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Measuring gravitational waves from binary black hole coalescences.
I. Signal to noise for inspiral, merger, and ringdown
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We estimate the expected signal-to-noise ratios~SNRs! from the three phases~inspiral, merger, and ring-
down! of coalescing binary black holes~BBHs! for initial and advanced ground-based interferometers~LIGO-
VIRGO! and for the space-based interferometer LISA. Ground-based interferometers can do moderate SNR~a
few tens!, moderate accuracy studies of BBH coalescences in the mass range of a few to about 2000 solar
masses; LISA can do high SNR~of order 104!, high accuracy studies in the mass range of about 105– 108 solar
masses. BBHs might well be the first sources detected by LIGO-VIRGO: they are visible to much larger
distances—up to 500 Mpc by initial interferometers—than coalescing neutron star binaries~heretofore re-
garded as the ‘‘bread and butter’’ workhorse source for LIGO-VIRGO, visible to about 30 Mpc by initial
interferometers!. Low-mass BBHs~up to 50M ( for initial LIGO interferometers, 100M ( for advanced,
106M ( for LISA! are best searched for via their well-understood inspiral waves; higher mass BBHs must be
searched for via their poorly understood merger waves and/or their well-understood ringdown waves. A
matched filtering search for massive BBHs based on ringdown waves should be capable of finding BBHs in the
mass range of about 100M ( – 700M ( out to ;200 Mpc for initial LIGO interferometers, and in the mass
range of;200M ( to ;3000M ( out to aboutz51 for advanced interferometers. The required number of
templates is of the order of 6000 or less. Searches based on merger waves could increase the number of
detected massive BBHs by a factor of the order of 10 over those found from inspiral and ringdown waves,
without detailed knowledge of the waveform shapes, using a noise monitoring search algorithm which we
describe. A full set of merger templates from numerical relativity simulations could further increase the
number of detected BBHs by an additional factor of up to;4. @S0556-2821~98!06508-4#

PACS number~s!: 04.80.Nn, 04.25.Dm, 04.30.Db, 95.55.Ym
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I. INTRODUCTION AND SUMMARY

A. Coalescences of black hole binaries

It has long been recognized that coalescences of bin
black hole~BBH! systems could be an important source
gravitational waves@1,2#, both for ground-based interfero
metric detectors such as the Laser Interferometric Grav
tional Wave Observatory~LIGO! @3# and VIRGO @4# cur-
rently under construction, and also for the possible fut
space-based Laser Interferometer Space Antenna~LISA! @5–
7#. The orbits of BBHs gradually decay from energy a
angular momentum loss to gravitational radiation. Even
ally, they merge to form a single black hole.

The process of coalescence can be divided into three m
or less distinct phases:

An adiabaticinspiral, during which the gravitational ra
diation reaction time scale is much longer than the orb
period. The inspiral ends when the binary orbit becom
relativistically dynamically unstable at an orbital separat
of r;6M ~in units whereG5c51! @8,9#. The gravitational
waves from the inspiral carry encoded within them t
masses and spins of the two black holes, some of the b
ry’s orbital elements, and the distance to the binary@1,10#.

Towards the end of inspiral, the black holes encounte
dynamical instability and make a gradual transition from
radiation-reaction driven inspiral to a freely falling plung
@8,11,12#. After the plunge, the black holes would still merg
570556-2821/98/57~8!/4535~31!/$15.00
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even if the radiation reaction could be turned off. We w
call the subsequent plunge and violent collision themerger
phase. Gravitational waves from the merger could be r
with information about the dynamics of relativistic gravity
a highly nonlinear, highly dynamic regime which is poor
understood today.

As the system settles down to a stationary Kerr state,
nonlinear dynamics of the merger gradually becomes m
and more describable as oscillations of the final black ho
quasinormal modes@13,14#. The corresponding gravitationa
waves consist of a superposition of exponentially damp
sinusoids. We will call the phase of the coalescence
which the gravitational waves are dominated by the strong
l 5m52 quasinormal mode theringdown. The ringdown
waves carry information about the mass and spin of the fi
black hole @15,16#. ~For want of a better terminology, we
will always usecoalescenceto refer to the entire process o
inspiral, merger and ringdown, and reserve the word mer
for the phase intermediate between inspiral and ringdow!

