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We study collisions of moving solitons in a fiber Bragg grating with a structure composed of two local
defects of the grating, attractive or repulsive. Results are summarized in the form of diagrams showing the
share of the trapped energy as a function of the soliton’s velocity and defects’ strength. The moving soliton can
be trapped by acavity bounded by repulsive defects; a well-defined region of the most efficient trapping is
identified. The trapped soliton performs persistent oscillations in the cavity, with the frequency in the GHz
range. For attractive defects, essential differences are found from the earlier studied case of the collision of a
soliton with a single defect: in this case, too, there appears a well-defined region of the most efficient trapping,
and the largest velocity, up to which the soliton can be captured, increases. The findings may be significant for
experiments aimed at the creation of “standing-light” pulses in the fiber gratings and for related applications.
Collisions between identical solitons moving across the two-defect structure are also studied. On the attractive
set, soliton-soliton collisions may give rise to symmetric capture of the solitons by both defects or merger into
a single pulse trapped at one defect.
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I. INTRODUCTION

The interaction of nontopological solitons with local de-
fects is a topic of general interest in various physical con-
texts; see the review inf1g and more recent worksse.g.,f2gd.
Recently, interactions of this type have drawn special atten-
tion in nonlinear optics, where they can be realized in terms
of gap solitonssor more general wave packetsf3gd in fiber
Bragg gratingsf4–6g or photonic crystalsf7g with intrinsic
defects. In particular, the collision of a moving Bragg soliton
with a strongly localized attractive inhomogeneity was stud-
ied in Ref. f5g. Inhomogeneity was realized as a local dis-
ruption of the grating. A repulsive defect is also possible in
the grating in the form of a short segment with enhanced
Bragg reflectivity. On the basis of systematic simulations, it
was concluded that three qualitatively different outcomes of
the collision occur: transmission, capture, and splitting of the
soliton into three pulsesstransmitted, trapped, and reflected
onesd. In some casesswhen the incident soliton is “heavy”
and, strictly speaking, unstable by itselfd almost all the en-
ergy goes into the reflected pulse, so that the attractive defect
may look as an effectively repulsive one.

The possibility of capturing the moving soliton by the
defect, and thus the formation of a stable pulse of standing
light, is an issue of considerable applied interest, as it may be
used to design all-optical memory elements, with the soliton
playing the role of a bit. This issue is also closely related to
the challenging problem of the creation of “slow light”f8g
sthe latter problem was specially considered in terms of slow
solitons in Refs.f5,9–11gd. Another potentially promising as-
pect of the interaction between moving solitons and grating
inhomogeneities is a possibility to use it in fiber-grating sen-
sors, which is a very important applicationf12g scurrently,
sensors operate only in the linear regimed. Besides that, the
interaction of moving Bragg solitons with defects is an issue

of considerable interest to the general theory of solitary
waves in inhomogeneous media.

The subject of this work is interaction of Bragg solitons
with a symmetric pair of local defects in the fiber grating,
with the distance between them on the order of several soli-
ton’s widths. We demonstrate that this setting offers new
possibilities to achieve the capture of moving solitons. First,
if both defects are attractive ones, the incident soliton may be
slowed down and/or distorted by the first defect so as to help
the second defect trap it. Achieving more efficient capture is
a relevant issue, as the slowest Bragg solitons currently
available to the experiment have velocity no smaller than 0.5
the maximum velocitycmax f13g, while the largest velocity
which admits the capture of the soliton by a single attractive
defect of the grating is<0.45cmax sand in that limit, the
quality of the capture is poor, as a considerable part of the
soliton’s energy is lostf5gd. The use of the two-defect con-
figuration may help to bridge the remaining gap between the
available and necessary velocities.

Completely new possibilities are offered by a configura-
tion consisting of tworepulsivedefects. This structure also
may trap a passing soliton and then hold in the form of an
oscillator in the effectivecavitybounded by the defects. Note
that the strength of the localized attractive defect, which re-
lies upon local suppression of the Bragg reflectivity in a
narrow segment of the fiber, which must be much smaller
than the size of the solitonsthe latter takes values in the
range between,1 mm and,1 cmd is fundamentally lim-
ited. Contrary to this, the repulsive defect, which makes use
of locally enhancedreflectivity, may be, in principle, arbi-
trarily strong f5g ssee details belowd; hence, the repulsive
pair may provide for a stronger tool for manipulations with
the solitons. In addition, the gap-soliton oscillator realized in
the cavity may by itself be of interest to applications, such as
the development of sources or detectors of GHz radiation
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sthe frequency of oscillations of the Bragg soliton trapped in
the cavity is expected to be in the range of 1–10 GHzd.

