VOLUME 77, NUMBER 9 PHYSICAL REVIEW LETTERS 26 AGUST 1996

Magnetoresistance of Two-Dimensional Fermions in a Random Magnetic Field
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We perform a semiclassical calculation of the magnetoresistance of spinless two-dimensional
fermions in a long-range correlated random magnetic field. In the regime relevant for the problem of
the half filled Landau level the perturbative Born approximation fails and we develop a new method of
solving the Boltzmann equation beyond the relaxation time approximation. In absence of interactions,
electron density modulations, in-plane fields, and Fermi surface anisotropy, we obtain a quadratic
negative magnetoresistance in the weak field limit. [S0031-9007(96)01015-0]

PACS numbers: 72.10.Bg

The problem of two-dimensional transport in spatially MR. This classical contribution due to the bending of par-
random static magnetic fields (RMF) attracted a lot ofticle’s trajectories dominates over the suppressed effects of
attention over the last few years. There exists a number ofieak localization, at least, at not very low temperatures.
experimental realizations of two-dimensional (2D) RMF The semiclassical approach to the RMF problem was
created by randomly pinned flux vortices in a type-llundertaken in a number of publications. In [9] the
superconducting gate, grains of a type-l superconducto§ubnikov—de Haas (SdH) oscillations pf,(B) in the
or a demagnetized permanent magnet placed nearby tisérong field limit Q. = B/m > 1/7, were studied by
2D electron gas [1]. A formally similar problem arises in summing over classical cyclotron orbits. However, to find
the contexts of the gauge theory of hi@h cuprates [2] p,.(B) in the weak field limit before the onset of the SdH
and the composite fermion theory of the half filled Landauoscillations one has to develop a semiclassical analysis in
level (HFLL) [3,4]. terms of particle-hole pairs rather than single fermions.

Various analytical and numerical results obtained so far The authors of [10] used the linear Boltzmann equation
seem to indicate that in the case of a continuum systewhere the RMF played a role of a random driving force
with unbound spectrum all states are localized [5], whileinstead of including it into the collision integral. The
in the lattice case there might be an extended state abndition which makes it possible is-¢ > 1, where¢
the center of the band [6]. The effective low-energyis a correlation length (scale of a typical spatial variation)
description in terms of the unitary model constructed in  of the RMF. However, the analysis performed in [10] was
[7] suggests that the RMF problem belongs to the unitaryestricted onto the case relevant for the experiments [1]
random ensemble. Compared to the conventional problemvhere, first, strong potential scattering provides a large
of potential scattering corresponding to the orthogonabare value ofp,,, and, second, the spatial correlation of
case, the effects of quantum interference in the RMF aréhe RMF has a finite range £ .
suppressed as a result of broken time-reversal symmetry. In the present Letter we address the case whgnis
In particular, the logarithmic temperature dependent weakolely due to the scattering by the RMF described by the
localization corrections to the conductivity appear only(not necessarily short-range) correlatdy,b-,) = f(q)
in the next order in the metallicity parameter! > 1:  independent of the external fieBl We will not restrict
dwo = —(1/m*kgl)In(1,/7:) [Where the temperature our consideration onto the lowest order of the perturbation
dependence comes from the inelastic phase breaking tinteeory and be able to discuss the cgd@) ~ ¢ 24¢
7,(T) in the regimer,(T) > 7, = [/vr]. Itsuggests a relevant for the problem of HFLL where the spatial RMF
larger localization lengtli,. ~ I exd(7%/4) (krl)*]than  correlations decay as~* and the lowest order result
in the orthogonal case. simply diverges.