In this paper we focus primarily on BBHs in which th
masses of the two black holes are approximately the sa
although we do also consider sources with one black h
much smaller than the other. We consider three differ
classes of BBHs:

~i! Solar massblack hole binaries: these are binaries th
are formed either from massive main-sequence progen
binary stellar systems~field binaries! or from capture pro-
4535 © 1998 The American Physical Society
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4536 57ÉANNA É. FLANAGAN AND SCOTT A. HUGHES
cesses in globular clusters or galactic centers~capture bina-
ries!. Field binaries are expected to have total masses in
range 10M (&M&50M ( , but not much larger than this
while capture binaries could have somewhat larger ma
@17#. The event rate of solar-mass BBH coalescences is
well known. For globular cluster capture binaries, Sigur
son and Hernquist argue that generically at least one B
coalescence should occur per core-collapsed globular clu
@18#, yielding ;3 yr21 in a distance of 600 Mpc using th
extrapolation method of Sec. 3.1 of Ref.@19#. This rate is
one or two orders of magnitude smaller than the expec
event rate for what has traditionally been regarded as
most promising source for ground-based interferomet
coalescences of neutron-star–neutron-star~NS-NS! binaries
@3,10# ~about 1025 yr21 in our Galaxy, or several per year i
a distance of 200 Mpc@20,19,21–23#!. However, BBH sys-
tems can be seen to much greater distances than NS-NS
tems, and so it is possible that BBH coalescences will
seen before NS-NS coalescences. For field binaries,
mates of the coalescence rate by experts in binary evolu
theory range from;1028 yr21 to ;1026 yr21 in our Gal-
axy @22,24#, to completely negligible@25#. There are large
uncertainties associated with these theoretical estimate
the coalescence rates@26#.

~ii ! Intermediate massblack hole binaries: these are bin
ries with total masses in the range 50M (&M&(a
few)3103M ( . In contrast to the cases of solar mass bla
holes and supermassive black holes~discussed below!, there
is little direct observational evidence for the existence
black holes in this mass range@27#. Despite the lack of evi-
dence, it is plausible that black holes in this mass range
formed in the cores of globular clusters or in galactic nuc
in the process of formation of a supermassive black h
@30#. Simulations by Quinlan and Shapiro suggest that bl
holes withM;100M ( to 1000M ( could be formed in the
evolution of dense stellar clusters of main sequence sta
galactic nuclei@17#, and that coalescences of binaries of su
black holes could be possible en route to the formation o
supermassive black hole. Even if the coalescence rate o
termediate mass BBHs is only 1024 that of NS-NS binaries,
they are visible to such great distances that they would
be seen more often than NS-NS binaries by initial and
vanced LIGO interferometers, and thus could be the fi
detected type of source.~See Sec. I E for further details.!

~iii ! Supermassiveblack hole binaries: there is a variety o
strong circumstantial evidence that supermassive black h
~SMBHs! in the mass range 106M ( to 109M ( are present in
quasars and active galactic nuclei, and that a large fractio
nearby massive spiral and elliptical galaxies harbor quies
SMBHs@7,31,30#. One of the main goals of the LISA projec
is to detect and monitor various processes involving SMB
such as the capture of compact stars@2,7,10,32,33# and their
formation@2,7#. In particular, the coalescences of SMBH b
naries that are formed in galaxy mergers, in which the in
vidual SMBHs are driven together by dynamical friction a
gas accretion until a gravitational radiation reaction ta
over @34#, have often been suggested as a promising so
for space-based interferometers@1,2,7,10,35,36#. Such coa-
lescences would be detectable throughout the observable
verse with large signal to noise ratios@7,10#. There is some
observational evidence for SMBH binaries: wiggles in t
he
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radio jet of QSO 19281738 have been attributed to the o
bital motion of a SMBH binary@37#, as have time variations
in quasar luminosities@38# and in emission line redshifts
@39#. The overall event rate is uncertain, but could be la
(*1/yr), especially if the hierarchical scenario for structu
formation is correct@36#.