This paper is organized as follows: the model is formu-
lated in Sec. II. Section III presents results of a systematic
numerical analysis of collisions of a free soliton with the pair
of attractive defects, with the focus on possibilities to trap
the soliton. Section IV deals with the most interesting case—
i.e., the capture of an incident soliton by a cavity formed
between two repulsive defects. In Sec. V we consider, in a
less systematic form, collisions between two Bragg solitons,
traveling in opposite directions, in the presence of the pair of
attractive defectssthe same case with the repulsive pair does
not yield noteworthy resultsd. Collisions between Bragg soli-
tons is an issue of considerable interestf14g, especially as
concerns a possibility of their fusion into a single pulsef10g.
In this work, we demonstrate that the pair of attractive de-
fects may catalyze the fusion, ending up with a single soliton
trapped by one of the defects. The paper is concluded by Sec.
VI.

II. MODEL

We approximate a local disruptionsor enhancementd of
the resonant Bragg gratingsthe defectd by d-function terms
added to the standard systemf15,16g of coupled-mode equa-
tions for the amplitudes of right- and left-traveling waves,
usx,td andvsx,td, in the nonlinear fiber equipped with Bragg
grating. Thus we arrive at the following model, written in the
usual notationf15,16g:

i
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wherex is the coordinate along the fiber,t is time, and the
ordinary ratio between the self-phase-modulationsSPMd and
cross-phase-modulationsXPMd coefficients, 1:2, is adopted.
In these equations, the SPM coefficient itself, group veloci-
ties, and Bragg reflectivity in the uniform grating are all
normalized to be 1, and two identical pointlike defects are
placed at pointsx= ±L /2. The model does not include a
possible but less interesting additional component of the de-
fect, in the form of a local perturbation of the refractive
index f4,5g.

While Eqs. s1d and s2d describe temporal solitons, the
same model may also be realized in the spatial domain. In
that case, it describes two waves in a nonlinear planar wave-
guide, with t replaced by the propagation distance andx
being the transverse coordinate. The Bragg reflection is pro-
vided by a grating in the form of a system of parallel ridges
or grooves with spacingh on the surface of the waveguide,
the Poynting vectors of the two waves forming angles ±u
with the grating. This setting may give rise tospatial gap
solitons f17g under the Bragg resonant-reflection condition

l=s2h/ndsinu, wherel is the wavelength andn=1,2, . . . is
the order of the resonancesin the limiting case ofu=p /2,
this condition carries over into the one for the fiber grating,
h=ln/2d. Recently, discrete spatial gap solitons were created
experimentally in an array of tunnel-coupled waveguides
with a strong nonlinearityf18g.

The realspositive or negatived constantk in Eqs.s1d and
s2d measures the strength of the local defects, which may be
created as narrow regions with suppressedsk.0d or en-
hancedsk,0d grating. In either case, the size of the per-
turbed regions is assumed to be much smaller than a charac-
teristic lengthxrefl necessary for the complete reflection on
the uniform grating, which is, typically,,1 mm in physical
units f13,16g, or may be increased up to,1 cm for very
weak gratings. The same lengthxrefl determines a character-
istic spatial width of the soliton. For positivek, this implies
that thed-function terms in Eqs.s1d and s2d correctly de-
scribe the narrow grating-suppression defects only withk
!1, as the Bragg reflectivity in the uniform grating is nor-
malized to be 1, which impliesxrefl,1 in the same units.
Consideration of the form of the soliton solutionfsee Eqs.
s6d and s7d belowg and detailed results of numerical simula-
tions, it is reasonable to fix the applicability condition of the
present model, for positivek, as

k ø 0.3. s3d

On the other hand, for negativek, there is no principal limit
on the size ofuku, as in this case thed-function terms in Eqs.
s1d and s2d account for the local perturbation in the form of
enhanced Bragg reflection. As the gratings used in experi-
ments with the Bragg solitons are rather weaks“shallow”d
f13g, the local enhancement may besrelativelyd strong f5g
salthough the form of the coupled-mode equations may need
to be altered for deep gratingsf19gd.

