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 1 Introduction In the last few decades, the experi-
mental advance in nanoscale fabrication has made possible 
a great many new technological applications, from improv-
ing the actual devices to the development of new ones. 
Perhaps the most important contributions have been made 
for optoelectronic systems. Taking advantage of quantum-
mechanical effects, these new devices are able to control 
many properties of macroscopic materials [1]. 
 Among these nanodevices are found quasi-zero-di-
mensional quantum dots (QDs); these structures confine 
electrons and holes in all three dimensions and allow full 
control within a certain range of the transition energies and 
the recombination location. These effects cause a marked 
increase in the electron–hole attraction inside them; in 
consequence, the correlated electron–hole pairs (excitons) 
continue to exist even at room temperature. Quantum con-
finement produces important changes in the optical proper-
ties of QDs compared to those of bulk material; Wannier 
exciton transitions are responsible for many of these chan-
ges [2–6]. 
 Excitonic studies have been made recently due to their 
possible applications; Sanada et al. [7] have made experi-
mentally single GaAs QDs embedded in (Al,Ga)As nano-
wires; they grew them using the vapor–liquid–solid (VLS) 

method, and measured photoluminescence peaks due to 
excitonic and biexcitonic transitions. They proved the ef-
fectiveness of this method as a promising way for engi-
neering GaAs/(Al,Ga)As nanostructures and studied their 
optical properties. In the same way, photoluminescence 
studies of self-organized InAlAs/AlGa–As quantum dots 
under pressure were carried out by Phillips et al. [8]. 
 From a theoretical point of view, many people have 
studied the effects of quantization on excitons in micro-
crystals or quantum dots. Brus [9] has given a variational 
calculation for the size dependence of the electron–hole 
pair state. Nair et al. [10] calculated the lowest electron–
hole state in semiconductor microcrystals as a function of 
size, using the variational principle with a three-parameter 
Hylleraas wavefunction; for very small particles, they 
treated the Coulomb interaction as a perturbation and it 
was based on an infinite confinement potential. Kayanuma 
[11] made variational calculations and determined the 
ground-state energy for an exciton confined in a micro-
crystal with finite potential barriers. One of the most im-
portant results was that the effect of penetration of the 
wavefunction outside the microcrystal is larger in the 
strong-confinement region, consistent with the small blue 
shift of the excitation energy observed in CdS microcrys-
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tals. Einevoll [12] made a theoretical study of exciton con-
finement in CdS and ZnS QDs. He used a single-band ef-
fective-mass approximation for the electrons, and the con-
finement potentials for the hole and electron were modeled 
as spherically symmetric potential wells with a finite bar-
rier height, finding a high degree of correlation with ex-
perimental data. Marín et al. [6] used the approximation of 
the effective mass for a variational method using 1s-hy-
drogen-like wavefunctions and finite-height potentials for 
the exciton’s confinement and calculated the ground-state 
energy for the exciton. 
 In the last few years, many authors have been consider-
ing the effect of hydrostatic pressure on a few particle 
states in quantum heterostructures. For donor and acceptor 
impurities in any quantum heterostructure it was found that 
the donor binding energy increases with increasing pres-
sure and decreasing size of the heterostructure [13–15]. 
The effects of hydrostatic pressure on the optical transi-
tions in self-assembled InAs/GaAs quantum dots were 
studied by Duque et al. [16]. Raigoza et al. [17] found  
the effects of hydrostatic pressure on exciton states in 
GaAs–Ga1–xAl

x
As semiconductor quantum wells via a 

variational procedure, in the framework of the effec- 
tive mass; the results agreed with experimental measures. 
A similar study was made by Zhao et al. [18] for  
GaAs–Ga1–xAl

x
As and GaN–Ga1–xAl

x
N quantum wells. 

 Theoretical research into QDs usually assumes the 
simplification of spherical symmetry for the confinement 
potential, a geometry far different from the experimental 
studies in semiconductor QDs, but it makes possible the 
computation of excitonic contributions for the optical 
properties; recently, De Giorgi et al. [19] found a way to 
produce spherical QDs using colloidal nanocrystals, thus 
demonstrating the possibility of their fabrication. However, 
the aim of the present paper is to perform a preliminary 
study of the behavior of heavy excitons under hydrostatic 
pressure embedded in spherical quantum dots; many of 
these features could be present in QDs of other shapes. We 
have chosen heavy excitons first because they are more 
commonly seen in experiments and they change with pres-
sure and second because the effective mass of light exci-
tons does not change with pressure, so we wanted to see 
how the binding energy changes with all the parameters 
depending on the pressure. 
 In this paper we present a study of the hydrostatic pres-
sure effect on the binding energy of the ground state of 
heavy excitons confined in spherical QDs made of GaAs 
with Ga1–xAl

x
As barriers. We use the variational method, 

the Hylleraas coordinate system and the effective-mass ap-
proach to find the ground-state energy; we take into ac-
count the variations with the external applied pressure on 
the dot radius, the dielectric constant, the confinement po-
tential and the effective masses [20, 21]. 
 
