Acos(2πt/Ts) buried in a zero-mea
Gaussian input noiseξ(t). The values of the amplitud
A and offsetC determine how the inputs(t) is seen by
the array of thresholdsθi uniformly distributed over
[−1,1]. We chose a numberN = 7 of thresholds ac
cording to Eq. (15), this especially yieldingθ4 = 0.
Fig. 3 shows various evolutions of the SNR at the o
put of the array, for different values of the consta
A andC. For the values ofA andC tested in Fig. 3,
the periodic inputs(t) is always suprathreshold, in th
sense that the time variations ofs(t) take place on both
sides of at least one thresholdθi , meaning thats(t)
over one periodTs is always capable by itself to in
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duce transitions in the outputY (t). WhenA = 1 and
C = 0, all the variations of the periodic inputs(t) ex-
actly take place in the interval[−1,1]. In such condi-
tions the threshold noisesηi(t) are always detrimen
tal, as expressed by the monotonic decay of the ou
SNRRout(1/Ts) in Fig. 3, asση grows. By contrast
for largerA orC, the periodic inputs(t) progressively
becomes less and less well centered in relation to
array of thresholds, with excursions outside the in
val [−1,1]. In such conditions, the threshold nois
ηi(t) bring the possibility of some shift in the array
thresholdsθi , broadening the region of effective tran
mission, and this on average, tends to be benefici
the periodic inputs(t). This is conveyed by an outpu
SNR Rout(1/Ts) in Fig. 3, which gradually departs
with increasingA or C, from the monotonic decay
to experience nonmonotonic evolutions as the le
ση of the threshold noises is increased. This is an
stance of suprathreshold SR, under the form of a no
enhanced SNR at the output of an array of distribu
thresholds. When a suprathreshold signal to be tr
mitted is not well positioned in relation to the arr
of thresholds, addition of noise to the thresholds
bring improvement in the efficacy of the transmissio

4. Input–output SNR gain

So far, we have shown that the array of compara
can improve its output SNR thanks to noises injec
onto the thresholds. Another distinct issue is to exa
ine how the output SNR achieved by the array co
pares to the input SNR available prior to the operat
of the array. With the input signal-plus-noise mixtu
x(t)= s(t)+ ξ(t), the input SNR for the periodic sig
nal s(t) buried in the white input noiseξ(t) with rms
amplitudeσξ , is

(16)Rin

(
m

Ts

)
= |〈s(t)exp(−ım2πt/Ts)〉|2

σ 2
ξ ∆t∆B

at the harmonicm/Ts . The input–output SNR gain i
the transmission by the array, defined as

(17)GSNR

(
m

Ts

)
= Rout(m/Ts)

Rin(m/Ts)
,

is then explicitly accessible through Eqs. (3) and (1
An illustration of the evolution of the SNR gain

given in Fig. 4, when the input noiseξ(t) is a zero-
Fig. 4. Input–output SNR gainGSNR(1/Ts) of Eq. (17), as a func-
tion of the rms amplitudeση of the threshold noisesηi (t) cho-
sen zero-mean Gaussian. The periodic input iss(t)= cos(2πt/Ts)
buried in a zero-mean Laplacian noiseξ(t) with rms amplitude
σξ = 0.5. All thresholds in the array are set toθ = 0.

mean Laplacian noise with probability density

(18)fξ (u)= 1

σξ
√

2
exp

(
−√

2
|u|
σξ

)
.

It can be observed in Fig. 4 that the suprathre
old SR effect is also registered via the SNR g
GSNR(1/Ts) as it was via the SNRRout, with im-
provement ofGSNR(1/Ts) with ση as soon asN > 1.
This is natural since the input SNRRin of Eq. (16) is
unaffected by the threshold noisesηi(t), therefore both
Rout andGSNR vary in the same way withση . The in-
teresting aspect of Fig. 4 is that it reveals the imp
tant possibility of raising the SNR gainGSNR(1/Ts)
above unity. This especially occurs in Fig. 4 when
array has high efficacy at largeN . This demonstrate
that the array of nonlinear devices can play the r
of an SNR amplifier, in definite conditions. This po
sibility of an input–output amplification of the SN
was previously shown to exist in conventional SR
subthreshold signals [24–26]. We prove here tha
extends to suprathreshold SR for suprathreshold
nals, and with an efficacy of amplification which i
creases as the numberN of comparators increase
We have observed here that this important propert
GSNR(1/Ts) > 1 is not critically dependent upon th
distributionfη(u) of the array noiseηi(t), provided
a sufficient levelση is applied. On the contrary, w
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Fig. 5. Input–output SNR gainGSNR(1/Ts) of Eq. (17), as a
function of the rms amplitudeση of the threshold noisesηi (t)
chosen zero-mean Gaussian. The periodic input is the square
s(t)= sign[sin(2πt/Ts)] buried in a zero-mean Gaussian noiseξ(t)
with rms amplitudeσξ = 1. All thresholds in the array are set
θ = 0.