Equationss1d and s2d can be derived from the Hamil-
tonian

H =E
−`

+` F1

2
is− u*ux + v*vx + uux

* − vvx
*d −

1

4
suuu4 + uvu4d

− uuu2uvu2 − su*v + uv*dGdx+ Hint, s4d

with the asterisk and subscript standing for the complex con-
jugation and partial derivative, respectively. The perturbation
part of the Hamiltonian, which accounts for the interaction of
the soliton with the defects, is

Hint = uo
+,−

ksu*v + uv*dux=±L/2. s5d

Exact solutions to Eqs.s1d and s2d with k=0, which de-
scribe solitons moving at a velocitycsc2,1d in the uniform
fiber grating, were found in Refs.f15g:

usol =Î2s1 + cd
3 − c2 s1 − c2d1/4WsXdexpfifsXd − iT cosug,
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vsol = −Î2s1 − cd
3 − c2 s1 − c2d1/4W*sXdexpfifsXd − iT cosug.

s6d

Here,u is an intrinsic parameter of the soliton family which
takes values 0,u,p and

X =
x − jstd
Î1 − c2

, T =
t − cx

Î1 − c2
,

fsXd =
4c

3 − c2 tan−1HtanhfssinudXgtanSu

2
DJ ,

WsXd = ssinudsechFssinudX −
iu

2
G , s7d

with dj /dt=c. It is known that this family of Bragg solitons
is stable in the region ofuøucr, with ucr slightly larger than
p /2 fin particular, ucr<1.01sp /2d for c=0 f20,21gg. The
critical valueucr very weakly depends onc, up to ucu=1 f21g.

Equationss1d ands2d with kÞ0 conserve two dynamical
invariants: the Hamiltonians4d and the norm of the solution
sthe latter is frequently calledenergyin optics, although it is
different from the Hamiltoniand,

E ; E
−`

−`

suuu2 + uvu2ddx. s8d

The norm of the exact solutions6d sfor k=0d is

Esol ;
8us1 − c2d

3 − c2 . s9d

An exact solution is also available for a quiescentsc=0d
soliton trapped by a single defect with the strengthk sof
either signd, set atx=0 f5g:

hu,vj = ±Î2

3
e−it cosussinudsechFsx + a sgnxdsinu 7

iu

2
G ,

s10d

where the two signs pertain to theu andv components, and
the constanta is uniquely determined by the relation

tanhsa sinud =
tanhsk/2d
tansu/2d

. s11d

The pinned-soliton solution exists in the region

2 tan−1ftanhsk/2dg , u , p. s12d

Its energysnormd, defined as per Eq.s8d, is

E =
8

3
Su − Fp

2
− sin−1ssechkdGsgnkD s13d

fcf. Eq. s9d with c=0g, and its intensity at the central point is

uusx = 0du2 = uvsx = 0du2 =
2

3

sin2 u

sinh2sa sinud + cos2 u
s14d

ffor the soliton pinned at the repulsive defect, withk,0, Eq.
s11d yields a,0; hence, this soliton has a local minimum,
rather than maximum, atx=0g. The pinned solitons were
found to be stable only ifu is very close top /2 sand only for
k.0d; note thatu=p /2 always belongs to the existence in-
terval s12d, and Eq.s11d yields a=k /2 for u=p /2.

If k is a small parameter, the interaction between a slow
soliton s6d, with ucu!1, and the pointlike defect is governed
by an effective potential which is calculated by substitution
of the wave forms6d in the interaction Hamiltonians5d f5g,

Uintsjd = −
8

3

k sin2 u

coshs2j sinud + cosu
, s15d

wherej is the instantaneous coordinate of the soliton’s cen-
ter. The slow soliton moves in this potential as a nonrelativ-
istic particle with effective massMsud=s8/9ds7 sinu
−4u cosud f11g. In the model with two defects, an effective
potential can be constructed as a superposition of two singe-
defect potentialss15d, Ueffsjd=Uintsj−L /2d+Uintsj+L /2d.

III. INTERACTION OF A FREE SOLITON WITH THE
PAIR OF ATTRACTIVE DEFECTS

We start the analysis with the case of two attractive de-
fects, which is an extension of the previously developed
analysis of the interaction of the soliton with a single defect
f4,5g. With either sign of the defects, Eqs.s1d and s2d were
simulated in the domain −60,x, +60 by means of the stan-
dard split-step scheme. The spatial derivatives were com-
puted through the fast Fourier transform on the mesh of 1024
points. A typical width of the soliton being,1.5 fin normal-
ized units adopted in Eqs.s1d and s2dg, this implies that the
soliton’s shape was approximated by a set of.30 points. It
was checked that a finer mesh produced the same results.
The d functions were modeled in the usual way, by a
rectangular-box inhomogeneity including, in most cases, four
points. We checked that a more accurate approximation for
the d functions did not affect the results.