 2 The model In the approximation of the effective 
mass, the Hamiltonian of an exciton in a spherical quantum 
dot of GaAs–(Ga,Al)As under the influence of hydrostatic 

pressure is given by 
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where 
e
( )m P*  and 

h
( )m P*  are the effective masses of the 

electron and the hole, respectively, 
e
( )V r P,  and 

h
( )V r P,  

are the confinement potentials for the electron and the hole 
and ( )Pε  is the dielectric constant, which depends on the 
hydrostatic pressure. We use the Hylleraas coordinate sys-
tem [22], where 

1 e
| |r = r , 

2 h
| |r = r  and 

3 e h
| |,r = -r r  to sim-

plify the calculations, and we found that the Hamiltonian 
of Eq. (1) in this coordinate system is given by 
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where 
1 1 1

e h
( ( ) ( ) )m P m Pµ

- - -* *= +  is the reduced mass of 
the system. The confinement potentials for the electron and 
the hole, in the Hamiltonian of Eq. (2), are given by 
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where R = R(P) is the radius of the quantum dot, which de-
pends on the hydrostatic pressure. The trial wavefunction 
for the exciton ground state was chosen to be 
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where 
i

ψ  
o

( )ψ  means the wavefunction inside (outside) the 
quantum dot, N  is the normalization constant and λ  is the 
variational parameter. The parameters η  and κ  in Eq. (4) 
are 
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where 
e h
( ) ( )m P m Pσ

* *= /  (
1 2
( )ξ ξ ) is the uncorrelated elec-

tron energy (uncorrelated hole energy). 

(5) 
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Table 1 Pressure coefficients and constants. 

1) 
g

E
Γ

 constants:  

inside outside 

3
10 7 10 eV/kbarα

-

= . ¥  
3(11 5 1 3 ) 10 eV/kbarxα

-

= . - . ¥  
2

0 0000377 eV kbarβ = - . /  0β =  

0 0005405 eV/Kb = .  b = 0.0005405 eV/K   

c = 204 K 204 Kc =  

2) Constants appearing in the dielectric constant: 

0
12 74ε = .  

5 1

1
9 4 10 Kδ

- -

= . ¥  
3 1

2
1 67 10 kbarδ

- -

= . ¥  
0

75 6 KT = .  

3) Other parameters: 

7 51eV
P

E
Γ
= .  

0
0 341eVD = .  

1
0 30242a = .  

3 1

2
0 1 10 kbara

- -

= - . ¥  
6 2

3
5 56 10 kbara

- -

= . ¥   

 
 With the above wavefunction, we obtain the expected 
value of the Hamiltonian in Eq. (2), which is a functional 
of the variational parameter λ  and the hydrostatic pressure. 
Then, the functional is minimized with respect to the varia-
tional parameter and we obtain the energy of the correlated 
electron–hole pair. The binding energy for the ground 
state can be obtained by subtracting the energy of the cor-
related electron–hole pair from the free-electron and the 
hole energy without including the Coulomb potential. 
 The application of hydrostatic pressure modifies lattice 
constants, dot size, barrier height, effective masses and di-
electric constants. We present the explicit expressions for 
these quantities as a function of pressure and temperature, 
where the pressure is expressed in kbar and the tempera-
ture is 4 K  [20, 21]. The parameters are 

e g0 6V E
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2
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where the pressure coefficients inside and outside the dots 
and the other constants are shown in Table 1. In Eq. (6), 

0
m  

is the free-electron mass. The pressure-dependent radius 
( )R P  may be obtained from the fractional change in  vol- 

ume given by 
0 11 12

/ 3 ( 2 ),V V P S SD = - +  where 
11
S  and 

12
S  

are the compliance constants of GaAs [21]. 
 Based on these variations, the exciton binding energy 
is obtained for different pressures, Al x concentrations and 
dot sizes, using the variational method within the approxi-
mation of the effective mass. 
 
 3 Results and discussion In Fig. 1, we present  
the binding energy of excitons in a spherical 
GaAs–(Ga,Al)As quantum dot as a function of the dot  
radius, and for three hydrostatic pressures 0 kbar,P =  

20 kbarP =  and 40 kbar,P =  with an aluminum concen- 
tration of 0 30.x = .  The exciton Bohr radii for the  
different pressures are respectively ( 0) 122 05 Å,

x
a P = = .  

