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The scattering of scalar waves by objects embedded in an inhomogeneous medium contained by a bounded
volume is discussed using the method of pseudopotentials. The scattering amplitude for the object in an
extended uniform medium is assumed known and used as input. The scattering process is described by using
an expansion of the scattering amplitude in terms of spherical harmonics. An appropriate multipole decompo-
sition of the Green function in the bounded medium is developed and the effective scattering amplitude in this
environment is defined. The generalized optical theorem obeyed by this effective scattering amplitude is
obtained and analyzed. The scattering problem is formulated entirely and explicitly in terms of the bounded
medium’s Green functions. This approach is thus very flexible in regards to the choice of incident field. In the
case of waveguides the connection between propagation and scattering is explicit. At the same time it still
allows for independent computation of the propagation and scattering aspects of the problem. This is the main
advantage of using as input the scattering amplitude in an extended uniform medium.
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I. INTRODUCTION

The problem of interest here consists in describing the
scattering of scalar waves by an object imbedded in a het-
erogeneous medium and obtaining the generalized optical
theorem satisfied by the effective scattering amplitudes in the
medium. The heterogeneity may originate from nonuniform
properties of the medium, such as position-dependent wave
propagation speeds, the presence of boundaries and inter-
faces or a combination of all these factors. The difficulty in
solving this problem arises from the fact that one has to
enforce boundary conditions both on the surface of the scat-
tering object as well as on the interfaces and boundaries. For
non-uniform media additional difficulties are encountered
since, typically, only numerical solutions are available for
describing wave propagation in such media.

A promising way of tackling those problems is to assume
that the single object scattering problem in an extended uni-
form medium can be solved independently and then formu-
late the scattering problem in the inhomogeneous medium in
such a way as to incorporate this result into the full solution
of the problem. The pseudopotential introduced by Huang
and Yang �1� offers a convenient approach to this problem
since from the start it separates the implementation of both
sets of boundary conditions. The scattering properties of the
object are subsumed in a series of field-dependent source
terms added to the Helmholtz equation, the solution of this
equation must then satisfy proper boundary conditions on the
medium’s boundaries. The pseudopotential of Huang and
Yang makes use of the expansion of the scattering amplitude
into partial spherical waves. One might think that this re-
stricts the method to spherically symmetric scattering objects
but this approach can be generalized to the case of arbitrary
scattering objects �2�.

Once the effective scattering amplitude in the inhomoge-
neous medium is defined the generalized optical theorem for

scattering of an arbitrary incident field by the embedded ob-
ject can be obtained by an application of Green’s theorem.
This approach to the optical theorem via Green’s theorem
was used by Feenberg in a seminal paper on atom-electron
scattering �3�, where the optical theorem was introduced in a
quantum-mechanical context. Van de Hulst in 1949 devel-
oped a physically intuitive method for relating extinction of a
scattered scalar wave to the forward scattering amplitude �4�.
An interesting application of the optical theorem is found in
an article by Carney et al. �5�, where it is generalized to
scatterers whose properties are known only in a statistical
sense. The optical theorem is there shown to be a powerful
tool for inverse scattering applications. This is an important
application that appears in a variety of situations, for ex-
ample, from nondestructive probing of materials to medical
applications and also in atmospheric physics and underwater
acoustics.

The practical importance of the optical theorem provides
the impetus to extend it to physical situations not addressed
in the pioneering works on this subject. In the case of clas-
sical waves, such as sound and light for example, one often
has to address both propagation in a substrate �which may be
bounded by interfaces and other boundaries� and scattering
by an object embedded in such substrate. A lucid discussion
of energy fluxes in the context of acoustic scattering by an
object in a stratified medium typical of oceanic acoustic
waveguides is presented in an article by Ratilal and Makris
�6� who derived the optical theorem based on an approximate
description of the scattering process in a stratified medium. A
more recent article by Carney et al. �7� derives and discusses
the generalized optical theorem for scalar waves scattered by
an object embedded in an inhomogeneous medium. The
work presented here complements these two previous works
and is not restricted to stratified media. In particular the for-
mulation presented here allows for insights in the multiple
scattering of the incident field by both the scattering object

PHYSICAL REVIEW E 72, 036609 �2005�

1539-3755/2005/72�3�/036609�6�/$23.00 ©2005 The American Physical Society036609-1

http://dx.doi.org/10.1103/PhysRevE.72.036609


and boundaries and inhomogeneities in the embedding me-
dium. These physical effects were neglected in Ref. �6� and
although included in the scattering formulation used in Ref.
�7� they were not explicitly discussed there.