The time derivative was approximated by the forward fi-
nite difference. The respective step sizeDt was taken smaller
and smaller until results became insensitive to its further re-
duction. In some cases, it was necessary to useDt as small as
5310−4. To prevent emitted radiation from getting back into
the integration domain, two edge absorbers were installed,
each occupying 20 points of the discrete meshsit was ob-
served that, in very long simulations, the absorbers were es-
sential, really suppressing the emitted radiationd.

Below, results are displayed for the pair of defects placed
at pointsx= ±8, so that the distanceL=16 between them is,
roughly, 10 times the mean soliton’s width. Results obtained
with other values ofL are very similar to those reported here.

Simulations started with the exact solitons6d, taken suffi-
ciently far from sto the right ofd the defects; see Fig. 1. To
initiate the collision, the soliton was lent a negative velocity
c stherefore itsu andv components are not symmetric in Fig.
1d. It was checked that setting the initial soliton still farther
from the defects did not affect the outcome of the collision.
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Most results are displayed below for the valueu=p /2 of
the intrinsic parameter of the soliton; see Eqs.s7d. This
choice is quite natural, as the soliton’s width,1/sinu at-
tains its minimum in this case; hence, it is of major interest
to the experiment and potential applications. Note that a soli-
ton trapped by the single attractive defect may be stable only
for u very close top /2 f5g, and this value simultaneously
belongs to the stability region of the free Bragg solitons
f20,21g. However, some results will also be given for values
of u essentially different fromp /2.

If the first attractive defect fails to capture the incident
soliton, this defect, nevertheless, affects the soliton in such a
way sthe soliton undergoes an internal distortion, and in
some cases it is also slowed downd that its capture by the
second defect is facilitated. An example of such anassisted
captureof a relatively slow soliton by the second defect is
given in Fig. 2sad. In the same setting, a faster soliton splits,
as shown in Fig. 2sbd, with a considerable part of its energy
trapped by the second defect, while another part escapes in
the form of a weak transmitted pulse. A very small share of
the energy is reflected, by both defects, in the form of radia-
tion waves. A common noteworthy feature of the examples
showed in Figs. 2sad and 2sbd is a possibility to capture the
entire soliton or its large part by the second defect in cases
when the single attractive defect would fail in doing this.

Results of many runs of simulations are summarized in
the diagram displayed in Fig. 3sad which shows the share of
the initial soliton’s energyfsee Eq.s8dg eventually trapped by
the second attractive defect. As is seen, there is a well-
defined parameter region providing for the most efficient
capture. This conclusion is additionally illustrated by cross
sections of the diagram at two different fixed values of the
velocity, which are displayed in Fig. 3sbd. If the value ofk is
smaller than one providing for essential trapping at a givenc,
the soliton passes through the two-defect trapsin particular, a
sharp border of the capture region forucu=0.4 starts atk
<0.25, which is very close to the minimum value ofk pro-

viding for the capture of the soliton at the same velocity by
the single defectf5gd. In the opposite case, ifk exceeds val-
ues providing for the capture, the soliton actually does not
reach the second defect as it gets either trappedsand some-
times destroyedd by the first defect or bounces back from it
srecall that, in some cases, a bounce from the attractive de-
fect is possiblef5gd.

It is relevant to compare these results to those obtained
with a single attractive defect. For this purpose, Fig. 3scd
shows the capture diagram for that case. As is seen, the char-
acter of the capture is then completely different, as there is

FIG. 1. The initial configuration used in the simulations. Here,
the soliton is shown withu=p /2 andc=−0.5; see Eqs.s6d.

FIG. 2. Typical examples of the interaction of a moving Bragg
soliton with the attractive two-defect structure:sad The soliton with
the velocityc=−0.4 passes the first defect, but is easily captured by
the second one, both with having the strengthk=0.27. The soliton’s
intrinsic parameter isu=p /2. sbd A large part of the energy of the
incident soliton withc=−0.5 andu=p /2 swhich would freely pass
the single defectd is snared by the second defect, in the case ofk
=0.3.
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no distinguished region providing for the most efficient trap-
ping, in contrast with the two-defect model. Taking into re-
gard the limitations3d on the size of positivek, we conclude
that, at the smallest velocity available to the current experi-
mentsf13g, ucu=0.5, the set of single attractive defects admits
the capture of only.7% of the soliton’s energy, while the
two-defect set captures 40%scounting only what is captured
by the second defectd. Thus, the set consisting of two attrac-
tive defects helps to snare a moving soliton in a more effi-
cient way than a single defect can do it; however, the effi-
cacy of the capture is still below 50%. Below, it will be
shown that the set of two repulsive defects provides for
higher efficacy.

