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Valence-band states in diluted magnetic-semiconductor quantum wires

F. V. Kyrychenko and J. Kossut
Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

~Received 30 June 1999!

We present a theoretical study of the valence-band states in diluted magnetic semiconductor quantum wire
structures. As a consequence of confinement in two directions, the hole states in a quantum wire are known to
be mixtures of heavy- and light-hole components. Due to a strongp-d exchange interaction in diluted magnetic
semiconductors, the relative contribution of these components is strongly affected by an external magnetic field
B, a feature that is absent in nonmagnetic quantum wires. This leads, in turn, to a strong magnetic-field
dependence of the probabilities of various optical dipole transitions in diluted magnetic semiconductor quan-
tum wires. Numerical calculations performed for the case of Cd12xMnxTe/Cd12x2yMnxMgyTe T-shaped quan-
tum wires demonstrate the possibility to efficiently control the polarization characteristics of light emitted from
such structrures by means of an external magnetic fieldB.
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INTRODUCTION

The properties of many physical quantities in low
dimensional semiconductor structures such as quantum w
~QW’s!, quantum wires~QWR’s!, and quantum dots, behav
differently from their counterparts in bulk material. In man
cases, the values of these quantities can be varied by con
ling the degree of the electronic confinement. Use of dilu
magnetic semiconductors~DMS’s! in such quantum struc
tures adds yet another possibility of independent contro
several important parameters simply by applying an exte
magnetic fieldB. This possibility originates in a stron
carrier-magnetic ion exchange interaction which leads, e
to the effect of giant spin splitting of energy bands in DMS
~see, e.g., Ref. 1!. The applied magnetic fieldB induces a
magnetizationM of the magnetic ion subsystem, which giv
rise to the exchange fieldGe(h);M acting on the electron
~hole! spin in proportion to the exchange integralsa ~b!. The
resulting spin-dependent energy shifts of the band edges
easily be comparable in value to the band-offset energiesUe
and Uh for electrons and holes in typical heterostructur
This fact gives rise to a series of interesting physical p
nomena in DMS-containing quantum heterostructures~see
Refs. 2–5!.

Any meaningful, quantitative analysis of the interband o
tical phenomena in low-dimensional structures~and quantum
wires in particular! requires a detailed account of the ho
eigenenergies and eigenstates, which in zinc-blende s
conductors are quite complicated. In this paper we focus
this problem in the special case of diluted magnetic semic
ductors. We show that the giant spin splitting introduces
ditional peculiarities to an already intricate problem of ho
eigenstates.

The valence-band states in QWR’s have been stud
theoretically earlier~see Ref. 6!. In the case of semiconduc
tor QW’s, the Luttinger Hamiltonian describing the holes
a zinc-blende environment is diagonal for holes, with a v
ishing in-plane wave vector. This means that the project
of the total angular momentum on the growth direction,Jz,
is a good quantum number, and that the hole states
two-dimensional~2D! QW can be represented by eith
purely heavy-hole~HH! or light-hole ~LH! states, withJz5
63/2 andJz561/2, respectively. The ground state of a ho
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in an unstrained QW is the HH state. The situation is ve
different in the case of quasi-1D QWR structures. First, d
to the confinement in two directions, the Luttinger Ham
tonian is nondiagonal even for vanishing wave vectors alo
the wire direction, and the total angular momentum proj
tion Jz thus ceases to be a good quantum number. The
eigenstates in QWR’s then become mixtures of heavy-
light-hole components. Moreover, as shown in Ref. 6,
ground-hole state in a QWR consists mostly of the light-h
contribution, in contrast to the case of quasi-2D QW stru
tures. The relative contribution of the heavy and light ho
to the total wave function depends in this case on the bar
height as well as the dimensions of the wire.