The basic formulation of the approach adopted in this
work was presented in Ref. �2�. The general formulation is
presented in Sec. II. In Sec. III the generalized optical theo-
rem is obtained and discussed. Finally, in Sec. IV the results
are summarized and compared to those in other works on
similar problems.

II. SCATTERING IN AN INHOMOGENEOUS MEDIUM

The scattering of time-harmonic scalar waves with angu-
lar frequency � in an extended and uniform medium by an
arbitrary scattering object is characterized by a scattering
matrix T given by the following projection of the scattering
amplitude into spherical harmonics �2�:

Tlm,l�m��k� =
il−l�

4�
� dp̂Ylm

* �p̂� � dq̂Yl�m��q̂�f�p̂,q̂� . �1�

In Eq. �1� f�p̂ , q̂� is the scattering amplitude defined in the
usual way in terms of the asymptotic limit for r→� of the
full wave field created by the scattering of an incident plane
wave by the object �8�. Note that the expression in Eq. �1�
differs from the one used in Ref. �2� by a factor k=� /c
where c is the wave phase speed in the medium.

The procedure developed in Ref. �2� can be used to obtain
equations describing scattering in a general case and it can be
formulated without a specific expression for the Green func-
tion of the Helmholtz equation. This Green function obeys
the Helmholtz equation plus appropriate boundary condi-
tions:

�2G0�r,r0� + k�r�2G0�r,r0� = ��r − r0� . �2�

In order to use the operator T as an input in the computation
of scattering in an arbitrary medium one must assume that in
a neighborhood fully containing the object in the arbitrary
medium the wave number, k�r�, can be assumed to be locally
uniform. Thus for r and r0 in this region, that is for
d+�� �r−rT��d and d+�� �r0−rT��d where d is the larg-
est linear dimension of the object, rT is the position vector of
the object and � is positive �perhaps very small� one has
k�r��k�r0��k�rT� and G0�r ,r0� can be written as

G0�r,r0� = gT�r,r0� + G0
NS�r,r0� ,

gT�r� = −
eikTr

4�r
, kT = k�rT� . �3�

That is, the Green function inside this region can be split into
two parts, a singular one, which is just the Green function in
the equivalent unbounded medium, and a nonsingular part
that enforces the boundary conditions and accounts for the
inhomogeneous medium.

In the presence of an scattering object the Green function
obeys a wave equation with pseudopotentials and satisfies
the same boundary conditions as G0�r ,r0�:

�2G�r,r0� + k�r�2G�r,r0�

= ��r − r0� − �
l=0

�

�
m=−l

l

		�2l + 1�!!
kT

l 
Ylm�ŝ�
��s�
sl+2 �T

I

I + ikTT
A�

lm


s=r−rT

� .

�4�

In the above equation r is the observation point, r0 is the
position of the point source, and rT is the position of the
scattering object. The coefficients Alm are given by

Alm =
�2l + 1�!!

kT
l �2l + 1�!

�s
2l+1
sl+1� dt̂Ylm�t̂�*G�rT + st̂,r0�

s=0
.

�5�

The Green function of the Helmholtz equation, G0�r ,r0�, is
now used to obtain an integral equation:

G�r,r0� = G0�r,r0� − �
l=0

�

�
m=−l

l
�2l + 1�!!

kT
l � dr�G0�r,r��

		Ylm�ŝ�
��s�
sl+2 �T

I

I + ikTT
A�

lm
�

s=r�−rT

. �6�

The pseudopotential reduces this integral equation to a set of
coupled linear algebraic equations by expressing the scat-
tered field in terms of the Alm. The full Green function is
expressed in terms of the Alm as follows:

G�r,r0� = G0�r,r0� − �
l=0

�

�
m=−l

l
�2l + 1�!!

kT
l �T

I

I + ikTT
A�

lm

		lim
t→0


1

tl � dt̂Ylm�t̂�G0�r,rT + t�� . �7�

The linear algebraic equations for the scattering coefficients
Alm are obtained by inserting the expression for G�r ,r0� from
Eq. �7� into Eq. �5�.