It was shown in [8] that quantum fluctuations of parti- We start with the Boltzmann equation for the distribu-
cle’s positions in the direction transverse to their classication functiong(z, 7, ¢, €) = go(e) + dg(t, 7, ¢, €) which
trajectories are strongly reduced by the RMF. And so igeads as
the contribution of quantum backscattering which leads t -
a negative magnetoresistance (MR) in the presence of]iqi T ite -V + (Q + M) i} %

¢ I\ 32

weak uniform external magnetic fieRl ot m ) d¢

Therefore, in the RMF problem one might expect that -9
the semiclassical transport theory is applicable in a wider s\ r, ¢, € levy 9e
range of length scales and temperatures than in the case of 1)

time-reversal invariant random potential scattering. Yet,
a semiclassical treatment of the RMF scattering beyonavhere v, = vrny is a vector of Fermi velocity normal
the relaxation time approximation may lead to a nontrivialto the circular Fermi surface parametrized by the angular
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variable ¢, E stands for an infinitesimal external electric G(t;# — 7; ¢ — ¢'). Then the calculation of the

field, andgy = 0(er — €) is the unperturbed Fermi-Dirac frequency-dependent conductivity amounts to computing

distribution. By contrast to the case of ordinary potentialthe p-wave harmonics of theg = 0 component of the

scattering (which can also be treatedat > 1 asaran- Fourier transform of

dom electric field) Eq. (1) implies a trivial dependence of ’ o Gilw)

dgone, namelydg(t,7,¢.€) = —8g(t.7.$)8(er — €).  Gw;g;d — ¢) = Y MO ¢V iRy —is) TEZ2
We note, in passing, that one can use Eg. (1) even in ! 2

the presence of long-range retarded gauge interactions b&here R. = vr/Q. is the cyclotron radius of fermions

tween fermions which spoil the Fermi liquid coherence.with densityn,,

Even though there are no well-defined fermionic quasipar-

ticles, the kinetic equation in terms of local displacements oo(w) =

of the fluctuating Fermi surface can still be derived [11],

thereby making a close contact with the idea of bosoniza- 2n

tion of 2D non-Fermi-liquids [12]. Ty(w) = 5
The perturbed distribution function can be found in

terms of the (retarded) Green function of the Boltzmannin the absence of the RMF the bare Green function is given

ie? ne

Gi(@) + G(e)],

G-1(w)].

operator for a given RMF configuration by its harmonlcsG(O)(w) =1/w — 1Q, + ié.
R . , ., In our case of no potential disorde} = 0*) the lowest
6g(t,7,p,€) = ie j€d¢ fd” order (bosonic) self-energy correction@ '(w) = o —

.., e 2 1Q, + X/(w) found in [10] makes it only possible to
X Gt; 7,7 ¢, 4 )y Ed(er — €) (2) study theB-dependent correction to the basg, at high
and then averaged over all possible configurations. Afrequencies or magnetic fields. To proceed with a more
usual, the averaging over disorder restores the translationabmplete account of the effects of the RMF we first solve

invariance in bottr and¢ spaces{{(G(t; 7, 7'; ¢, p"))) = | the equation for the Green function

[zai + lU¢V + t(Q + %) 8¢:|G(t —t5F ") = 6(t — 1)8(F — F)o(¢p — @) 3)

for an arbitrary RMF configuration by Fourier transforming with respect to ' and7 — 7. The solution of the
resulting equation
|:a) — Vpq + lvd)V + t(Q + b’(?:)> 8¢:|G(w q.75¢,¢")=8(¢dp — @) 4)

can be searched in the form

o | Provided the RMF correlation length is large enough
G(F.q: . 9") = — i[ dr (kp& > 1) one can linearize Eq. (6) (we will comment on
0 this point below) and then end up with an explicit solution

jﬁd(ﬁu i7Gy (§:4.9") iV (riF:d".8") o ;
W(r;7; ¢, ’=—] dr' b(F — Ry) — 8(¢ — @),
G YEFESS) =] drbG R 586 — ¢
Here¥ can be viewed as an “eikonal” phase of a particle- (7)
hole pair propagating in the RMF. Substituting (5) into

, . . : R — Qr0/0¢)}; - i i
(4) and integrating by parts we obtain the equationdigr WHereR, = R.e™7%/*%n, is a classical trajectory cor

responding to the Larmor precession along the cyclotron
<i 9 i,jdj)q, A P b(r) 8 2 ,i7Gy' ,i¥  orbit. Now taking the Gaussian average of the exponent
a7 m 9¢> e™ in (7) over different realizations of the RFM we ob-
6) | tain the averaged Green function