In this context, the use of diluted magnetic semicond
tors to make QWR structures gives us a unique possibility
effectively controlling the relation between the heavy- a
the light-hole contributions to the valence-band states sim
by changing the magnetic fieldB. This in turn allows us to
influence the polarization of light emitted~or absorbed! in
various interband optical transitions. The paper is organi
as follows. We introduce the notation and the basic theo
ical ingredients of our calculation in the next section. Th
we apply our calculations for the specific case of T-shap
DMS QWR’s. We note parenthetically that such wir
have already been fabricated.7

FORMULATION OF THE PROBLEM

The main difference between calculations for DMS-bas
and nonmagnetic structures arises from the presence o
carrier-magnetic ion (sp-d) exchange interaction. The cor
responding Hamiltonian for the electron and the hole en
lope functions in crystals with the zinc-blende structure c
be written in the form of a contact interaction1,8

Ĥs2d5a(
j

d~r2Rj !SjSe ,

Ĥp2d5
1

3
b(

j
d~r2Rj !SjJh , ~1!

whereSe is the electron spin operator (Se51/2) andJh is the
hole total angular momentum (Jh53/2) operator,a and b
4449 ©2000 The American Physical Society
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4450 PRB 61BRIEF REPORTS
are the exchange integrals, and the sum is over all ca
lattice sites occupied by the magnetic ions having spinsSj .

An external magnetic field induces a magnetization in
sample with the total moment^( jSj&. The exchange interac
tion given by Eq.~1! in the mean-field approximation can b
written in terms of Zeeman-like HamiltoniansĤe

ex andĤh
ex:1

Ĥe
ex5GeSe ; Ĥh

ex5
1

3
GhJh , ~2!

where

Ge5N0ax^Sj& and Gh5N0bx^Sj& ~3!

are effective exchange fields, andx is the molar fraction of
magnetic ions. To describe the average value of the com
nent of the localized spins along the applied magnetic-fi
direction ^Sj

Z&, a modified Brillouin function with two phe-
nomenological parametersS05S0(x) andT05T0(x) is com-
monly used:9

^Sj
Z&5S0BSS gmBBS

kB~T1T0! D . ~4!

Hereg andSare, respectively, theg factor and magnitude o
the spin of the magnetic ions, andmB is the Bohr magneton
The remaining two components of average spin vanish in
materials in question̂Sj

X&5^Sj
Y&50.

According to this notation, the Hamiltonian describing t
hole states in DMS QWR’s takes the form

Ĥh5ĤL1
1

3
GhSh1V~x,y!, ~5!

whereV(x,y) is the confining potential in thex-y plane due
to the presence of the barriers, andĤL is the Luttinger
Hamiltonian.10 The form of the Luttinger Hamiltonian de
pends on the crystallographic direction of the axis of qu
tization, and will be given explicitly in the next section. I
typical experimental conditions the exchange-induced sp
ting is much larger than the intrinsic Zeeman effect and
direct Landau quantization~up to 100 times!. One can thus,
to a good approximation, neglect the two latter contributio
to the Hamiltonian.

T-SHAPED QUANTUM WIRES

We perform our calculations specifically fo
Cd0.97Mn0.03Te/Cd0.72Mg0.25Mn0.03Te T-shaped QWR’s,
since such structures have already been obtained and
been preliminarily studied experimentally.7 Thus the poten-
tial V(x,y) in Eq. ~5! describes now the T-shaped confinin
potential~see Fig. 1!. The shaded regions in the figure co
respond to Cd0.72Mg0.25Mn0.03Te barriers, while
Cd0.97Mn0.03Te QW’s are unshaded. The wire structure co
sists of two intersecting QW’s with@00-1# and@-110# orien-
tations, corresponding in our notation toX andY directions,
respectively. TheZ axis is taken along the wire direction
i.e., is perpendicular to the plane of the figure, and exte
along the@110# crystallographic direction.

For such choice of axes the Luttinger Hamiltonian tak
the form11
n
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ĤL5
\2

2m0

u 3
2 , 3

2 & u 3
2 , 1

2 & u 3
2 ,2 1

2 & u 3
2 ,2 3

2 &

S P1Q 2S R O

2S* P2Q 0 R

R* 0 P2Q S

0 R* S* P1Q

D ~6!

with

P6Q5S g17
3g31g2

2 D kz
21~g16g2!kx

2

1S g16
3g32g2

2 D ky
2,

R5
)

2
@~g22g3!kz

222g2kx
21~g21g3!ky

21 i4g3kxky#,

S52)~g3kxkz2 ig2kykz!,

whereg1 ,g2 ,g3 are the Luttinger parameters,m0 is the free
electron mass, andki52 i (]/]qi) (qi5x,y,z).