In order to obtain explicit expressions for these scattering
equations one must compute the following quantities:

Glm
inc�rT,r0� =

�2l + 1�!!
kT

l �2l + 1�!

		lim
s→0

�s
2l+1
sl+1� dŝYlm�ŝ�*G0�rT + s,r0�� ,

�8�

Glm
out�r,rT� =

�2l + 1�!!
kT

l 	lim
t→0


1

tl � dt̂Ylm�t̂�G0�r,rT + t�� ,

�9�
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Klm,l�m��rT� =
�2l + 1�!!

kT
l �2l + 1�!

�2l� + 1�!!

kT
l�

lim
s→0

�s
2l+1�sl+1� dŝYlm�ŝ�*	lim

t→0

 1

tl�
� dt̂Yl�m��t̂�G0

NS�rT + s,rT + t��� . �10�

The quantity Glm
inc�rT ,r0�, defined in Eq. �8�, is the appropri-

ate multipole decomposition of the incident field on the scat-
terer located at rT due to a point source positioned at r0. The
Glm

out�r ,rT� are the appropriate partial wave components of
the scattered field observed at point r. The quantity
Klm,l�m��rT� is a matrix coupling the partial waves. This ma-
trix originates from the inhomogeneities of the embedding
medium and carries information about multiple scattering
processes in the medium between the scatterer and bound-
aries and other inhomogeneities �such as position depen-
dence of the wave number in Eq. �2��.

One should also notice that the singular part of G0�r ,r0�,
namely gT�r−r0�, the Green function of the Helmholtz equa-
tion in an unbounded and uniform medium, yields the fol-
lowing result �2�:

lim
s→0

�s
2l+1	sl+1� dŝYlm�ŝ�* lim

t→0

 1

t;�
� dt̂Yl�m��t̂�gT�rT + s − rT

− t�� =
kT

2l+1�2l + 1�!
i��2l + 1�!!�2 �ll��mm�. �11�

The above equation is obtained by using the well-known
partial wave expansion of the free space Green function.

In terms of a new set of scattering coefficients, namely,

alm = ��I + ikTT�−1A�lm, �12�

the following equations for the scattering coefficients are ob-
tained �2�:

alm = Glm
inc − �

l�m�
�
l�m�

Klm,l�m��rT�Tl�m�,l�m�al�m�. �13�

The expression for the Green function can now be written as

G�r,r0� = G0�r,r0� − �
lm

�
l�m�

Glm
out�r,rT�Tlm,l�m�al�m�.

�14�

The resulting equation for the scattering coefficients alm, Eq.
�13�, show that, in the presence of boundaries and/or a het-
erogeneous medium, there is a coupling among the scattered
partial waves. One should also notice that the only quantity
related to the scatterer that appears in the coupling matrix,
Eq. �10�, is its position. This indicates that no matter what
the nature of the scatterer is, the coupling matrix given by
Eq. �10� determines the coupling amongst the scattered par-
tial waves induced by the inhomogeneities of the medium.

The limits in Eqs. �8�–�10� can be explicitly computed in
terms of partial derivatives of the Green functions that ap-
pear in the right-hand side of those equations. This is so
because none of those Green functions is being evaluated at
a singular point since the physics of scattering requires that
r�r0 and r�rT and G0

NS�r ,r�� is nonsingular by definition.

At this point it is convenient to define the following operator:

Dlm��� =
�2l + 1�!!

kT
l

1

l!
� dŝ Ylm�ŝ�*�ŝ · ��l. �15�

This operator is simply a polynomial of degree l in the partial
derivative operators �x, �y, and �z. In fact one can show that
for m
0

Dlm��� =
4�il

kT
l plYlm�p̂�*

=�4�il

kT
l

�− 1�m

2ll!
Nlm�px − ipy�m�u

l+m�u2 − p2�l�
u=pz

,

�16�

where p=−i�, p2=−�2 and Nlm is the normalization
factor for the spherical harmonics. For m�0 one uses
Yl,−�m��q̂�*= �−1��m�Yl�m��q̂� and an expression analogous to the
one in Eq. �16� is obtained. It is straightforward, albeit te-
dious, to show that the quantities defined in Eqs. �8� and �9�
can be reduced to