B. Status of theoretical calculations of the gravitational-wave
signal

Detailed theoretical understanding and predictions of
gravitational waveformsh1(t) andh3(t) produced in BBH
coalescences will facilitate both the detection of t
gravitational-wave signal and the extraction of its inform
tion. In situations where a complete family of theoretic
template waveforms is available, it will be possible to u
Wiener optimal filtering~‘‘matched filtering’’! to search the
interferometer data streams and to detect the signal@1,40#.
The resulting signal-to-noise ratios~SNRs! can be larger
than those obtainable without theoretical templates by a s
stantial factor; see Sec. II. Thus, while it is possible to det
the various phases of BBH coalescences without theore
templates, such templates can greatly increase the effe
range of the interferometers and the event detection r
Such theoretical template waveforms are available for
inspiral and ringdown phases of the coalescence, but no
for the merger phase, as we now discuss.

For the inspiral, the gravitational waves and orbital ev
lution can be described reasonably well using the po
Newtonian approximation to general relativity. To date,
spiral waveforms have been calculated to post-2
Newtonian order@41#, and the prospects look good fo
obtaining waveforms up to post-3.5-Newtonian ord
@42,43#. Post-Newtonian templates will be fairly accura
over most of the inspiral, the most important error being
cumulative phase lag@44,45#. This cumulative phase lag wil
not be important for searches for inspiral waves; the temp
phasing error will be largely compensated for by systema
errors in best-fit values of the binary’s parameters, and
signals will still be found@44,46–48#. By contrast, template
inaccuracies will be significant when one attempts to extr
from the data the binary’s parameters. In particular, po
Newtonian templates’ errors start to become very signific
around an orbital separation ofr;12M @49#, well before the
end of the inspiral at the dynamical orbital instability (r
;6M ). Templates for the phase of the inspiral betwe
roughly 12M and 6M will most likely have to be calculated
using methods other than the post-Newtonian approximat
The methods of full blown numerical relativity cannot b
applied to this ‘‘intermediate binary black hole’’~IBBH!
phase, since the total time taken to evolve from 12M to 6M
is about 1500M , too long for supercomputer simulations
evolve. Analytical and numerical methods for calculati
IBBH waveforms based on the adiabatic approximation
under development@50#; it is likely they will be successfully
implemented before gravitational-wave interferometers
gin measurements@51#.

Waveforms from the dynamic, complicated merger c
only be obtained from numerical relativity. Unlike merge
of neutron star binaries, BBH mergers are particularly cle
in the sense that there is no microphysics or hydrodynam
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to complicate simulations of the evolution, and external p
turbations are negligible: the entire merger can be descr
as a solution to the vacuum Einstein equation@53#. Finding
that solution is not a particularly easy task: a major com
tational effort to evolve the vacuum Einstein equation
BBH mergers using massive computational resources is
rently underway, funded by the National Science Foun
tion’s Grand Challenge program@54,55#.

The ringdown phase of the coalescence can be accur
described using perturbation theory on the Kerr spacet
background@56#. The gravitational waveforms from thi
phase are well understood, being just exponentially dam
sinusoids. Thus, matched filtering is feasible for searches
ringdown waves.

C. Purpose of this paper

The principal purpose of this paper is to estimate, in m
detail than has been done previously, the prospects for m
suring gravitational waves from the three different phases
coalescence events, for various different detectors, and f
wide range of BBH masses. We estimate in each case
distances to which the different types of source can be s
by calculating expected SNRs. In particular, we determ
for each BBH mass and each detector whether a coalesc
event is most effectively detected by searching for the
spiral, or the merger, or the ringdown. We also determ
how much the availability of theoretical templates for t
merger could increase the event detection rate. Previous
timates of SNRs for ground-based interferometers have
cused on the inspiral@1,44# and ringdown@15,16#, and also
focused on solar-mass BBHs. For space-based interfer
eters, previous estimates of SNRs from the merger@7,10#
were restricted to specific masses and did not consider
ringdown.