G(w,0;¢ — ¢p') = — f dr e'Tle+if <3/"’¢>Jexp[ f drlf d72F<2R sin ke (“2 TZ)) ad)z}a((p — ¢,
(8)

whereF(r) is a Fourier transform of the RMF correlatftg). The use of Eq. (8) yields the conductivity

O(w) = eZze j;)m drcoqQ, + w)TeX[{— ]()Tdr'(T - T/)F<2RC sin Q;Tl>:| + (0w = —w). 9)

The formula foro, (w) differs from (9) by the additional factor té. = w)7 in the integrand.
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The exponential factor in the integrand in (9) is con- The use of (9) then leads to
trolled by the amplitude of the RMF correlatéi(r). To &2 &2 N
check the validity of (9) in the perturbative regime we ex- To = 5 (kpl) = = (kpéle®Ki(a),  (12)
pand the exponent up to the first ordefifr) and perform
ther integration first [it has to be done with an infinitesimal
exponente —?7 inserted into the integrand which specifies
the retarded nature of the Green function (8)]. Then on

can read'('y ;)b_tair} ©. — o) + (0 — —w) Thus the condition (11) actually provides thatl > 1
Oxxl@) = 1/ Tul2e = @) =T 10 @) . which is necessary to verify the very use of the kinetic
where the RMF scattering rate is given by the eXpressionyquation (1) and to obtain the metallic value of the

N Qe conductivity.
V/ru(B) = ]0 dTCOSQCTF<2RC S ) (10) In the intermediate coupling regime relevant for the

which is nothing but the result of the first Born approxi- case of HFLL the condition (11) is fairly well met(= 2
mation (BA) [10]. One can also obtain the formula (10)and k¢ =~ 15) and Eq. (12) gives the CF conductivity
by estimating the~r term in the exponent in (9) in the o = (e?/h) (kré)e*K1(2) which is 2.06 times greater

T — o limit which would be equivalent to the relaxation than the BA result. It is worthwhile mentioning that the
time approximation. experimentally measured resistivity at= 1/2 is about

In what follows we will concentrate on the cagg;) = 3 times smaller than the BA estimate [3].

8m2an,e 2¢ relevant for the problem of HFLL where ~ The strong coupling behavior of the MFP { ¢/\/a

the dimensionless coupling constant= 1®2(n;/n,) is @S Opposed td ~ ¢/« at weak coupling) can already
proportional to the density; of ionized Coulomb impu- P€ seen in the self-consistent BA which in the case of
rities separated by the spacer of the wigdtfrom the 2D 2 finite-range potential scattering is applicable éak

electron gas and the amount of gauge flux quabtat- B~ "/>. Adapting this method to the RMF problem one
tached to every electron in the case of a filling fackor €an achieve a self-consistent improvement of the lowest

with an even denominateb [3]. In the picture of com- prder result by i_nserting a fa.c:t@r‘T/T". into the int'egrand
posite fermions (CF) each charged impurity also becomel§ (10) and solving the resulting nonlinear equationer
a source of a gauge magnetic flux [3,4]. Itis believed that For the case of HFLL this equation reads as
the scattering by randomly distributed fluxes provides the |, ~_ 28 ]m T/n,[ 2 <§>2}_3/z
. . . : Ty = dre " + (13)
main mechanism of the CF momentum relaxation while vr Jo vp
the potential scattering is negligible. and gives the MFP(a) in agreement with the above
At B = 0 Eq. (10) gives the CF elastic transport rateeikonal calculation. Interms of the conventional diagram-
1/7¢F = (vr/2€)a which coincides with the BA result matics Eq. (13) corresponds to the sum of uncrossed “rain-
found in [3]. Although this estimate certainly holds for how” diagrams for the bosonic self-energy. By contrast,
a < 1, it is no longer valid at largex when the CF  the eikonal result (8) includes contributions of the relevant
mean free path (MFP)cr = 2¢a ™" gets shorter than crossed diagrams in all orders of the perturbation theory.
&. The case of HFLL(» = 1/2) appears to be marginal  |n [10] the MR of the RMF problem was identified as
(@ = 2), and!/ determined this way just equafs Since the B dependence of,,. It is obvious, however, that in

