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Based on the matrix method, a theory of propagation of TE- and TH-polarized Bessel light beams (BLBs) in
a one-dimensional photonic crystal (1DPC) is developed. The transmission through a 1DPC (with and
without a defect impurity) of a quasi-circularly-polarized incident Bessel beam generated by an axicon
from a circularly-polarized Gaussian beam has been calculated and analyzed. Also a solution of the prob-
lem on the transmission of BLBs through crystalline plate (layer of a uniaxial crystal with the orientation
of the optical axis orthogonally to its interfaces) and reflection from it has been presented.

Based on this, a new method of formation of TE- and TH-polarized Bessel light beams has been pro-
posed. It has been shown that it is possible to control this process by changing the cone angle of an inci-
dent Bessel light beam. The effect of generation of a coherent superposition of two Bessel beams with
different cone angles in the case of a high birefringence of defect layer has been predicted theoretically.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Bessel light beams (BLBs) suggested in 1987 [1] have attracted
considerable interest due to their properties of propagation
invariance and self-reconstruction, which have found applications
in different fields of science and technology, for example, for opti-
cal trapping and manipulation of microparticles and atoms [2–6].
More investigated from both theoretical and experimental view-
points (see, for example, [1,7–11]) are scalar BLBs. Recently,
attention has been concentrated on the vector Bessel light beams
of order m, which are rotating wave solutions of the homoge-
neous Maxwell equations in the circular cylindrical coordinates
and are associated with the dependence on the azimuthal angle
[12–14].

One of important directions of optics of Bessel beams is the
investigation of their polarization properties and elaboration of
methods of forming the beams having a definite polarization
[13,15–17]. In particular, the polarization and space-energetic char-
acteristics of BLBs [18], the specific azimuthal component of energy
flux [19], properties of influence of anisotropy and gyrotropy on
vector Bessel beams [20,21] are of great scientific interest.

If the component of the electric (magnetic) field along the axis
of beam is absent, it is called TE (TH) mode. Some dynamic and
propagation invariance properties of these beams are analyzed in
papers [13,22,23]. The lowest-order TH and TE BLBs are radially
(q) and azimuthally (u)-polarized, respectively. Their experimen-
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tal realizations in free space have been reported recently [24].
Note, that the beams with TE or TH polarization have variety of
applications. It is established that their focusing allows one to ob-
tain a higher axis concentration of the electrical and correspond-
ingly magnetic fields in comparison with the case of linear or
circular polarization [25]. Consequently, such beams are promising
in photolithography, confocal microscopy, devices of optical re-
cord-reading of information. TH and TE BLBs with large cone angle
have a high value of the transverse gradient of intensity and possi-
bilities of reconstruction of the spatial field configuration. Hence,
they show good promise for the microparticles keeping and man-
agement of their movement [26–29], and also for the transporta-
tion of laser radiation energy in the open space and in hollow
light guides. TH and TE beams are optimal for the use in different
schemes of probing the cylindrical objects, for example, in profil-
ometry [30,31]. Moreover, in the last years the outlook of their
use for laser cutting has been established [32].

By now several methods of producing TE- and TH-polarized
light fields have been proposed. The simplest method is the use
of the polarization property of the conical surface when light is
incident at the Brewster’s angle [33]. But for the complete separa-
tion of TE- and TH-polarized component there is necessity of the
repeated passage of light through the conical surface that makes
the scheme more complex. TH-polarized field can be obtained by
the method of the mode converter due to the formation of a super-
position of two orthogonally polarized Hermit–Gaussian modes of
the first-order [34]. A number of intra-cavity methods of obtaining
TH- and TE-polarized modes for traditional (for example, Gaussian)
beams are known (see, for example, [35–38]).
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Recently the experimental generation has been demonstrated of
the lowest- and first-order Bessel light beams with TE and TH
polarization in free space by means of a Mach–Zender interferom-
eter [39]. But the measured optical efficiency for the output vector
BLB was about several percents. Unfortunately, all mentioned
methods do not permit one to achieve a high efficiency.

One of the effective methods of transformation of polarization
of vector BLB is based on the use of anisotropic uniaxial and biaxial
crystals [40,41]. By using this method, the transformers have been
developed, which convert the Bessel zero-order function into the
first- and second-order one. It is also shown that gyrotropic crys-
tals [42] allow one to transform mutually TH and TE polarization
types [43].

Anisotropic crystals in a combination with one-dimensional
photonic crystal (1DPC) allow one also to solve the problem of
the direct formation of TH- and TE-polarized Bessel beams. 1DPCs,
exhibiting electromagnetic stop bands for the photon propagation
over a wide band of frequencies, are widely used while creating a
polarizer for traditional (for example, Gaussian) beams [44–48].
Recently the possibility is shown of generating Bessel light beams
with the help of a resonant point source, located on the side of one-
dimensional photonic crystal with a defect inclusion [49]. These
modes that are coupled with the localized modes supported by
the one-dimensional photonic crystal are selectively transmitted.
This is used to produce a single narrow band of transmission,
which, combined with the circular symmetry of the system, yields
a propagating Bessel beam.

In this report (Section 2) the problem will be solved of develop-
ing an exact, analytical expressions for vector Bessel light beams in
a finite, N-period, one-dimensional photonic crystal, in terms of the
complex transmission coefficient of a unit cell of the structure. As
an example, we shall consider a 1DPC made from periodic, multi-
layered dielectric stacks. Particular attention will be given to Bessel
light beams in a one-dimensional photonic crystal having a defect
impurity – a crystalline layer. Results of numerical simulations,
illustrated the properties of BLB transmission through one-dimen-
sional photonic crystal (with and without the defect crystalline
layer), will be presented in Section 3.

In Section 4 a new method of formation of TE- and TH-polarized
Bessel beams will be suggested. It is based on the transformation of
a circular-polarized zero-order J0 Bessel beam into superposition of
the TH and TE Bessel modes mutually splitting in the space. The
initial J0 BLB may be obtained from the basic laser mode by the
usual method, for example, by an axicon [50].

2. Description of transformation of a vector Bessel light beam in
one-dimensional photonic crystal

Let us consider the transformation of vector BLBs in a one-
dimensional photonic crystal containing at its center a defect in
the form of a plate of a uniaxial crystal. It is assumed that 1DPC
is surrounded by a dielectric with the refractive index n0 (in partic-
ular case, by air). In front of the entrance face of this structure an
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Fig. 1. Example: one-dimensional photonic crystal with a N-period stack composed
of two-layer unit cells of thickness d1 and d2 and refractive indices n1 and n2,

respectively.
axicon is placed which is illuminated by a circularly-polarized a
well-collimated Gaussian – or single-ringed Laguerre–Gaussian
beam with azimuthal index m (LGm

0 ). This beam, when passed
through the axicon, is transformed into a circularly-polarized J0 –
or Jm vector BLB. The origin of the coordinated system z = 0 is as-
sumed to be chosen at the interface between the dielectric n0

and the first elementary cell of the photonic crystal (Fig. 1).