Glm
inc�rT,r0� = �Dlm���G0�r,r0��r=rT

for r0 � rT, �17�

Glm
out�r,rT� = �Dlm

* ����G0�r,r���r�=rT
for r � rT, �18�

and the coupling matrix defined in Eq. �10� is equivalent to

Klm,l�m��rT� = �Dlm���Dl�m�
* ����G0

NS�r,r���r=r�=rT
. �19�

The equation for the Green function including scattering
by an object at r=rT can now be written as

G�r,r0� = G0�r,r0� − �
lm

�
l�m�

Dlm
* �����

G0�r,r���r�=rT
Tlm,l�m��rT�Dl�m������

G0�r�,r0��r�=rT
, �20�

where the effective scattering operator, T, is given by

T�rT� = T�kT� − T�rT�K�rT�T�kT�, or T�rT�

= T�kT��I + K�rT�T�kT��−1. �21�

In the case of a layered medium this result, apart from dif-
ferences in notation, is similar to that obtained by Sammel-
mann and Hackman �9�. The scattering term in Eq. �20� can
be interpreted as stating that a multipole decomposition of
the incident field, Glm

inc�rT ,r0� in Eq. �17�, is scattered into a
similar multipole decomposition of the outgoing scattered
field, Glm

out�r ,rT� in Eq. �18�.
As an example to illustrate the structure of the above

equations let us consider the case where the wavelength of
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the incident field on the object is much larger than a typical
dimension of the object. In this case it is reasonable to con-
sider the object as an isotropic scatterer where only the terms
with l=0 contribute to the scattered field. One obtains in this
case the following expression for the Green function includ-
ing the scattered field:

G�r,r0� = G0�r,r0� −
4�f

1 + 4�fG0
NS�rT,rT�

G0�r,rT�G0�rT,r0� ,

�22�

where f =T�kT�00,00 is the isotropic scattering amplitude.
Thus one sees that in the inhomogeneous medium the effec-
tive scattering amplitude is

fef f =
f

1 + 4�fG0
NS�rT,rT�

. �23�

This is similar to a result obtained by Kunze and Lenk in a
study of the effect of boundaries on scattering in a quantum
wire �10�. It also similar to a result obtained by Ye and Feuil-
lade for acoustic scattering by bubbles near surfaces �11�.
The most obvious consequence of Eq. �23� is that the effec-
tive scattering amplitude varies with the position of the scat-
tering object. The closer the object is to a boundary or inter-
face the stronger this variation will be. Another consequence
is that even if the scattering amplitude in the extended and
uniform medium is not resonant it is possible for the effec-
tive scattering amplitude to be resonant. If f is resonant then
the resonant frequency will be shifted in fef f. For example,
the implications of this resonance shift for bubbles near a
pressure release surface are discussed in the above men-
tioned Ref. �11�.

III. THE GENERALIZED OPTICAL THEOREM

An important relation satisfied by the effective scattering
operator defined in Eq. �21� can be obtained by examining
the energy flux across a surface that encloses the scattering
object. Let us consider the case of a non-energy-absorbing
medium and an object that also does not absorb energy. Then
the total energy flux across a closed surface that surrounds
the scattering object but excludes the point source is zero
since all the incident energy eventually leaves the volume
enclosed by the surface. Part of this energy is carried by the
incident field and part of it is in the scattered field but none
is dissipated into heat or other forms of energy. The total
energy flux across the closed surface is

FT =
1

2i�
� dS · �G�r,r0�* � G�r,r0� − G�r,r0� � G�r,r0�*� .

�24�

The divergence theorem then yields

FT =
1

2i�
� dVS�G�r,r0�*�2G�r,r0� − G�r,r0��2G�r,r0�*� .

�25�

Now, from Eqs. �2� and �20�

�2G�r,r0� = − k�r�2G�r,r0� + ��r − r0�

−�H������r − r���r�=rT
, �26�

where

H���� = �
lm

� �
l�m�

Tlm,l�m��rT�Dl�m������

G0�r�,r0��r�=rT�Dlm
* ���� . �27�

Thus one obtains

FT =
1

2i�
�H����*G�r�,r0� − H����G�r�,r0�*�r�=rT

.