In a companion paper, we discuss in detail the use
information carried by the three phases of the gravitation
wave signal, and methods and prospects for extracting
information both with and without templates for the merg
phase@57#.

D. Estimating the signal-to-noise ratios:
Method and assumptions

We calculate SNRs for three different types of interfe
ometer: initial and advanced ground-based interferome
~LIGO-VIRGO!, and the proposed space-based interfero
eter LISA. The noise spectra of the initial and advanc
ground-based interferometers we took from Ref.@3# and that
for LISA from Ref. @7#. Our approximate versions of thes
noise spectra are given in Eqs.~4.1!–~4.4!, and are illustrated
in Figs. 1–3 in Sec. V A.

We consider the following three different signal-detecti
methods:

~i! Matched filtering searches:For those phases of th
coalescence for which a complete set of theoretical templ
will be available~the inspiral, the ringdown, and possibly th
merger!, matched filtering can be used to search for
waves@1,40,58–60#. For any source of waves, the SNRr
obtained from matched filtering is related to the gravitatio
waveform h(t) measured by the interferometer and to t
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spectral densitySh( f ) of the strain noise in the interferom
eter via@61#

r254E
0

` u h̃~ f !u2

Sh~ f !
d f , ~1.1!

where h̃( f ) is the Fourier transform ofh(t) defined by Eq.
~2.3!. The SNR~1.1! depends, through the waveformh(t),
on the orientation and position of the source relative to
interferometer. In Sec. II C we show that if we perform
rms average over source orientations and positions~at a fixed
distance!, the rms SNR thus obtained depends only on
energy spectrumdE/d f of the emitted gravitational waves
The resulting relationship between the waves’ energy sp
trum and the rms angle-averaged SNR forms the basis
most of our calculations. It is given by@cf. Eq. ~2.30!#

^r2&5
2~11z!2

5p2D~z!2 E
0

`

d f
1

f 2Sh~ f !

dE

d f
@~11z! f #,

~1.2!

wherez is the source’s cosmological redshift andD(z) its
luminosity distance. In order for a signal to be detected,
waves’ measured SNR must be larger than a certain thr
old which we discuss in Sec. II C@cf. Eq. ~2.9!#.

~ii ! Band-pass filtering searches:For the merger phase,
complete set of theoretical templates may not be availa
and so methods other than matched filtering will need to
used. Band-pass filtering, followed by setting a detect
threshold in the time domain, is a simple method of sear
ing an interferometer data stream for bursts of unknown fo
@40#. In Sec. II A we derive an approximate relation betwe
the SNR obtainable from band-pass filtering, and the S
~1.1! obtainable from matched filtering, for any burst
waves:

S S

ND
band-pass

'
1

A2TD f
S S

ND
matched

. ~1.3!

HereT is the duration of the burst andD f is the bandwidth
of the band-pass filter@cf. Eq. ~2.15!#. The quantity 2TD f is
the dimension of the linear space of signals being searc
for, and is roughly the same as the ‘‘number of cycles’’
the gravitational waveform. In Sec. VI B, we use the formu
~1.3! to estimate the SNRs from band-pass filter searches
merger waves, by inserting on the right hand side the r
angle-averaged matched-filter SNR~1.2! and by making es-
timates ofT andD f .

~iii ! Noise-monitoring, nonlinear filtering searches:The
traditional view has been that the SNR~1.3! is about the best
that can be achieved in the absence of templates, that is,
the gain in SNR obtainable from matched filtering is a
proximately the square root of the number of cycles in
gravitational wave signal@Eq. ~2.15! below#. This view is
based on the assumption that the search method used i
absence of templates is band-pass filtering or something
similar. However, we suggest in Sec. II B an alternati
search method, motivated by Bayesian analyses and inco
rating nonlinear filtering, which performs much better th
band-pass filtering and in some cases almost as wel
matched filtering. In essence, one monitors the noise leve
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the data stream in a certain frequency band, over short
scales, and looks for statistically significant changes. T
noise level is estimated by calculating the quantity

1

T E
2T/2

T/2

dt s~ t1t!2, ~1.4!

whereT is the maximum expected duration of the signal, a
s(t) is a suitably pre-filtered version of the data stream.