2.1. Transmittance and reflectance of the vector Bessel light beam
at the boundary of two dielectrics

At first, the peculiarity of the reflection and transmission of
BLBs on the boundary ‘‘air-dielectric” will be analyzed. Let a nor-
mally incident arbitrary polarized vector Bessel beam falls from
the air on the boundary of an isotropic nonmagnetic material with
the refractive index n. Let the direction of propagation coincide
with z-axis of coordinate system. It is known (see, for example,
[1,22]) that the electromagnetic field propagating in a medium
can be represented as a superposition of TE (Ez = 0) and TH
(Hz = 0) modes:
~EðRÞ ¼ ATE~ETEðRÞ þ ATH~ETHðRÞ;
~ETE;THðRÞ ¼~EðTE;THÞðq;uÞ exp iðkzzþ imuÞ;
~HTE;THðRÞ ¼ ~HðTE;THÞðq;uÞ exp iðkzzþ imuÞ; ð1Þ

where R = (q, u, z) are the cylindrical coordinates; m is the integer;
kz is the z-projection of the wave vector. It follows from the solution
of Maxwell’s equations that the components of the vector ampli-
tudes ~EðTE;THÞðq;uÞ, ~HðTE;THÞðq;uÞ are represented as:

ETE
q ¼

im
qq

JmðqqÞ; ETE
u ¼ �J0mðqqÞ; ETE

z ¼ 0;

ETH
q ¼ i cos cJ0mðqqÞ; ETH

u ¼ � cos c
m
qq

JmðqqÞ; ETH
z ¼ sin cJmðqqÞ:

HTE
q ¼ ncoscJ0mðqqÞ; HTE

u ¼ incosc
m
qq

JmðqqÞ; HTE
z ¼�insincJmðqqÞ;

HTH
q ¼ n

m
qq

JmðqqÞ; HTH
u ¼ inJ0mðqqÞ; HTH

z ¼ 0: ð2Þ

Here JmðqqÞ; J0mðqqÞ ¼ @JmðqqÞ=@ðqqÞ are the m-order Bessel func-

tions and their derivatives, respectively, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2n2 � k2

z

q
¼

ðx=cÞn sin c is the parameter of conicity (transversal component
of wave vector, which is unchanged during the crossing of the
boundary of two media), x is the frequency of the incident Bessel
beam, c is the light velocity in vacuum, c is the half-cone angle of
BLB in the medium.

For excitation of fields describing by Eq. (2), which are charac-
terized by the homogeneous azimuthal intensity distribution, the
incident Bessel beam must be circularly-polarized. In the common
case of vector BLBs this condition is satisfied when the beams are
formed by the axicon from circularly-polarized Laguerre–Gaussian
beam (LGm

0 ). Then the transverse component~E�?iðRÞ of the electrical
vector of the incident Bessel beam has the following form [51]:

~E�?iðRÞ ¼iA ð~eq � i cos ci~euÞ
m
qq

JmðqqÞ � ðcos ci~eq � i~euÞJ0mðqqÞ
� �
� exp i

x
c

cos cizþmu
� �h i

: ð3Þ

Here~eq;u are the unit vectors of the cylindrical coordinate system, A
is the constant amplitude factor, signs ‘‘+” and ‘‘�” corresponds to
the right and left circular polarization of Laguerre–Gaussian beam
falling to axicon, respectively, ci is the half-cone angle of the inci-
dent light Bessel beam formed by the axicon. For definition below
we shall suppose that the field, formed behind the axicon, is
right-polarized. Then, comparing Eqs. (2) and (3), we obtain:
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~Eþ?iðRÞ ¼ A ~ETE
i ðq;uÞ þ~ETH

i ðq;uÞ
h i

exp i
x
c

cos cizþmu
� �h i

: ð4Þ

Here the components of vectors ~ETE;TH
i ðq;uÞ of the incident Bessel

beam are determined by Eq. (2), where it should be assumed n = 1
for an air. It follows from Eq. (2) that for the field (4) z-projection
of the energy flux is the sum of two equal components correspond-
ing to TE and TH modes. Then, while comparing Eqs. (4) and (1), one
can see that for the incident Bessel beam (3) the conditions
ATE = ATH = A are fulfilled.

Taking into account the relations:

m
qq

JmðqqÞ ¼
1
2
½Jm�1ðqqÞ þ Jmþ1ðqqÞ�;

J
m0ðqqÞ ¼

1
2
½Jm�1ðqqÞ � Jmþ1ðqqÞ�;

we can represent vectors ~ETE;TH
i ðq;uÞ for incident field (4) in the

form:

~ETE
i ðq;uÞ ¼

iffiffiffi
2
p ½Jm�1ðqqÞ~eþ þ Jmþ1ðqqÞ expð2iuÞ~e�� expð�iuÞ;

~ETH
i ðq;uÞ ¼

iffiffiffi
2
p cos ci½Jm�1ðqqÞ~eþ � Jmþ1ðqqÞ expð2iuÞ~e�� expð�iuÞ:

Then Eq. (4) can be rewritten:

~Eþ?iðRÞ ¼
iAffiffiffi

2
p exp i½ðm� 1Þuþx

c
cos ciz� � f½Jm�1ðqqÞ~eþ

þ Jmþ1ðqqÞ expð2iuÞ~e�� þ cos ci½Jm�1ðqqÞ~eþ
� Jmþ1ðqqÞ expð2iuÞ~e��g; ð5Þ

where~e� ¼ ð~e1 � i~e2Þ=
ffiffiffi
2
p

are the unit circular vectors.
In similar manner, we can represent the transverse component

~E?tðRÞ of the field (1) refracted into the medium having refractive
index n in the form:

~E?tðRÞ ¼ ½ATE
t
~ETE

t ðq;uÞ þ ATH
t
~ETH

t ðq;uÞ� exp½iðkzzþmuÞ�

¼ iffiffiffi
2
p exp i½ðm� 1Þuþ kzz� � fATE

t ½Jm�1ðqqÞ~eþ

þ Jmþ1ðqqÞ expð2iuÞ~e�� þ ATH
t cos ct½Jm�1ðqqÞ~eþ

� Jmþ1ðqqÞ expð2iuÞ~e��g: ð6Þ

Here the components of vectors ~ETE;TH
t ðq;uÞ are determined by Eq.