In this work we restrict our consideration to the case
the magnetic field applied along the wire,BiZ. In this case,
the exchange HamiltonianĤh

ex becomes diagonal in the bas
of u63/2&,u61/2&:

Ĥh
ex5

1

3
Gh

zJz , ~7!

whereJz represents the matrix of operator of thez projection
of total angular momentumJ53/2. Therefore, for a vanish
ing hole wave vector along the wire direction (kz50) the
434 matrix of the hole Hamiltonian~5! splits into two
232 matrices for~13/2,21/2! and~23/2,11/2! subspaces.
In dimensionless variables, where the length unitd51 Å and
the energy unitE05\2/2m0d2, the Hamiltonian for the
~13/2, 21/2! subsystem takes the form

FIG. 1. Potential profile of a 40-Å-wide Cd0.97Mn0.03Te/
Cd0.72Mg0.25Mn0.03Te T-shaped quantum wire structure. Gray r
gions correspond to barriers, and well regions are unshaded. Ar
indicate crystallographic directions. The line contours show
shape ofuC(x,y)u2 ~see text!, indicating that the holes are onl
weakly localized at the intersection region.
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Ĥh5S 2~g11g2!
]2

]x22S g11
3g3

2 D ]2

]y2 1
Gh

z

2
)S g2

]2

]x22
g31g2

2

]2

]y222ig3

]2

]x ]yD
)S g2

]2

]x22
g31g2

2

]2

]y2 12ig3

]2

]x ]yD 2~g12g2!
]2

]x22S g12
3g3

2 D g2

]y22
Gh

z

6

D 1V~x,y!. ~8!
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The Hamiltonian for the~23/2, 11/2! subsystem can be ob
tained from Eq.~8! by taking its conjugate and changing th
sign of the exchange fieldGh

z . It is seen that the exchang
field Gh

z appears in the diagonal matrix elements in Eq.~8!
multiplied by two different coefficients. We can thus expe
that there will be a strong magnetic-field dependence of
degree of mixing of the heavy- and light-hole states in su
QWR structures.

The Hamiltonian~8! commutes with the symmetry opera

tor P̂, which corresponds to a superposition of a reflection

the x50 plane and the conjugation operation:P̂C(x,y)
5C* (2x,y). Eigenvalues of this operator arep561. The
hole wave function must therefore satisfy the following co
dition:

C* ~2x,y!56C~x,y!. ~9!

We expand our two-component hole wave function in
basis of the solutions of the Schro¨dinger equation for two-
dimensional, infinitely deep QW’s (Lx and Ly are well
widths in theX andY directions, respectively!. In agreement
with Eq. ~9!, we have used as the basis functions in theX
direction only the functions with definite parity~sine or co-
sine! for real part of C, and with opposite parity for its
imaginary part. For the ground states of the holes this exp
sion takes the form

FIG. 2. Magnetic-field dependence of the relative contributio
of the heavy-hole and the light-hole components to the wave fu
tion of the hole ground state for a 40-Å-wide~solid line! and a
65-Å-wide ~dashed line! Cd0.97Mn0.03Te/Cd0.72Mg0.25Mn0.03Te
T-shaped QWR. Positive and negative values of the magnetic
correspond to~13/2, 21/2! and ~23/2, 11/2! hole subsystems
respectively.
t
e
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n-

C5S Ch

C l
D5

2

ALxLy
(
n,m

F S anm
h

anm
l D cosS pnx

Lx
D d21,~21!n

1 i S bnm
h

bnm
l D sinS pnx

Lx
D d1,~21!nGFcosS pmy

Ly
D d21,~21!m

1sinS pmy

Ly
D d1,~21!mG , ~10!

where indicesh and l correspond to heavy- and light-hol
components.

Matrix elements of the Hamiltonian~8! can be calculated
analytically using the expansion given by Eq.~10!, resulting
in a (2* N* M )3(2* N* M ) symmetric square matrix,N and
M denoting the numbers of the basis functions in theX andY
directions, respectively. Performing numerical diagonali
tion of the resulting matrix, one can then obtain the ho
energies and the coefficientsanm

h( l ) ,bnm
h( l ) . Note that in the

case of a T-shaped potential profile, when the confinem
region is not well defined, one should be careful to choo
Lx ,Ly large enough to avoid any influence of these para
eters on the final result of the calculation. This applies es
cially to the hole states in T-shaped QWR structures, wh
are only very weakly localized at the intersection region~see
Fig. 1!.