�28�

Notice that, according to Eq. �23�, G�r ,r0�=G0�r ,r0�
−H����G0��r ,r���r�=rT

; thus

FT =
1

2i�
�H����*G0�r�,r0� − H����G0�r�,r0�*

+ H����H����*�G0�r�,r��* − G0�r�,r����r�=r�=rT
.

�29�

The expression involving two H operators can be evaluated
by using Eq. �3�, the expansion of gT in spherical harmonics
and the definition of the K operator in Eq. �19�. If one con-
siders Glm

inc�rT ,r0�, defined in Eq. �21�, as components �la-
beled by the partial wave indexes lm� of a vector Ginc, then
the total energy flux can be written as

FT =
1

2i�
Ginc

†�T† − T + 2ikTT†T + T†�K† − K�T�Ginc.

�30�

In Eq. �30� T† is the Hermitian conjugate of T, that is
�T†�lm,l�m�= �Tl�m�,lm�*. Since Ginc is arbitrary �the source po-
sition is arbitrary� in order for the total flux to be equal to
zero the expression between square brackets in the right-
hand side of Eq. �30� must also be equal to zero. Thus the
generalized optical theorem for the effective scattering op-
erator can be stated as the following relationship between the
components of T:

2ikTT†T = T − T† + T†�K − K†�T . �31�

In a similar way it can be shown that for a non-energy-
absorbing scattering object the scattering operator T obeys a
similar generalized optical theorem �8�:

2ikTT†T = T − T†. �32�

The generalized optical theorem formulated in terms of the
scattering amplitudes for classical waves in the case of a
scatterer embedded in an extend homogeneous medium is
discussed in detail in Ref. �12�, the excellent and exhaustive
treatise on optics by Born and Wolf. The generalized optical
theorem, Eq. �32�, for a nonabsorbing scatterer can also be
interpreted as implying the unitarity of the S matrix. For the
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scalar wave problem discussed in this work and using the
definition of the T matrix in Eq. �1�, the S matrix has a
simple relationship to the T matrix, namely S= I+2ikTT.
From Eq. �32� and its Hermitian conjugate it follows that
S†S=SS†= I, that is, the S matrix is unitary. A good discus-
sion of the S matrix in classical wave scattering and its rela-
tionship to the T matrix can be found in Ref. �13�.

Comparing Eqs. �31� and �32� one sees that the formal
difference between them is related to the operator K that
accounts for multiple interactions between the scattering ob-
ject and the boundaries, interfaces and inhomogeneities of
the medium where the scatterer is embedded. Thus it is clear
that if one were to define an effective S matrix for scattering
in the bounded and/or inhomogeneous medium, with the
same relationship to the effective T-matrix T as the relation-
ship between the usual S matrix and T, this effective S matrix
would not be unitary due to the term on Eq. �31� that de-
pends on the coupling matrix K. The multiple bounces be-
tween the object and a boundary are simple and intuitive to
visualize but a position dependence of the wave phase speed
will have similar effects. For example, suppose the object is
in a region like a sound channel in the ocean for example,
corresponding to a minimum of the sound speed as a func-
tion of depth. Some of the energy scattered off the object will
be redirected towards the object by refraction and re-
scattered by the object, cumulative repetition of this process
leads to the presence of the operator K in the expression for
the effective scattering operator. The explicit presence of K
in Eq. �31� indicates that those multiple scattering processes
trap a fraction of the energy incident on the object. If the
object is assumed to be in a homogeneous layer then the
quantitative importance of K depends on the ratio between a
typical dimension of the object and its distance from the
layer boundaries, the greater this ratio the larger the impact
of the multiple scattering processes that K incorporates. This
is related to the phenomena of trapped modes and complex
resonances in waveguides containing a scattering obstacle;
see Ref. �14� for details and further references on this matter.

Assuming Eq. �32� to be true one can prove that Eq. �31�
is also true by simply using Eq. �21� to write T in terms of T
in Eq. �32�. In particular, if one expresses T in terms of T
then Eq. �30� can be written as

FT =
1

2i�
� I

I + KT
Ginc�†

�2ikTT†T + T† − T�� I

I + KT
Ginc� .