(2); ATE;TH
t are amplitude factors; index ‘‘t” indicates the refracted

BLB; cosct = (1 � sin2ci/n2)1/2, kz = (x/c)ncosct. Let us further intro-
duce amplitude transmission coefficients tTE;TH ¼ ATE;TH

t =A for TE and
TH BLBs, respectively. Finally, the electric vector of the refracted
Bessel beam can be represented in the form:

~E?tðRÞ ¼
iAffiffiffi

2
p exp i½ðm� 1Þuþ kzz� � tTE½Jm�1ðqqÞ~eþ

�
þJmþ1ðqqÞ expð2iuÞ~e�� þ tTH cos ct½Jm�1ðqqÞ~eþ
�Jmþ1ðqqÞ expð2iuÞ~e��

�
: ð7Þ

In similar manner, for the transversal component of reflected field
(it is indicated by index ‘‘r”) we obtain:

~E?rðRÞ ¼
iAffiffiffi

2
p exp i½ðm� 1Þu�x

c
cos ciz� � rTE½Jm�1ðqqÞ~eþ

�
þJmþ1ðqqÞ expð2iuÞ~e�� � rTH cos ci½Jm�1ðqqÞ~eþ�
�Jmþ1ðqqÞ expð2iuÞ~e��

�
: ð8Þ

Here rTE;TH ¼ ATE;TH
r =A are the amplitude reflection coefficients.

2.2. Boundary problem for Bessel light beam (the case of the boundary
of two dielectrics)

There is need to determine the transmission and reflection coef-
ficients for TE and TH vector BLB of m-order, which enter into Eqs.
(7) and (8). For this aim, let us consider the normal incident BLB of
an arbitrary polarization on the interface of two isotropic media
with the refractive indices ni and nj. The incident, reflected and re-
fracted waves are to satisfy the boundary conditions of continuity
of the tangential components of the electric and magnetic fields.

Ei
q þ Er

q ¼ Et
q; Hi

q þ Hr
q ¼ Ht

q;

Ei
u þ Er

u ¼ Et
u; Hi

u þ Hr
u ¼ Ht

u:
ð9Þ

Here i, r and t designate the incident, reflected and refracted optical
fields, respectively. Substituting the field components from (2) into
(13) and equating the coefficients at the same Bessel functions, the
system of scalar equations for the amplitudes ATE;TH

i ; ATE;TH
r and ATE;TH

t

of the incident, reflected and refracted waves of TH- and TE-polar-
ization, can be written in the form:

cos ciðA
TH
i � ATH

r Þ ¼ cos cjA
TH
t ; niðATH

i þ ATH
r Þ ¼ njA

TH
t ;

ATE
i þ ATE

r ¼ ATE
t ; ni cos ciðA

TE
i � ATE

r Þ ¼ nj cos cjA
TE
t ; ð10Þ

where ci is the half-cone angle of BLB in the medium with the
refractive index ni.

From Eq. (10) the expression for amplitude coefficients of trans-
mission tTE;TH

ij ¼ ATE;TH
t =ATE;TH

i and reflection rTE;TH
ij ¼ ATE;TH

r =ATE;TH
i can

be obtained:

tTE
ij ¼

2ni cos ci

ni cos ci þ nj cos cj
; rTE

ij ¼
ni cos ci � nj cos cj

ni cos ci þ nj cos cj
; ð11Þ

tTH
ij ¼

2ni cos ci

ni cos cj þ nj cos ci
; rTH

ij ¼
nj cos ci � ni cos cj

nj cos ci þ ni cos cj
; ð12Þ

where the refractive indices ni and nj are related by the law
ni sinci = nj sincj. From Eqs. (11) and (12), it is seen that the coeffi-
cients of reflection and refraction of Bessel TE- and TH-beams of
the m-order coincide with ones for plane waves polarized, corre-
spondingly, transversely and parallel to the plane of incidence.

It should be noted that coefficients tTE,TH, rTE,TH entering into Eqs.
(7) and (8) are determined by the Eqs. (11) and (12), in which it is
necessary to perform the following substitutions: ni ? 1, nj ? n,
and cj ? ct.

2.3. Description of BLB propagation in one-dimensional photonic
crystal

Let us consider now the propagation of the BLBs in a one-
dimensional photonic crystal without a defect layer. Its special case
is a multilayer stack containing N-periods of dielectric materials.
Each period has layers with a high n1 and a low n2 refractive indi-
ces (Fig. 1). Such a structure exhibits an electromagnetic stop band
for the photon propagation over a wide range of frequencies. We
will consider a normally incident circularly-polarized Bessel beam
(3) that impinges from the medium with the refractive index n0 on
such a structure. As BLB falls on 1DPC from the medium with the n0

refractive index, in Eq. (3) it is necessary to make a replacement
ðx=cÞ cos ci ! koz ¼ ½ðx=cÞ2n2

0 � q2�1=2. As mentioned above, the
origin of the used coordinate system, for which the z-axis is collin-
ear to the direction of periodicity, is situated at the interface be-
tween dielectric n0 and the first elementary cell of the photonic
crystal.

2.3.1. Transformation of BLB into a unit cell of one-dimensional
photonic crystal

First of all we will consider the properties of transformation of
Bessel beam into a unit cell with a thickness d = d1 + d2 (Fig. 1)
which is surrounded by a medium having refractive index n2. We
shall present electric vector ~E (TE or TH BLB) in the unit cell as a
superposition of vectors corresponding to forward and backward
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propagating Bessel beams, labeled plus and minus, respectively
[52]:

~E ¼ Eþ

E�

 !
: ð13Þ

As a consequence of periodicity of the structure,

~Eð0Þ ¼ M~EðdÞ; ð14Þ

where M is the transfer matrix. Taking into account the boundary
conditions which can be represented in the form:

~Eð0Þ ¼
1

rcell

	 

; ~EðdÞ ¼

tcell

0

	 

; ð15Þ

where rcell and tcell are the complex coefficients of reflection and
transmission of the unit cell, respectively, and the time-reversal
symmetry of the transfer matrix, that is the consequence of the
assumptions of energy conservation, one can obtain:

M ¼
1=tcell r�cell=t�cell

rcell=tcell 1=t�cell

	 

: ð16Þ

Here the asterisk (�) denotes the complex conjugation. It follows
from (16), that the general form of the transfer matrix for Bessel
beams is similar to the same obtained in [52] for the case of a plane
wave propagating in a one-dimensional photonic crystal.

In analogy to the case of plane wave, the inverse transfer matrix,
describing the transformation of BLB propagating left to right, is
represented as a product of matrices of only two types:

M�1 ¼ Pðp2ÞD12Pðp1ÞD21: ð17Þ

Here Dij is a discontinuity matrix describing the transformation of
BLB on left to right across the ni ? nj interface; the propagation ma-
trix P(pi) is describing the phase change of Bessel beam in a layer
with the refractive index ni.

PðpiÞ ¼
eipi 0
0 e�ipi

 !
; ð18Þ

where pi ¼ x
c nidi cos ci, ci is the half-cone angle of BLB propagating

in the medium with the refractive index ni. From Eq. (18) it follows
that P(pi)P(�pi) = I, where I is the unit matrix.