have observed that the possibility ofGSNR(1/Ts) > 1
depends on the distributionfξ (u) of the input noise
ξ(t). For a Gaussian input noiseξ(t), we did not
find it possible in the tested configurations, wh
s(t) is a sine wave, to obtainGSNR(1/Ts) > 1; at
best,GSNR(1/Ts) tends to culminate at 1 whenN
becomes large. Whens(t) is a sine wave, we ob
served that a gainGSNR(1/Ts) larger than unity is
possible for densitiesfξ (u) with tails decaying more
slowly than the Gaussian, like the Laplacian den
of Fig. 4. When the periodic inputs(t) ceases to be
a sine wave, the possibility ofGSNR(1/Ts) > 1 with
a Gaussian input noiseξ(t) can be recovered. An ex
ample is given in Fig. 5, which shows the SNR ga
GSNR(1/Ts) when s(t) is a square wave, half a pe
riod at +1 and half a period at−1, expressable a
s(t) = sign[sin(2πt/Ts)], buried in a Gaussian inpu
noiseξ(t).

The evolutions of the SNR gainGSNR(1/Ts) of
Fig. 5 demonstrate the possibility of a suprathresh
SR with amplificationGSNR(1/Ts) > 1, occurring
with Gaussian input noiseξ(t), in the transmission
of a Ts -periodic square wave. It is to note that Fig
shows the SNR gainGSNR(1/Ts) at the fundamenta
frequency 1/Ts of the square waves(t). Yet, as
a square wave,s(t) also contains energy in highe
Fig. 6. Same as in Fig. 4, exceptσξ = 1.

harmonicsm/Ts . Because of the symmetry of th
square waves(t) used in Fig. 5, when the levelση
of the threshold noises is varied, it can be verifi
that the SNR gainGSNR(m/Ts) defined by Eq. (17
at harmonicm/Ts , behaves in the same way
GSNR(1/Ts), the SNR gain at the fundamental 1/Ts .
This means that each frequency component of
square-wave inputs(t) experiences the same typ
of suprathreshold SR with SNR amplification in t
transmission by the array. A more global SNR co
have been defined, as done for instance in [26]
collect all the energy contained in all the harmon
m/Ts , and this global SNR would also have shown
suprathreshold SR with amplification in the way whi
is quantified by Fig. 5.

Also, depending on the conditions, especially
level σξ of the input noiseξ(t), the input–outpu
SNR gainGSNR can already be above unity whe
no threshold noisesηi(t) are added. Addition of th
noisesηi(t) then will bring further improvement to
the SNR gainGSNR. This possibility is illustrated in
Figs. 6 and 7.

Three distinct aspects here can be emphasized
possibility of an input–output SNR amplification; th
possibility, systematically, of maximizing the effica
of this amplification by injection of threshold noise
the possibility, systematically, of increasing the e
cacy of the amplification by enlarging the array (
creasingN ). Together, these properties are specific
the nonlinear arrays we consider here. There are
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Fig. 7. Same as in Fig. 5, exceptσξ = 0.5. The curves appear in th
same succession, fromN = 1, 2, 3, 7, 15, 31, toN = 63,∞.

pecially not present in linear systems nor linear
rays. The behavior of the SNR gainGSNR (and also
of the output SNRRout) can be studied in many othe
conditions, especially concerning the shape of the
put signals(t) and the distributionfξ (u) of the input
noise, thanks to the general theory we have develo
here. This will provide a deeper understanding of
potentialities of such nonlinear arrays for informati
processing.

5. Discussion

We have investigated the capabilities of parallel
rays of comparators for noise-enhanced transmis
of a noisy periodic signal via suprathreshold SR.
have developed a general theory for periodic-sig
transmission by such arrays. We have used this
ory, in representative conditions, to establish that th
arrays can produce both an output SNR and an inp
output SNR amplification which can be maximized
injection of threshold noises onto the comparators.

The possibility of enhancing the output SNRRout
is accessible, systematically, when the threshold
the array are constrained to be the same and cann
separately adjusted. In this case, there is always s
benefit in adding the threshold noises (provided the
put noise is nonzero). There is especially an optim
amount of the threshold noises that maximizes the
put SNR. This contrasts suprathreshold SR in arr
to conventional (subthreshold) SR in single devic
In conventional SR, for a given transmission devi
if the input noise level is already too high, the sy
tem is overloaded and there is no benefit to be ga
through further addition of input noise. By contra
with suprathreshold SR in arrays, generally there is
ways some benefit to be gained by adding noise
the thresholds, no matter how large the level of the
put noise is. This is due to the intrinsic mechanism
suprathreshold SR, which relies on the enrichmen
the response of the array via the diversity induced
injection of the threshold noises, which is operat
whatever the (nonzero) level of input noise is. The
timal level of the threshold noises that maximizes
output SNR, as visible from the results reported he
is usually dependent on the specific conditions, es
cially the input noise, the sizeN of the array, the value
of the common threshold. In particular, as indicated
Fig. 2, the optimal levelσ opt

η of the threshold noise
tends to decrease as the levelσξ of the input noise
goes to zero; andσ opt