In Fig. 2 we plot the magnetic-field dependence of t
relative contributions of the light-hole and the heavy-ho
components,̂C l uC l&5(n,m(an,m

l )21(bn,m
l )2 and ^ChuCh&

5(n,m(an,m
h )21(bn,m

h )2, to the ground-state wave functio
for a 40-Å-wide~solid lines! and a 65-Å-wide~dashed lines!
Cd0.97Mn0.03Te/Cd0.72Mg0.25Mn0.03Te T-shaped QWR. Posi
tive values of magnetic field correspond to the~13/2, 21/2!
hole subsystem, and negative values of the field to the~23/2,
11/2! subsystem. We see immediately that the characte
the hole ground state can be very strongly varied by an
plied magnetic field.

One of the possible manifestations of this effect can b
magnetic-field dependence of the polarization of interba
optical transitions in DMS QWR’s. Since the heavy-ho
states are optically inactive in the light polarization«iZ, we
may expect a decrease of the intensity of optical transition
this polarization with an increasing heavy-hole contributi
to the hole ground state.

In order to calculate quantitatively the matrix elemen
describing the dipole-allowed optical transitions, one ne
to include in the considerations also the excitonic effec
However, the polarization characteristics of the optical tra
sitions depend mainly on the relative contribution of t
heavy- and the light-hole components to the hole grou
state. So, neglecting the excitonic effects and writing do
the expressions for the intensities of optical transitions in
p(«iZiB) and thes(«iX'B) polarizations, we have:

s
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^CeuC l&
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4
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n,m

an,m
l an,m

e G2

,

I s}F 1

&
^CeuCh&2

1

A6
^CeuC l&G 2

5F 1

&
(
n,m

an,m
h an,m

e 2
1

A6
(
n,m

an,m
l an,m

e G 2

, ~11!

where Ce is the wave function of the conduction electro
ground state, andan,m

e are the coefficients of its expansion
the basis of the solutions of the Schro¨dinger equation for a
two-dimensional, infinitely deep QW, analogous to the e
pression for the holes given by Eq.~10!. Since the expansion
involves in the case of electrons only functions even in thX
direction, only terms withan,m

h( l ) appear in the sums in Eq
~11!.

In Fig. 3 we present the results of calculations of t
magnetic-field dependence of the polarization of opti
transitions, P5(I p2I s)/(I p1I s), for 40-Å-wide
~solid line! and 65-Å-wide ~dashed line!
Cd0.97Mn0.03Te/Cd0.72Mg0.25Mn0.03Te T-shaped QWR’s. As
expected, when the contribution of the heavy-hole com
nent to the ground-state hole wave function increases,
probability of the optical transitions in thep polarization
decreases~see Fig. 2!. This clearly leads to a stron
magnetic-field dependence of the polarization of optical tr
sitions occurring in QWR’s made of DMS, a feature n
encountered in such structures fabricated of nonmagn
materials.

CONCLUSIONS

We have shown that in the case of QWR’s made of
luted magnetic semiconductors it is possible to control
n
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e

relative contribution of the light- and the heavy-hole comp
nents to the total wave function of the holes by changing
external magnetic fieldB. This is in contrast to the case o
nonmagnetic quantum wire structures, where the characte
the hole states is determined only by the structure par
eters, such as the well width and the barrier height. Num
cal calculations performed for the case of T-shaped D
QWR’s demonstrate a strong magnetic-field dependenc
the polarization of optical transitions in such structures d
to field-induced changes of the character of the hole gro
state. It is expected that similar effects should also occu
the case of DMS-based quantum dots.
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FIG. 3. Magnetic-field dependence of the polarization of opti
transitions between the electron and hole ground states for a 4
wide ~solid line! and a 65-Å-wide ~dashed line!
Cd0.97Mn0.03Te/Cd0.72Mg0.25Mn0.03Te T-shaped QWR. Positive an
negative values of magnetic field correspond to the~13/2, 21/2!
and ~23/2, 11/2! hole subsystems, respectively.
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