Let z = z0 be at the ni ? nj interface. Representing the boundary
conditions in the form:

~Eðz0 � 0Þ ¼
1
rij

	 

; ~Eðz0 þ 0Þ ¼

tij

0

	 

; ð19Þ

where ~Eðz0 � 0Þ ¼ Dij
~Eðz0 þ 0Þ, and taking into account the time-

reversal symmetry of Dij, that is the consequence of the law of en-
ergy conservation, one can obtain:

Dij ¼
aþij a�ij
a�ij aþij

 !
; aþij ¼ 1=tij; a�ij ¼ rij=tij; ð20Þ

where coefficients rij and tij in Eq. (20) are determined by Eqs. (11)
and (12) for TE and TH Bessel beams, respectively. As is evident
from Eq. (20), the Dij matrices have a number of useful properties:
commutativity (DijDkl = DklDij), transitivity (DijDjk = Dik) and iden-
tity (DijDji = I).

Using the main properties of matrices Dij and P(pi), and relation

ðABÞ�1 ¼ B�1A�1
; ð21Þ

where A and B are arbitrary matrices, we can express the transfer
matrix M in the following form:

M ¼ D12Pð�p1ÞD21Pð�p2Þ: ð22Þ
After substituting Eqs. (18) and (20) into Eq. (22), it is easy to find
the elements of matrix M and then, using Eq. (16), to determine
transmission tcell and reflection rcell coefficients for the unit cell:

tcell ¼
T exp½iðp1 þ p2Þ�
1� R expð2ip1Þ

; rcell ¼ r12
1� expð2ip1Þ

1� R expð2ip1Þ
: ð23Þ

The quantities T and R in Eq. (23) are

T ¼ t12t21; R ¼ jr12r21j; ð24Þ

where coefficients tij and rij are determined by expressions (11) and
(12). Finally, one can obtain the quantities T and R for TE BLBs:

T ¼ 4n1n2 cos c1 cos c2

ðn1 cos c1 þ n2 cos c2Þ
2 ; R ¼ n1 cos c1 � n2 cos c2

n1 cos c1 þ n2 cos c2

���� ����2: ð25Þ

For TH BLB modes, the transmission and reflection coefficients of
the unit cell are also determined by Eqs. (23)–(25), but in Eq. (25)
we should replace ni ? 1/ni.

2.3.2. Propagation of BLB in infinite one-dimensional photonic crystal
Let us consider now the BLBs propagating in an infinite period-

ical medium. It is known that properties of the light waves trans-
formation in such a medium are described by the Bloch functions
changing only the phase by the value lb = exp(±ib) from cell to cell
[53]. As a consequence, lb is an eigenvalue of the transfer matrix
M. On the other hand, it follows from (16) that the eigenvalues l
of the matrix M are determined from the equation:

l2 � 2lReð1=tcellÞ þ 1 ¼ 0: ð26Þ

Inserting lb into Eq. (26), and equating the real and imaginary
terms, we arrive at the very important relation

cos b ¼ 1
2

SpM ¼ Reð1=tcellÞ: ð27Þ

According to Eq. (27), the frequency region of the pass band
is determined by the condition |cosb| < 1, and, as a consequence,
|(1/2)SpM| < 1, or Re(1/tcell) < 1. If |(1/2)SpM| > 1, or Re(1/tcell) > 1,
the value b is imaginary and forbidden bands for BLBs are observed.
It follows from Eq. (27), with allowance for account Eq. (23), that for
the case of small half-cone angles and at the fulfilled condition
n1d1 = n2d2 = k0/4, where k0 is the wavelength corresponding to
the midgap frequency, the width of the band gap is determined
approximately by the expression Dk � 4k0|n2 � n1|/(p(n2 + n1)).

At that, owing to difference of tcell for TE and TH modes, the
edges of band gaps for these BLBs are not coincided.

2.3.3. Propagation of BLB in finite one-dimensional photonic crystal
From the Cayley–Hamilton theorem [54] it follows:

MN ¼ 1
sin b

½M sin Nb� I sinðN � 1Þb�: ð28Þ

Here N is the number of unit cells. Then, representing MN by means
of the transmission tN and reflection rN coefficients, as in the case of
Eq. (16),

MN ¼
1=tN r�N=t�N
rN=tN 1=t�N

	 

; ð29Þ

and using Eq. (28), one can obtain the expressions for a periodical
medium having N unit cells:

1
tN
¼ 1

tcell sin b
ðsin Nb� tcell sinðN � 1ÞbÞ;

rN

tN
¼ rcell

tcell

sin Nb
sin b

;

ð30Þ

where the quantity b is determined by Eq. (27), and the quantities
rcell and tcell are determined by Eq. (23).
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Taking into account the form of the transfer matrix M for the
unit cell (see (22)) and the property of transitivity D02D21 = D01

and commutativity DijDkl = DklDij of Dij matrix, in the case of a fi-
nite one-dimensional photonic crystal, containing N unit cells
and surrounded by a dielectric with the refractive index n0, the
transfer matrix M0 relating light fields at the entrance and exit of
the structure can be represented as

M0 ¼ D20MND02; ð31Þ

where matrix Dij is determined by Eqs. (20), (11), and (12), and M is
given by expression (22).

Using Eq. (31), taking into account Eqs. (20) and (30) and writ-
ing down the matrix M0 in the form similar to Eq. (16):

M0 ¼
1=t r�=t�

r=t 1=t�

	 

; ð32Þ

it is possible to calculate the transmission t and reflection r coeffi-
cients for TE and TH Bessel modes propagating in a finite periodical
medium:

1
t
¼ 1

T02

1
tN
� 2i Im

rN

tN

	 

r02 �

R02

t�N

� 

;

r
t
¼ 1

T02

rN

tN
� r�N

t�N
R02 � 2ir02 Im

1
tN

	 
� 

:

ð33Þ

In Eq. (33) the quantities T02, R02 and r02 for TE Bessel beams are ex-
pressed as:

TTE
02 ¼ t02t20 ¼

4n0n2 cos c0 cos c2

ðn0 cos c0 þ n2 cos c2Þ
2 ;

rTE
02 ¼

n0 cos c0 � n2 cos c2

n0 cos c0 þ n2 cos c2
; RTE

02 ¼ jrTE
02j

2
: ð34Þ

In turn, for TH Bessel light beams in Eq. (34) there should be done
the following replacement ni ? 1/ni.

2.4. Transmission and reflection of a vector Bessel light beam
on the boundary of dielectric – uniaxial crystal

Since in the investigated photonic structure the layer of aniso-
tropic crystal serves as a symmetrically situated defect, first of all
it is necessary to investigate the problem of propagation of Bessel
beams through the crystalline plate surrounded by a dielectric
medium.

Let a normally incident arbitrary polarized vector Bessel beam
impinges from an isotropic medium with the refractive index n2

on the entrance of a plate made of an uniaxial crystal with the prin-
cipal refractive indices no and ne (see Fig. 2). Here the direction of
propagation coincides with the z-axis of the coordinate system and
optical axis of the crystal.