The efficiency of this noise-monitoring search meth
cannot usefully be described in terms of an SNR, since
detection statistic is non-Gaussian. Instead, its efficiency
be described in the following way. Letr denote the SNR tha
would be obtained if matched filtering were possible@Eq.
~1.1!#. We user as a convenient parameterization of t
signal strength; as such, it is meaningful even in situati
where matched filtering cannot be carried out. A signal w
be detected with high confidence using the noise-monito
technique wheneverr is larger than a thresholdr* given by
Eq. ~2.29! below. In practice,r* is slightly larger than the
threshold for matched filtering but not greatly larger.

The relation~1.2! forms the basis of our SNR calcula
tions. We use the thresholds~2.9! and~2.29! to deduce from
the SNR values the detectability of the various parts of
gravitational wave signal. To calculate the SNRs, we a
need to specify the waves’ energy spectra for the three
ferent phases of the coalescence. As we now outline,
waves’ energy spectrum is essentially known for the insp
and ringdown phases, and we make an educated guess fo
merger. Section III gives more details.

Inspiral energy spectrum:We use the leading order ex
pression for dE/d f obtained using Newtonian gravit
supplemented by the quadrupole formula@62# @Eq. ~3.14!#.
Strictly speaking, this spectrum describes the SNR t
would be achieved by searching for Newtonian, quadrup
waves using Newtonian, quadrupole templates. The ac
SNR obtained when searching for a real, general-relativi
inspiral using post-Newtonian templates should deviate fr
this by only a few tens of a percent@63#. We terminate the
spectrum at the frequencyf merge50.02/M which is ~roughly!
the frequency of quadrupole waves emitted at the orbital
namical instability atr;6M @8#. For LISA, we assume tha
the measurement process lasts at most 1 yr, and choos
frequency at which the spectrum starts accordingly.

Ringdown energy spectrum:The spectrum that we us
@Eq. ~3.19!# is determined, up to its overall amplitude, by th
properties of thel 5m52 quasi-normal ringing~QNR! mode
of the final Kerr black hole. This mode is the most slow
damped of all QNR modes, and so we expect it to domin
the last stages of gravitational-wave emission. The Q
spectrum depends on three parameters: the modes’ frequ
f qnr, damping timet, and initial amplitude of excitation
which in turn depend on the massM and dimensionless spi
parametera of the final black hole and on the total energ
radiated in the ringdown. The spectrum is peaked atf 5 f qnr
with width D f ;1/t.

We ~somewhat arbitrarily! assumea50.98. It seems
likely that in many coalescences the spin of the final bla
hole will be close to maximal, since the total angular m
mentum of the binary at the end of the inspiral is;0.9M2

when the individual black holes are non-spinning@65#, and
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can be larger when they are spinning. Exactly how close
extremal the final black hole will be is a matter that probab
will not be decided until supercomputer simulations—
observations—settle the issue. In any case, the ringd
SNR values that we obtain depend only weakly on our
sumed value ofa @cf. Eq. ~B14!#, for fixed total energy ra-
diated in the ringdown.

The overall amplitude of the ringdown signal depen
upon one’s delineation of where ‘‘merger’’ ends and ‘‘ring
down’’ begins, which is somewhat arbitrary. For equal-ma
BBHs, we assume a value of the overall amplitude that c
responds to a total radiated energy in the ringdown
0.03M , i.e., a 3% radiation efficiency. This number is bas
on a quadrupole-formula-based estimate of the QNR am
tude when the distortion of the horizon of the black hole is
order unity~cf. Sec. III D!. Although this radiation efficiency
may seem rather high, there have been numerical evolut
of distorted, spinning black holes in which the ringdow
waves carry away*3% of the black hole’s total mass@66#.