�33�

Obviously when Eq. �32� is satisfied Eq. �33� yields zero
total flux which is correct since the source was assumed to be
outside the volume bounded by the closed surface through
which the total flux was computed. If the scattering object
were energy absorbing then the right-hand side of Eq. �33�
would be the negative of the power absorbed by the object
since in this case Eq. �32� does not hold �8,12�. The discus-
sion in Sec. 13.3 of Ref. �12� of the case of an absorbing
scatterer is particularly relevant here as it is formulated in
terms of classical scalar waves.

Now let us introduce the quantities �inc�r�=G0�r ,r0� and
�sct�r�=−H����G0��r ,r���r�=rT

, where �inc�r� is the incident

field, �sct�r� is the scattered field, and the total field is
�T�r�=�inc�r�+�sct�r�. The velocity vectors associated with
those fields are defined as V= �1/ i���r�����r�. The total
flux can be written as �6� FT=Re��dS ·VT

*�T�=Finc−E
+Wsct. The incident flux, Finc, is zero since the source is
outside the volume delimited by the closed surface, Wsct is
the scattered energy flux involving only �sct�r� and E is the
extinction term that involves the negative of the contribution
to the total flux due to the interference of the incident and
scattered fields:

Wsct = Re	� dS · Vsct
� �sct� ,

E = − Re	� dS · �Vsct
� �inc + Vinc

� �sct�� . �34�

Procedures similar to the ones that lead to Eq. �30� yield

Wsct =
1

2i�
Ginc

†�2ikTT†T + T†�K† − K�T�Ginc,

E =
1

2i�
Ginc

†�T − T†�Ginc. �35�

Thus the generalized optical theorem states that, in the ab-
sence of energy absorption by the object and the medium, the
scattered power is equal to the power subtracted from the
incident field by its interference with the scattered field. As
pointed out above, in the case of an energy-absorbing object
equations such as �30� and �35� still hold but �31� does not as
Eq. �32� is no longer true since a term due to energy-
absorption by the scattering object is missing �12�. In this
case the expression for the power extinguished from the in-
cident field is still given by the corresponding equation in
Eq. �35�. In the case of an energy-absorbing medium the
procedures that yielded Eqs. �30� and �35� generate extra
terms that have to do with the power absorbed by the me-
dium in the volume enclosed by the closed surface across
which the fluxes were computed. It is clear that it is not
empirically possible to separate extinction effects due to
scattering and absorption by the scattering object from the
effects of energy absorption in the medium when both pro-
cesses are present.

IV. SUMMARY AND DISCUSSION

In this article the theory of scattering of scalar waves by
an object in a bounded/inhomogeneous medium such as a
layered waveguide was formulated in such a way as to use as
inputs the scattering amplitude computed in an unbounded,
homogeneous medium. In the case of a layered medium the
scattering formulation presented here is similar to that devel-
oped by Sammelmann and Hackman �9�.

The scattering problem is formulated entirely and explic-
itly in terms of the bounded and/or inhomogeneous medi-
um’s Green functions. This approach is thus very flexible in
regards to the choice of incident field. In the case of
waveguides the connection between propagation and scatter-
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ing is explicit. In particular the Green function approach
avoids the need to discuss propagating and evanescent waves
separately, in this context compare with the discussion of the
optical theorem for incident fields containing evanescent
waves in Ref. �15�. The use of the T matrix, Eq. �1�, and the
wave equation with pseudopotentials for the Green function
avoids having to discuss the analytic extensions of the scat-
tering amplitudes for imaginary angles as done in Ref. �15�.

This new scattering formulation allowed for the deriva-
tion of the generalized optical theorem which provides sig-
nificant insights in the physics of scattering in a bounded
and/or inhomogeneous medium. It was shown that the
boundary interactions alter the balance between scattered and
incident energy in comparison with scattering in an un-
bounded medium and its relation to the phenomena of
trapped modes and complex resonances in waveguides �14�
was postulated. The circumstances where one expects the

greatest impact of those interactions on observable quantities
were discussed.

The scattering formulation presented in this work is ap-
plicable only to scalar waves. It is possible to generalize the
pseudopotential approach to the case of vector waves. This
would be necessary to discuss elastic and electromagnetic
waves for example. The generalized optical theorem for elec-
tromagnetic fields, including the case of a scatterer contained
in a dielectric half-space, was obtained in a recent publica-
tion �16� by some of the authors of Ref. �7�; it would be very
interesting to extend this result to more general inhomoge-
neous media.
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