From Maxwell’s equations for a uniaxial crystal in the cylinder
coordinate system, one can obtain the formula for the radial (q)
and azimuthal (u) components of the electric and magnetic fields
[51]:

Eq ¼
ix
cq

i
m
qq

Hz þ
nðcÞ cos c

q
@Ez

@q

	 

;

Eu ¼
ix
cq

i
mnðcÞ cos c

qq
Ez �

@Hz

@q

	 

;

Hq ¼ �
ix
cq

i
meo

qq
Ez �

nðcÞ cos c
q

@Hz

@q

	 

;

Hu ¼
ix
cq

eo

q
@Ez

@q
þ i

mnðcÞ cos c
qq

Hz

	 

:

ð35Þ

In Eq. (35) n(c) is the refractive index, c is the half-cone angle,

eo ¼ n2
o ; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2n2

o � k2
z

q
is the parameter of conicity (transversal
component of wave vector, which is unchanged during the crossing of
the boundary of two media). Substitution of the expression (35) for
the transverse components of the electric and magnetic fields in the
Maxwell’s equations allows one to get the differential equation of
the second-order for the longitudinal components Hz and Ez:

@2Hz

@q2 þ
1
q
@Hz

@q
�m2

q2 Hz ¼ �q2Hz;
@2Ez

@q2 þ
1
q
@Ez

@q
�m2

q2 Ez ¼
ee

eo
q2Ez;

ð36Þ

where ee ¼ n2
e . Two independent solutions of the Eqs. (36) are

aÞHez ¼ 0; Eez ¼ JmðqqÞ exp½iðkezzþmuÞ�; ð37Þ
bÞEoz ¼ 0; Hoz ¼ JmðqqÞ exp½iðkozzþmuÞ�; ð38Þ

The transverse components koz and kez of the wave vectors in Eqs.
(37) and (38) are given by the expressions ko,z = (x/c)no cosco,
ke,z = (x/c)ne(ce)cosce and are linked to the radial component q by
the relations q2 þ k2

oz ¼ ðx=cÞ2n2
o , q2 þ k2

ez ¼ ðx=cÞ2n2
e ðceÞ. Here

n2
e ðceÞ ¼

eoee

eo sin2ðceÞ þ ee cos2ðceÞ
: ð39Þ

Thus, the fields described by Eqs. (37) and (38) correspond to the or-
dinary (o) and extraordinary (e) plane waves in the theory of uniaxial
crystals [53]. That is why they may be designated as o- and e-type
Bessel beams, respectively.

From the Eqs. (35), (37), and (38) one can find all the components
for e- and o-type Bessel beams (the phase multiplier exp[i(ko,ezz +
mu)] is omitted):

Eo
q ¼

im
qq

JmðqqÞ; Eo
u ¼ �J0mðqqÞ; Eo

z ¼ 0;

Ee
q ¼ i cos ceJ0mðqqÞ; Ee

u ¼ � cos ce
m
qq

JmðqqÞ;

Ee
z ¼ sin ceJmðqqÞ: ð40aÞ

Ho
q ¼ no cos coJ0mðqqÞ; Ho

u ¼ ino cos co
m
qq

JmðqqÞ;

Ho
z ¼ �ino sin coJmðqqÞ; He

q ¼
eo

neðceÞ
m
qq

JmðqqÞ;

He
u ¼ i

eo

neðceÞ
J0mðqqÞ; He

z ¼ 0: ð40bÞ
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Fig. 3. Layered-periodic medium with the defect inclusion of uniaxial crystal. The
orientation of the optical crystal axis is shown by arrow.
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For the azimuthal index m = 0, it follows from Eq. (40) that a zero-
order Bessel beam of o-type has only the u-component and BLB of
the e-type is described by the q-component. Such a structure of
Bessel beams coincides completely with the polarization of ordinary
and extraordinary plane waves in an uniaxial crystal. For the o- and
e-type of BLBs with m – 0 there appear also components that are
orthogonal to the ones mentioned above.

The analysis of Eq. (40) leads to the conclusion that the ordin-
ary and extraordinary Bessel beams are analogous to TE and TH
modes of Bessel beams in an isotropic medium for which the com-
ponents of the electrical and magnetic fields are determined by
the expressions (2). The difference is in that for the isotropic med-
ium the phase velocities of the above-mentioned modes are
degenerate.

2.5. Transmission of Bessel light beams through crystalline
plate and reflection from it

Let us consider the normal incidence of arbitrary polarized BLBs
onto the interface between an isotropic medium (the refractive in-
dex n2) and uniaxial crystal having the principal refractive indices
no and ne(ce). The incident BLB can be represented as a superposi-
tion of TE and TH modes. Let us analyze the transformation of these
modes at the boundary. The incident, reflected and refracted waves
must satisfy the conditions (see Eqs. (9)) of continuity of the tan-
gent components of the electrical and magnetic fields. Substituting
the components of the fields from Eq. (40) into Eq. (9) and equating
the coefficients at the same Bessel functions, we obtain that at the
boundary there occurs only two kind of the transformation,
namely, TE mode into o-type BLB and TH mode into e-type BLB.
In the case of the TE BLB ? o-type BLB transformation, the ampli-
tudes of incident ATE

i , reflected ATE
rc and transmitted into crystal Ao

tc

Bessel beams obey the equations:

ATE
i þ ATE

rc ¼ Ao
tc; n2 cos c2ðA

TE
i � ATE

rc Þ ¼ no cos coAo
tc: ð41Þ

Here c2 is the half-cone angle of BLB in the medium with the refrac-
tive index n2 and co is the half-cone angle of o-type BLB.

In the case of the TH BLB ? e-type BLB transformation, the
amplitudes of incident ATH

i , reflected ATH
rc and transmitted into crys-

tal Ae
tc beams obey the equations:

n2ðATH
i þ ATH

rc Þ ¼
eo

neðceÞ
Ae

tc; cos c2ðA
TE
i � ATE

rc Þ ¼ cos ceAe
tc; ð42Þ

where ce is the half-cone angle of e-type BLB.
Let us determine the transmission coefficient to

ic ¼ Ao
tc=ATE

i and
reflection rTE

ic ¼ ATE
rc =ATE

i one for o-type Bessel beams, as well as
the transmission coefficient te

ic ¼ Ae
tc=ATH

i and reflection one
rTH

ic ¼ ATH
rc =ATH

i for e-type Bessel beam. These coefficients can be eas-
ily determined from the solutions of Eqs. (41) and (42):

to
ic ¼

2n2 cos c2

n2 cos c2 þ no cos co
; rTE

ic ¼
n2 cos c2 � no cos co

n2 cos c2 þ no cos co
; ð43Þ

te
ic ¼

2n2neðceÞ cos c2

n2neðceÞ cos ce þ n2
o cos c2

; rTH
ic ¼

n2
o cos c2 � n2neðceÞ cos ce

n2neðceÞ cos ce þ n2
o cos c2

;