( 20) 108 09 Å
x

a P = = .  and ( 40) 97 56 Å.
x

a P = = .  Without 
pressure (Fig. 1a), we observe that the binding energy of 
excitons in large-radius ( 400 A)R ª  quantum dots repro-
duces the bulk value in GaAs, i.e. one effective Rydberg. 
As the dot radius is reduced, the binding energy rises due 
to the enhancement of the Coulomb attraction between the  
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Figure 1 Binding energy of an exciton in a GaAs–(Ga,Al)As 

quantum dot as a function of the dot radius and different values of 

pressure 0 kbar,P =  20 kbarP =  and 40 kbarP =  in (a), (b) and 

(c), respectively. The aluminum concentration is 0 30x = . . 
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electron and the heavy hole. This happens because the ex-
citon wavefunction is compressed in the quantum dot, i.e. 
the average electron–hole separation is reduced when the 
radius decreases. The exciton binding energy increases un-
til it reaches a maximum corresponding to a confinement 
threshold. Our positioning of this maximum coincides with 
that reported by Escorcia et al. [5]. When the dot radius 
further decreases, the unbound electron and hole energy 
increases, and its wavefunction penetrates into the barrier; 
therefore, the binding energy diminishes. This behavior of 
the binding energy is in agreement with results obtained 
previously [5, 23]. For any pressure (Fig. 1b and c), we 
showed that the exciton binding energy always increases 
from its bulk value in GaAs as the dot radius is reduced, 
reaches a maximum value and then drops as the dot radius 
goes to zero. The effect of the hydrostatic pressure on the 
exciton corresponds to an additional confinement; there-
fore, the binding energy must increase for any dot radius. 
We can see this effect by comparing Fig. 1a–c. This be-
havior of the binding energy with the hydrostatic pressure 
has been reported for excitons in quantum wells recently 
[17, 18, 24]. It is important to note the difference between 
2 D and 0 D materials; the exciton binding energy in quan-
tum dots is bigger than in wells, reflecting the additional 
confinement. Also, it can be observed that the pressure ef-
fect is more appreciable for narrow dots, and the maximum 
position goes to small radius when the pressure is in-
creased. 
 On the other hand, in Fig. 2a and b we present the exci-
ton binding energy as a function of the hydrostatic pressure  
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Figure 2 Binding energy for the heavy hole exciton as a function 

of pressure for a quantum dot with radii 30 ÅR =  and 50 ÅR =  

in (a) and (b), respectively. The aluminum concentration is 

0 30.x = .  The exciton Bohr radii are ( 0) 122 05 A,
x

a P = = .  

( 20) 108 09 Å
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Figure 3 Exciton binding energy as a function of the Al  

concentration x for given quantum dot radius 60 ÅR =  and  

pressure 20 kbar.P =  The respective exciton Bohr radius is 

( 20) 108 09 Å.
x

a P = = .  

 

for two different radii 30 ÅR =  and 50 Å.R =  We found 
that the increase in the binding energy with the pressure is 
nearly linear within the calculated pressure range, from  
0  kbar to 40 kbar. This is in agreement with the results ob-
tained in quantum wells [17, 24]. Also, we observed that 
the influence of the pressure on the exciton binding energy 
is sensitive to the dot radius. The phenomenon of exciton 
binding energy increasing with pressure can be understood 
qualitatively by considering the excitonic Rydberg energy 

4 2( /(2 )).
y

R eμ ε�=  It can be seen from the pressure de-
pendence of the material parameters mentioned above that 
the electron effective mass as well as the reduced mass of 
the exciton increase with pressure. In contrast, the static 
dielectric constant of the materials decreases with increas-
ing pressure. Therefore, both the above-mentioned effects 
cause the Rydberg energy to be effectively enhanced  
with increasing pressure, so that the binding energy in-
creases with pressure under the same dimensional restric-
tion. Figure 2a and b tell us that a system that operates un-
der hydrostatic pressure may be used to tune the output of 
optoelectronic devices without modifying the physical size 
of the quantum dot. 
 As mentioned above, the wavefunctions of excitons 
partly penetrate the barriers in quantum dots with finite 
barriers. The barrier height influences the penetration and 
the binding energy of the exciton. In Fig. 3 we show the 
results of the calculated excitonic binding energies as a 
function of the Al concentration x  for a quantum dot with 
radius 60 ÅR =  and pressure 20 kbar.P =  We observe that 
the binding energy of the exciton increases nearly linearly 
with x, which raises the barrier height and therefore en-
hances the confinement of excitons. For quantum wells, a 
similar behavior was observed, but the enhancement of the 
binding energy is not linear [18]. 
 
 4 Conclusions In the present study, we calculated the 
ground-state binding energy of excitons inside spherical 
GaAs/Ga1–xAl

x
As quantum dots as a function of the hydro-

static pressure, using the Hylleraas coordinate system and 
the variational method within the approximation of the ef-
fective mass. We used a spherical quantum dot to gain in-
sight into the essential features of quantum size and hydro-
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static pressure effects. We found that the binding energy 
increases with hydrostatic pressure. The radius of the quan-
tum dot with maximum binding energy depends on the 
pressure. The hydrostatic pressure effects are more pro-
nounced for small dots. The binding energy increases 
nearly linearly as a function of hydrostatic pressure and Al 
concentration, and the slope depends on the radius of the 
quantum dot. 
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