a is proportional to®?, the situation becomes even the absence of other mechanisms of momentum relaxation
worse for compressible states at fractions with higher eveBne cannot use Eq. (10) in order to obtain the MR at

whereK; (x) is the modified Bessel function of the second
kind. At small @ Eq. (12) reproduces the above BA
result while at strong coupling it predicts the MFP to be

? = &2/ a.

denominators. Qe < 1.
This observation signals about a failure of the BA Moreover, in the HFLL case the long-range character
at large couplinga when the matrix element; ; ~  of F(r) ~ r—3 leads to a logarithmic divergency of the

Ja (kp/mé) describing a single event of CF scattering second derivative of..(B) at B — 0, which is, of course,

by a typical magnetic impurity satisfies neither of the twoan artifact of the above expansion. In the framework of
conditions M} 5 < 1/m¢? nor (kpé)/mé* required for  the more accurate self-consistent BA one obtains that in
the validity of the BA [13]. This is the semiclassical the weak field limitr,(B) is an increasing function a8
regime of a smal(A¢ ~ 1/kré < 1) angle scattering, which implies a negative MR. Our self-consistent analysis
which, however, cannot be treated in the lowest order o&hows that the decreasing behaviorgfB) (positive MR)

the perturbation theory. in the case off(q) ~ ¢ (1/24°¢* and smalla reported in
Nevertheless, if the parameter¢ is large enough, so [10], in fact, holds only for large enough field§). >
that 1/7:(1/In1/a?).
kpé > Va, (11) The more complete eikonal treatment of the RMF

one can resort to the so-called eikonal approach [13problem confirms this prediction. Expanding (9) up to
which was essentially implemented by the above solutionhe second order i), we obtain the MR defined as
of the Boltzmann equation. In fact, it is the condition (11) Ap,.(B)/pxx = —[Acw(B)/ 0] — [0y (B)/ow? in
which allows one to solve Eq. (6) in the first orderitr).  the form
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Apxx(B) Qg 2 <T>2 1 fT / n 3 /
—_ L = = J— —_ + — —
P 20 () = 2 0 2\, d' 37"t — 4°)F(7") ) |, (14)
where(r") = [ dr " ex]— [y d7'(r — )F(r")]. | RMF transport time, mean free path, and zero-field con-

Notice that in the relaxation time approximation ductivity which all appear to be greater than the corre-
((7"y = [, d7 "¢ /™) expression (14) contains only sponding results of the Born approximation. In particular,
two terms proportional t¢r>) and{r)> which exactly can- we propose a new estimate of the semiclassical conduc-
cel out and result in zero MR. Since the exponential factotivity at HFLL which is about twice the value found in
[od7'(r — 7')F(1') appearing in all our calculations in- [3] and agrees better with the experimental data. In the
stead ofr/7, behaves as-7> at smallr, the combined absence of interactions, Fermi surface and fermion disper-
effect of these terms on the MR is negative and can domision anisotropy, periodic electron density modulations, and
nate over the remaining (strictly positive) contribution.  in-plane fields (all these factors are known to yield positive

The MR remains negative for all couplings in a wide contributions to the MR) we obtain the negative quadratic
class of realistic RMF correlation functiorf$g) including MR in the weak field limit. It remains to be understood,

the HFLL case atr = 2 when the Eq. (14) yields however, whether or not the semiclassically found nega-
Apic(B) ) tive MR is related to the quantum localization phenomena

—— = —0.06(Q.7y)", (15)  in the RMF.
Pax The author is grateful to Per Hedegard for a valuable

while in the strong coupling limit of largex the MR discussion of the results of this work.
becomesAp,.(B)/prx = (QcTtr)z('ﬂ'/“' - 1.
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