ð44Þ

where, as is evident from Eq. (39):

neðceÞ cos ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

o � n2
on2

2 sin2 c2=n2
e

q
: ð45Þ

Similarly, we can obtain the amplitude coefficients of the transfor-
mation (transmission tTH

ci ; t
TE
ci and reflection re

ci; ro
ci) of the e-type

BLB ? TH BLB and the o-type BLB ? TE BLB at the boundary be-
tween the uniaxial crystal and isotropic medium with the refractive
index n2:
tTE
ci ¼

2no cosco

no cosco þ n2 cosc2
; ro

ci ¼
no cosco � n2 cosc2

no cosco þ n2 cosc2
: ð46Þ

tTH
ci ¼

2n2
o cosce

n2neðceÞ cosce þ n2
o cosc2

; re
ci ¼ �

n2
o cosc2 � n2neðceÞ cosce

n2neðceÞ cosce þ n2
o cosc2

:

ð47Þ

The transfer matrix, describing the transformation of BLB propagat-
ing through the crystalline plate, is represented as a product of
matrices of two types:

MD ¼ DciPð�po;eÞDic: ð48Þ

Here the matrices Dic,ci describe the transformation of BLB at the
boundary between the isotropic medium and uniaxial crystal and
between the crystal and isotropic medium, respectively, and are
determined by Eq. (20), where it should be replaced: for Dic matrix
aþij ! 1=to;e

ic ; a�ij ! rTE;TH
ic =to;e

ic , and for Dci matrix aþij ! 1=tTE;TH
ci ; a�ij !

ro;e
ci =tTE;TH

ci .
Matrix P(po,e) describes the phase change of Bessel beam in a

crystalline layer and is determined by Eq. (18), where po = D(x/
c)no cosco; pe = D(x/c)ne(ce)cosce, D is the crystal thickness. The
transfer matrix can be expressed in terms of the transmission tD

and reflection rD coefficient of the crystal in the following form:

MD ¼
1=tD r�D=t�D
rD=tD 1=t�D

	 

; ð49Þ

where in the case of incidence of TE and TH modes of BLBs on the
crystalline plate, the coefficients tD and rD are given by the
expressions:

tD ¼
to;e

ic tTE;TH
ci exp½ipo;e�

1þ rTE;TH
ic ro;e

ci exp½2ipo;e�
; rD ¼

ro;e
ci þ rTE;TH

ic exp½2ipo;e�
1þ rTE;TH

ic ro;e
ci exp½2ipo;e�

: ð50Þ
2.6. Propagation of BLB in a finite one-dimensional photonic crystal
having a defect impurity – a layer of uniaxial crystal

Let us consider the peculiarities of BLB transformation in a
stratified periodic medium with a defect inclusion in the form of
a layer of a uniaxial crystal (Fig. 3) which is surrounded by a dielec-
tric having refractive index n0.

As is seen from Fig. 3, in this case one-dimensional photonic
crystal is divided into two sub-structures, each of which has N unit
cells. Then the total transfer matrix MS is determined by the prod-
uct of transfer matrices for the first (located to the left from the de-
fect) MN and the second (located to the right from the defect) eMN

sub-structures and defect inclusion MD: MS ¼ D20MNMD
eMND02.

Note that in the last expression transfer matrices are different:
MN is determined by Eqs. (23), (24), (25), (27), and (28), whereas
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eMN is obtained by multiplying the transfer matrix eM for the unit
cell of the second sub-structure:eM ¼ Pð�p2ÞD12Pð�p1ÞD21: ð51Þ

From Eq. (51) it follows that for the unit cell of the second sub-
structure:

~tcell ¼
T exp½iðp1 þ p2Þ�
1� R expð2ip1Þ

;

~rcell ¼ �r12 exp½2iðp1 þ p2Þ�
1� expð�2ip1Þ
1� R expð2ip1Þ

; ð52Þ

where the coefficients T and R are determined by Eqs. (24) and (25).
By representing MS in the form similar to Eq. (16), one can cal-

culate its elements MS11, MS21 and, as a consequence, the transmis-
sion tS and reflection rS coefficients for the periodic medium
including the defect and surrounded by a dielectric with the refrac-
tive index n0. One can show that these coefficients can be repre-
sented in the form of Eq. (33), where the following replacements
should be made:

1
tS
! 1

t
;

rS

tS
! r

t
;

1
tN
! 1

t0
¼ 1

tN~tNtD
þ r�NrD

t�N~tNtD
þ

~rNr�D
tN~tNt�D

þ r�N~rN

t�N~tNt�D
;

rN

tN
! r0

t0
¼ rN

tN~tNtD
þ rD

t�N~tNtD
þ rN~rNr�D

tN~tNt�D
þ

~rN

t�N~tNt�D
:

ð53Þ

Here tD and rD are the amplitude transmission and reflection coeffi-
cients for the crystalline layer, respectively, determined by the rela-
tions (50).The quantities ~rN; ~tN can be find from Eqs. (30) and (27),
where it should be replaced rcell ! ~rcell and tcell ! ~tcell, respectively.

The fields, transmitted through the structure surrounded by an
air (the most frequently realizable case) and reflected from it, are
determined by equations, similar to (7), (8):

~E?tðRÞ ¼
iAffiffiffi

2
p exp i½ðm� 1Þuþx

c
cos ciz� � tTE

s ½Jm�1ðqqÞ~eþ
�

þ Jmþ1ðqqÞ expð2iuÞ~e�� þ tTH
s cos ci½Jm�1ðqqÞ~eþ

�Jmþ1ðqqÞ expð2iuÞ~e��
�
; ð54Þ

~E?tðRÞ ¼
iAffiffiffi

2
p exp i½ðm� 1Þu�x

c
cos ciz� � rTE

s ½Jm�1ðqqÞ~eþ
�

þ Jmþ1ðqqÞ expð2iuÞ~e�� � rTH
s cos ci½Jm�1ðqqÞ~eþ

�Jmþ1ðqqÞ expð2iuÞ~e��
�
; ð55Þ

Eqs. (54) and (55), with allowance for Eqs. (23), (24), (25), (27), (30),
(34), (46), (47), (50), and (52), give the complete solution of the
problem of determining the reflection and transmission coefficients
for TE and TH Bessel modes in a one-dimensional photonic crystal
having an anisotropic defect impurity.

As it follows from obtained expressions, the spectral depen-
dences of transmission and reflection are different for TE and TH
Bessel beams. Furthermore, the defect levels caused by the exis-
tence of a defect insert, appear in the band gap. Owing to anisot-
ropy of the crystalline layer, the defect levels for TE and TH
modes of BLBs are different in their location. So, one can realize a
condition when we will observe TH (TE)-polarized BLB at the out-
put of the structure and TE (TH)-polarized BLB at its input.