All the above results pertain tou=p /2, which corre-
sponds, as said above, to the narrowest soliton. Results were
also collected for other values ofu; see an example in Fig. 4

for u=p /4 sthe shape of this soliton is closer to the
nonlinear-Schrödinger limitf14gd. As is seen from Fig. 4sad,
a region of the strongest trapping can be also identified for
the solitons with smalleru, although it is shifted to much
smaller velocity.

IV. TRAPPING OF SOLITONS BY A PAIR OF REPULSIVE
DEFECTS

As explained above, the possibility to capture a moving
Bragg soliton in the cavity formed by two repulsive defects
is a new effect, without any previously considered counter-
part. A typical example of the capture of the soliton into a
stable state, in the form of a stable pulse performing persis-
tent oscillations in the cavity, is displayed in Fig. 5. The
evolution of the pulse’s energy, which we define as the share

FIG. 3. sad The contour plots of the share of the initial soliton’s energy trapped by the second defect as a result of the collision in the
plane of the soliton’s velocityc and defects’ strengthk sfor the attractive defects, withk.0d. The diagram pertains to the solitons with
u=p /2. sbd Cross sections of the diagram from panelsad at fixed values of the velocity.scd For comparison with panelsad, the contour plots
of the trapped-energy share is shown here for the single-defect model. This diagram also pertains to the solitons withu=p /2.
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of the initial energy of the soliton confined in the cavity
sbetween the pointsx= ±L /2d, shows a trend to stabilization
fsee Fig. 5sbdg after the captured soliton suffers some radia-
tion loss at a transient stagessmall portions of radiation are
emitted when the soliton bounces from the defects which
bound the cavityd.

An overall diagram showing the efficiency of the soliton’s
capture by the set of two repulsive defects is displayed in
Fig. 6sad, and examples of its cross sections at fixed values of
the velocity are shown in Fig. 6sbd. If the defects’ strengthuku
is smaller than the minimum one which is necessary for the
capture, the soliton passes through the cavity; in the opposite
case, whenuku exceeds the maximum value admitting the
capture, the soliton bounces back from the first defect.

These capture diagrams resemble their counterparts in the
case of the attractive setscf. Fig. 3d in the sense that a region

of the most efficient capture can again be clearly identified.
However, a notable difference is that, in comparison with the
case of the two attractive defects, the efficient region extends
to larger values ofc. In particular, Fig. 6sbd shows that the
trapping efficacy of 60% can be attained forucu=0.5, which
is definitely beyond the reach of the settings with attractive
defects.

The set of repulsive defects is quite efficient too in trap-
ping “heavy” solitons, withu.p /2. Strictly speaking, such
solitons are unstablef20,21g, but if the evolution time be-
tween the creation of the soliton and its collision with the
defect structure is not too large, the consideration of their

FIG. 4. The same as in Fig. 3 but for the soliton withu=p /4.
sad Contour plots for the trapped energy.sbd Cross sections of the
diagram in panelsad at fixed values of the velocity.

FIG. 5. Capture of the solitonswith u=p /2d, moving at the
velocity c=0.4, by the pair of repulsive defects with the strength
k=−0.2.sad The evolution of the fielduusx,tdu2. sbd The trajectory of
the center of the captured solitonsdashed curved and evolution of
the shares“fraction”d of the initial energy which is trapped between
the defectsssolid curved. The soliton’s center is realized as a point
where the fielduusxdu attains its maximum, at a given moment of
time.
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evolution also makes sense. We have observed that such soli-
tons are readily captured by the pair of repulsive defects, and
they gradually reduce their energysin other words, the value
of ud in the course of the oscillatory motion in the cavity, as
shown in Fig. 7. Although very long simulations were not
run in this case, we expect that the soliton will eventually
relax to one with a quasistationary shape. The simulations
also showed that “light” solitonssfor instance, one withu
=p /4d are easily trapped by the repulsive set too and then
perform oscillations in the cavity without any conspicuous
loss snot shown hered. Thus, the trapping mode provided by
the repulsive set is quite robust, providing for the capture of
a broad spectrum of the Bragg solitons.