η reaches zero whenσξ vanishes,
where the suprathreshold SR is suppressed. In de
conditions, the optimal amountσ opt

η of the threshold
noises can be computed from the theory develo
here. Alternatively, some adaptive procedure co
be envisaged, allowing the array to automatically
crease the threshold noises above zero until an o
mum is reached. Such adaptive strategies have
introduced for conventional SR [3,27,28], but aga
they cannot be systematically applied, if the syst
is already overloaded by noise. They could serve
a basis for extension to suprathreshold SR. Here,
suprathreshold SR on a noisy periodic input, an ad
tive procedure based on experimental evaluation of
output SNRRout could be specially effective since th
evaluation ofRout only requires, according to Eq. (3
the (simple) evaluation of the two averages E[Y (t)]
and E[Y (t)2], while, by contrast, experimental evalu
tion of the Shannon information of suprathreshold
of [12,13,15] would require the more costly evaluati
of the complete probability distribution ofY (t). Such
adaptive procedures constitute an open perspectiv
the present results on suprathreshold SR in arrays

We have seen in Section 3 that if the thresho
can be separately adjusted, usually the array achi
a better output SNRRout, the array can even perfor
optimally, and in this case, addition of the thresh
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and
noises only degrades the performance. Yet, as we
indicated, the determination of the optimal thres
olds may not be an easily solvable problem, and
solution will be specific to given conditions. If w
depart from the optimal conditions with distribute
thresholds, it may become possible to recover so
benefit through addition of the threshold noises,
seen in Fig. 3. Operating the array with a fixed co
mon thresholdθ and exploiting addition of threshol
noises, although not optimal, may result in more
bust and flexible solutions, more easily adaptable
changes in the input signals(t) and input noiseξ(t).
These conditions of a common threshold, are th
that can be encountered in natural systems such as
rons organized in parallel arrays for sensory proce
ing. A form of suprathreshold SR measured by
input–output mutual information has been shown p
sible in arrays of sensory neurons [17]. It is likely th
the present form of suprathreshold SR in periodic s
nal transmission, can also take place in neuronal ar
in charge of sensory processing.

Another important property that we have report
is the capability of the arrays of comparators to p
duce an input–output enhancement of the SNR, in
inite conditions, and therefore to act as SNR am
fiers, with a gain which is always maximized by
nonzero level of the threshold noises. This prope
has been obtained essentially with a common thre
old θ for the comparators, revealing an intrinsic cap
bility of the arrays, to act as SNR amplifiers in su
conditions. If instead, an optimal distribution of th
thresholds had been selected, for instance like in fl
analog-to-digital converters, it would have been p
sible to come close, especially with a large array
a quasi-exact reconstruction of the input signal-pl
noise mixtures(t) + ξ(t). From this, an output SNR
Rout quasi-identical to the input SNRRin would have
been recovered. But no SNR gain would have been
tained. This shows an intrinsic superiority of the
ray, when it performs some hard clipping on the inp
with a fixed threshold, compared to a “softer” ope
tion that would aim at preserving, as much as possi
the integrity of the analog inputs(t) + ξ(t). Usually,
at the sensor and acquisition level, what is convent
ally sought is to produce, in a form manageable by
subsequent processing system, a representation o
physical signal that is the most faithful possible to
original signal from the physical environment. Yet,
-

e

this way, only faithful reproduction is targeted, and
tle or nothing is actually started at this level in terms
information processing. The faithful signal represen
tion has to be further processed by higher-level op
ators, in order to achieve some information proce
ing task, for instance assessing the presence of a
riodic component in a signal-noise mixture as cons
ered here. If the high-level task to be achieved is
geted from the very beginning, it appears that the fa
ful representation of the physical signal in the proce
ing system is only an intermediary step, which may
be necessary in itself, nor even useful, to the high-le
information processing task, and sometimes ma
better avoided. Therefore, it may not be always in
esting to try to operate our arrays of comparators
conditions that would bring them the closest poss
to perfect quantizers targeting the possibility of qua
perfect reconstruction, because in this case, while
geting perfect reconstruction, higher-level capabilit
may be missed like an SNR gain larger than unity. T
capability of the arrays with a fixed common thres
old of producing an SNR gain larger than unity, can
seen as an “intelligent” preprocessing afforded by
nonlinear arrays, and which is not present in devi
seeking the quasi-linear behavior associated to pe
reconstruction. The action of the nonlinear compa
tors represents a drastic reduction of the informa
contained in the analog input signals(t) but also of the
fluctuations of the input noiseξ(t). An input–output
SNR gain above unity signifies somehow that this
duction is more pronounced for the noiseξ(t) than for
the signals(t), whence the SNR amplification. Suc
type of “intelligent” behaviors, based on highly no
linear devices assembled in cooperative arrays to
hance their performance, and capable of exploiting
noise through suprathreshold SR, may be at the ro
the very efficient operations implemented by netwo
of sensory neurons, this altogether forming an exci
area of investigation with rich potentialities for info
mation processing.
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