3. Numerical calculation of transmittance of circularly-
polarized BLB through the one-dimensional photonic crystal

Using the above-derived formula (54), (55), (23), (24), (25), (27),
(30), (34), (46), (47), (50), and (52), we will firstly consider the
properties of Bessel light beams transformation in a perfect strati-
fied periodic medium (in the absence of a defect layer), containing
alternate layers of dielectrics of ZrO2 (n1 = 2.0 [55]; d1 = 72 nm) and
SiO2 (n2 = 1.45 [56]; d2 = 100 nm). Note that both these materials
are transparent in the wide spectral region: 0.25 � 7 lm [57].
The structure is surrounded by the air. It follows from Eq. (27) that,
as a consequence of difference of tcell, the width of the band gap for
TE mode DkTE exceeds one for TH modes DkTH. Therefore, the edges
of the photon band gap for both modes do not coincide. Then, if the
frequency of incident Bessel light beam is near band gap edges, it is
possible to realize the condition when TH BLB is transmitted
through the medium and TE BLB is reflected from it. At small
half-cone angles (within 20�) the difference of the band gap edges,
corresponding to the case of TE and TH Bessel modes, is little, and
incident radiation with a high-stable wavelength and a great num-
ber of the unit cells of stratified medium are necessary to split the
incident Bessel light beam into transmitted TH BLB and reflected
TE-polarized Bessel beam. It follows from the numerical simulation
that at a larger half-cone angle (ci P 20�) the extinction ratio |tTH|2/
|tTE|2 achieves large values in a wider spectral region. It is shown in
Fig. 4a and b that for ci = 20� and N = 20, in order to achieve both a
high transmission of TH modes (|tTH|2 > 90%) and essential (>10)
extinction ratio, the incident wavelength instability Dk must not
exceed 0.6 nm. Note that the value of Dk depends on the half-cone
angle of incident BLB. In particular, as it follows from Fig. 4c and d,
for ci = 25� and N = 20, we have Dk = 1.7 nm.

As N increases, the transmission maxima become sharper
(Fig. 4e and f). Owing to this, it is possible to achieve simulta-
neously a high transmission of TH modes (|tTH|2 > 90%) and ex-
treme extinction ratio (for example, more than 900) in a spectral
region about 1 nm (see Fig. 4e and f). Note that for selecting only
transmitted TH Bessel mode from incident field, one can use BLBs
with a higher wavelength instability. For example, it follows from
Fig. 4e and f, that the extinction ratio greater than 100 is achieved
for the width of the spectral line of incident Bessel beams 	5 nm.

Moreover, the transmission and reflection of the perfect layered
structure for TE and TH modes depend on the half-cone angle of
incident BLB (Fig. 5). Then, the splitting of the incident Bessel beam
into TE- and TH-polarized BLBs can be realized also in the case of
incident beams with half-cone angles lying in a certain interval.
It follows from Fig. 5a and b, that if N = 20, it is possible to achieve
both a high transmission of TH modes (|tTH|2 > 90%) and high (>10)
extinction ratio for an incident BLB having half-cone angle disper-
sion 	1�. As the number of the unit cells of the one-dimensional
photonic crystal increases, the extinction ratio is significantly en-
hanced. For example, as is seen from Fig. 5c and d, based on perfect
1DPC with 30 unit cells, it is possible to realize an optical element,
providing the splitting of an incident BLB having a half-cone angle
dispersion of about 0.5�, on transmitted TH and reflected TE BLB
modes with both high transmission of TH modes and extreme
(>600) extinction ratio.

Thus, the numerical calculations demonstrate the prospects of
application of one-dimensional photonic crystals for generation
of TH and TH Bessel modes. Relying on 1DPC, it is feasible to design
and fabricate optical elements, which produce transmitted TH-
polarized Bessel beams and reflected TE-polarized Bessel beams.
From numerical simulation it follows that these elements are char-
acterized by a high efficiency (it is possible to achieve the extinc-
tion ratios higher than 100) and can be used for incident light
beams with a relatively wide spectral line and half-cone angle ly-
ing in a certain interval.

Now we will consider the features of the Bessel light beams
transformation in a stratified periodic medium containing a defect
insert – a layer of a uniaxial crystal, the optical axis of which is per-
pendicular to the input interface of 1DPC (Fig. 3). The calculation
for the periodic medium consisting of alternate layers of dielectrics
of ZrO2 (n1 = 2.0; d1 = 79 nm) and SiO2 (n2 = 1.45; d2 = 109 nm) has
been performed. It is a structure, the first band gap of which is
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Fig. 4. Spectral dependence of the transmission eT ¼ jtj2 and extinction ratio of perfect 1DPC [ZrO2/SiO2]N, containing N = 20 (a–d) or N = 30 (e, f) unit cells, for incident BLB
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centered at k0 = 4n1d1 = 4n2d2 = 632.8 nm. At the center of the
structure a layer of LiNbO3 is placed. The TE and TH defect modes
appearing as a consequence of a crystalline defect will be intro-
duced into the band gap. At certain wavelength k of the incident
BLB the location of TE and TH defect modes depends on the half-
cone angle ci.

In Fig. 6 the dependences of the transmission coefficient of the
layered structure [ZrO2/SiO2]5/LiNbO3/[ZrO2/SiO2]5 on the half-
cone angle of the incident BLB at small (a) and large (b) angles
are shown. It is evident that for certain intervals of the half-cone
angles, a spatial separation of TE and TH BLBs is possible. It follows
from Fig. 6a and b that one can achieve both a high transmission of
TE or TH modes and a high (more 30) extinction ratio for an inci-
dent BLB having half-cone angle dispersion about 0.007�. As the
half-cone angle ci increases, the angle width of the separated max-
ima decreases, and the extinction ratio is significantly enhanced
(up to 100 and higher). It follows from Fig. 6c and d that at the var-
iation of the layer thickness as compared with k/4 the widening of
the transmission lines for both modes takes place. Thus, the fulfill-
ment of the condition d1 = k/(4n1); d2 = k/(4n2) provides the better
separation of TE and TH modes.

It is seen (Fig. 6) that while increasing the half-cone angle, the
frequency of the maxima of the angle spectrum of transmission
for both modes becomes higher. Thus, the oscillation frequency
for TH mode appears to be higher, as well. This effect is observed
also, when the thicknesses of the ZrO2 and SiO2 layers are not quar-
ter-wave ones (Fig. 6c and d).

When anisotropy of the defect layer characterized by birefrin-
gence Dn = no � ne is large, an essential increase in the relative fre-
quency of transmission oscillation for TE and TH modes is
observed. Then, the situation is realized, in which the interval be-
tween neighbor maxima of TE modes more than one maximum for
TH modes are located. This case is shown in Fig. 7, where the
situation has been analyzed, in which the birefringence of a defect
insert in a one-dimensional photonic crystal is 0.4, 0.6 and 0.8,
respectively. As is known, such a birefringence is, in principle,
achievable in nematic liquid crystals [58,59]. It is seen that as
anisotropy increases, the angle width of the maxima decreases
and the extinction ratio are enhanced. For the cases, illustrated
in Fig. 7a and b, the extinction ratio achieves an extreme value
of 770.