V. COLLISIONS OF SOLITONS IN THE TWO-DEFECT
STRUCTURE

A natural extension of the above analysis is to consider
collisions between two identical in-phase solitonsswith zero
phase shift between themd moving in opposite directions, so
that the collision point falls within the space between the two
defects. Collisions of solitons in the presence of a single
attractive defect were simulated in Ref.f5g, with a conclu-
sion that the collision does not essentially facilitate the cap-
ture of a pulse by the defect. In the case of two attractive
defects the situation may be different, with sundry outcomes
of the collision. One possibility is that each soliton gets cap-
tured by a defect, so that a symmetric trapped pair of the
solitons appears; see an example in Fig. 8sad. Another note-
worthy outcome is a possibility ofspontaneous symmetry
breaking, resulting in amergerof the colliding solitons into
a single one, which collects nearly all the initial energy. This
single pulse may be trapped by either defect; see Fig. 8sbd.

The latter outcome can be readily explained. Indeed, iden-
tical solitons with zero phase shift attract each other; hence,
the collision between them leads to the formation of a tem-
porary “lump” ssingle pulsed, as seen in both panels 8sad and
8sbd. In the former case, the lump splits again into two qua-
sisolitons, and each is then captured by one of the attractive
defects. However, in the latter case the lump stays unsplit for
a longer timesbecause the collision took place with smaller
velocitiesc= ±0.4, rather thanc= ±0.5d. This heavy pulse is
attracted by both defects, and obviously, its equilibrium po-
sition at the midpoint is unstable. Therefore, a small shift of
the lump from the center leads to its capture by a single
defect. Although no off-center shift was deliberately intro-
duced in the simulations, numerical errors may provide for a
small perturbation that initiates the spontaneous symmetry
breaking.

Thus, the pair of attractive defects gives rise to the colli-
sional dynamics which may be drastically different from

FIG. 6. Capture of the moving solitonsswith u=p /2d by a set of
two identical repulsive defects.sad Contour plots of the share of the
initial energy that remains trapped in the cavity between the defects;
cf. Fig. 3sad. sbd Cross sections of the diagram in panelsad at two
fixed values of the velocity; cf. Fig. 3sbd.

FIG. 7. Oscillations of a “heavy” soliton, withu=s3/4dp and
c=−0.5, captured by the pair of repulsive defects withk=−0.35.
The drop in the share of the energy trapped in the cavity is ex-
plained by radiation loss.
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what was observed in the presence of a single attractive de-
fect. Unlike the attractive set, a pair of repulsive defects does
not generate particularly interesting results of the collision.
Typically, the solitons either bounce and separate or pass
through each othersprovided that they are given zero phase
difference, so that their mutual interaction is attractived.

VI. CONCLUSION

We have investigated interactions of moving Bragg soli-
tons with a structure composed of two defects, attractive or
repulsive. Results of the collisions were quantified by para-
metric diagrams which show the share of the trapped energy
as a function of the soliton’s velocity and strength of the
defects. In the case of the attraction, essential differences
from the earlier studied casef5g of the collision of a soliton
with a single defect were observed: there appears a well-
defined region of the most efficient trapping, and the maxi-
mum velocity, up to which the capture of a considerable part
of the soliton’s energy is possible, increases.

A totally new situation is the capture of the moving soli-
ton by a cavity bounded by two repulsive defects. In this
case, the trapped soliton then performs persistent oscillations
in the cavityswith the frequency in the GHz ranged and may
find specific applications in this capacity. A parametric re-
gion of the most efficient capture was identified in this case
too. A promising result is that the region of the efficient
capture extends to values of the velocity which are available
in current experiments. A moving unstables“too heavy”d
soliton can also be readily captured by the cavity and re-
shaped into a stable oscillating pulse.

These results may be relevant to experiments aimed at the
creation of pulses of “standing light” in fiber gratings, as
well as for potential applications to the design of soliton-
based optical sensors, and of all-optical memory cells, where
solitons would be used as bits.

Finally, we have considered collisions between identical
in-phase solitons in the presence of the two-defect structure.
It was concluded that, with the attractive defects, nontrivial
outcomes are possible: namely, symmetric capture of two
solitons by the two defects and, what is especially interest-
ing, merger of the solitons into a single pulse captured by
one defect.
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