The revealed effect can have an interesting application, because
it allows one to form the field with a two-annular angular spec-
trum from an incident BLB which is a superposition of plane waves
with wave vectors lying on the surface of a cone and in its small
neighboring. In the spatial domain the field with a two-annular
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Fig. 5. Angle dependence of transmission eT ¼ jtj2 and extinction ratio of perfect 1DPC [ZrO2/SiO2]N, containing N = 20 (a, b) or N = 30 (c, d) unit cells, for incident BLB having
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Fig. 6. Dependences of transmission eT ¼ jtSj2 of [ZrO2/SiO2]5/LiNbO3/[ZrO2/SiO2]5 structure on half-cone angle of incident BLB having the wavelength k = 0.6328 lm.
Parameters: d1,2 = k/4n1,2 (a, b); d1,2 = 1.12k/4n1,2 (c, d). The principle refractive indices of LiNbO3 are no = 2.2878 and ne = 2.1890.
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angular spectrum is represented as a coherent superposition of two
BLBs that differ in the cone angles.

Thus, it is shown that for both small and large half-cone angles c
the angle regimes exist, where TE and TH modes are divided with a
high extinction ratio. The possible scheme for formation and spa-
tial separation of a circularly-polarized incident Bessel beam of
zero-order into the TE- and TH-polarized BLBs is presented in
Fig. 8.

Here the incident circularly-polarized Gaussian beam is trans-
formed by the axicon A1 into the zero-order BLB. The beam trans-
mitted through the photonic crystal has the TH polarization and
can be transformed by the axicon A2 into the Gaussian beam. The
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Fig. 8. Optical scheme for formation of TE- and TH-polarized BLBs. A1,2 are axicons;
1DPC is a one-dimensional photonic crystal (perfect of having a crystalline defect
layer).
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reflected beam has the TE polarization. It can be converted back
into the Gaussian beam by the axicon A1 and removed out of the
optical system by a splitting cube. Two beams will have an equal
power, owing to the circular polarization of the incident field.

4. Conclusion

In this paper, on the basis of a matrix method, a theory of prop-
agation of TE- and TH-polarized Bessel light beams in one-dimen-
sional photonic crystals has been developed. The cases of perfect
photonic structures, as well as one containing defect layer, have
been examined. Defect inclusion is a layer of a uniaxial crystal with
the optical axis, oriented along the direction of periodicity. The
problem of the TE- and TH-polarized BLB transmission through
the crystal plate has been solved. Analytical expressions have been
derived for the reflection and transmission coefficients of TE and
TH Bessel modes propagating through a symmetric (relatively
anisotropic inclusion) photonic structure.

Based on the obtained expressions, the transmission through the
perfect photonic structure of quasi-circularly-polarized incident
Bessel beam generated by an axicon from a circularly-polarized
Gaussian beam has been calculated and analyzed. From numerical
simulation it follows that both spectral and angular width of the
band gap of such a structure is different for TE- and TH-polarized
modes. It is shown that on the basis of this effect, observed in
1DPC, it is possible to create optical elements, which produce trans-
mitted TH-polarized Bessel beams and reflected TE-polarized Bes-
sel beams. It has been proved that these elements are
characterized by a high efficiency (it is possible to achieve the
extinction ratios higher than 100) and can be used for incident
beams with an essential wavelength instability and half-cone angle
dispersion.

The possibility of generation of TH- and TE-polarized BLBs with
the use of defect modes in the band gap, appearing as a conse-
quence of anisotropic layer in the structure, has been studied. For
this aim the difference of transmission dependences for TH and
TH Bessel beams on the half-cone angle of incident circularly-polar-
ized Bessel beam is proposed to use. It is shown that the efficient
splitting of TH and TE modes is achieved even at a little number
of unit cells (about 10). As the anisotropy of inclusion increases,
the extinction ratio is essentially enhanced and the angular width
of transmission maxima of the modes decreases. The effect of a con-
siderable increase in the relative frequency of oscillation of trans-
mission function for TH- and TE-polarized Bessel modes has been
established, as the defect layer birefringence enhances. Thus, this
situation can be realized when in the interval between neighbor
TE mode maxima more than one TH mode maxima are located. This
effect has been proposed to use for field formation with a two-
annular angle spectrum from an incident BLB which is a superposi-
tion of plane waves with wave vectors lying on the surface of a cone
and in its small neighboring. In the spatial domain a field having a
two-annular angle spectrum allows one to form a coherent super-
position of two BLBs with different half-cone angles.

Thus, using both perfect photonic structures and 1DPC with a de-
fect layer, efficient and compact polarized elements for zero- and
higher-order Bessel light beams can be elaborated. It is important
to point out that during experiment some factors can modify the re-
sults of theoretical predictions made above, including absorption ef-
fects, variations in the thicknesses of the layers, non-normal
incidence of Bessel light beam onto the structure, misalignment of
optical axis of the crystalline defect from the direction of propaga-
tion of BLB. However, the numerical estimations show that the im-
pact of the most of these factors is small enough for photonic
crystals containing several tens of the unit cells. For example, the ac-
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count of optical losses in the layers �0.5 cm�1 (as for ZrO2 and SiO2

thin films in visible light [57]) causes small (<0.5%) changes of spec-
tral dependences of transmission for TE and TH Bessel modes and
extinction ratio. The deviation of the direction of BLB propagation
from the normal one (up to 1�) causes the widening the transmission
maxima of TE and TH modes and, hence, the decrease of extinction
ratio (up to 5%). The misalignment of optical axis of the crystalline
defect from the direction of propagation of BLB up to 1� (that is pos-
sible during manufacturing) causes negligible (<0.01%) changes of
spectral dependences of transmission for TE and TH modes. The
variations in the thicknesses of the layers may have the appreciable
influence on the conditions (wavelength and the value of half-cone
angle of incident Bessel beam) of generation of TH- and TE-polarized
BLBs, but only in the case if the thicknesses of both layers in every
unit cell are increasing or decreasing simultaneously. However, it
should be noted that when in every unit cell the thickness of the first
layer is greater (smaller) and the thickness of the second one is smal-
ler (greater) than the values of thicknesses of d1,2 = k0/4n1,2 up to
quantity p% (p 6 5%), the position of transmission maxima, as well
as the value of the cone angle of the incident BLB, at which the gen-
eration of TE- and TH-polarized BLBs is observed, does not practi-
cally change.

It is important to point out that the proposed method allows
one not only to generate Bessel beams with TE and TH polariza-
tions but to form their various superpositions as well. It is achieved
by changing the half-cone angle of an incident BLB, which results
in the transformation of the TE and TH transmission spectra, and,
as a result, the control of the ellipticity of the reflected and re-
fracted Bessel beams.
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