For non-equal-mass black holes, we assume that the
energy radiated in the ringdown isF(m/M ) 0.03M , where

F~m/M !5~4m/M !2 ~1.5!

andm is the reduced mass of the binary. The reduction fac
~1.5! gives the correct results for equal masses and also g
the correct scaling law in the regimem!M . For general
mass ratios, it is probably a good approximation.

Merger energy spectrum:Realistic merger energy spectr
will vary substantially from event to event~depending on the
initial BH spins!. Currently, we have very little concrete in
formation about such spectra, pending supercomputer si
lations. We adopt the following crude model for equal-ma
BBHs @Eq. ~3.13! below#: a flat spectrumdE/d f5const ex-
tending from the frequencyf merge50.02/M of quadrupole
waves at the end of inspiral to the quasinormal ringing f
quencyf qnr50.13/M , with amplitude such that the total ra
diated energy in the merger is 10% of the total mass ene
of the spacetime. In Sec. III B we describe various circu
stantial pieces of evidence, culled from the literature, wh
motivated this choice of energy spectrum. In particular,
outline two different ‘‘handwaving’’ arguments which sug
gest that in favorable cases the merger radiation efficie
may be as high as our assumed value of;10%. One of these
arguments, due originally to Smarr@67# and explored by
Detweiler @68#, is based on extrapolation of perturbatio
theory results; the other argument is based on angular
mentum conservation.

Our assumed radiation efficiencies of 3% and 10% for
ringdown and merger phases should be interpreted as rea
able upper bounds that could be achieved in favorable ca
rather than as best-guess estimates. We note that nume
simulations that have been performed to date~which are re-
stricted to axisymmetric situations! generally yield lower ra-
diation efficiencies than we have assumed@69#; moreover,
these axisymmetric simulations generally find that ringdo
waves carry most of the radiated energy. In Sec. III B
argue that the radiated energy in the merger phase coul
boosted by the lack of symmetry in generic black hole me
ers and especially by the individual black holes’ spins~if
these spins are large!.
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For non-equal-mass BBHs, we again reduce the ene
spectrum by the factor~1.5!, while the upper and lower fre
quenciesf mergeand f qnr are taken to be independent ofm.

E. Signal-to-noise ratios: Results and implications

By inserting our assumed energy spectra~3.14!, ~3.13!
and ~3.18! into Eq. ~1.2!, we obtain matched-filtering SNR
for the three different phases of BBH coalescences as a f
tion of the redshifted total mass (11z)M of the binary. The
results are summarized in Appendix B, and graphed in F
4, 5 and 6. In Sec. III E we estimate that the number
independent frequency binsNbins[2TD f characterizing the
merger falls in the range 10&Nbins&30; a conservative up
per bound is;60. We use this upper bound in Sec. VI B
estimate the SNR threshold~2.29! for merger waves using
noise-monitoring searches when templates are unavaila
We discuss the implications of these SNRs and SNR thre
olds in Sec. VI; here we summarize our main conclusion

Ground-based interferometers can study black-hole m
ers in the mass range (a few)M ( to ;2000M ( ; LISA, by
contrast, can study mergers in the mass range 105M (&(1
1z)M&108M ( .

Ground-based interferometers can do moderate SNR~a
few tens!, moderate accuracy studies of the dynamics
merging black holes. LISA, by contrast, can do high SNR~a
few 3104!, high-accuracy studies.

Coalescing black holes may well be the first sources
tected by LIGO-VIRGO: because of their larger masses, t
can be seen to much greater distances than coalescing
tron star binaries.~With the initial LIGO interferometers,
BBHs with M&50M ( can be seen to;250 Mpc, whereas
binary neutron stars can be seen to;25 Mpc @70#!. The
distance gain for BBHs could easily compensate for th
smaller birth rate discussed above.

Low-mass BBHs@M&30M ( for initial LIGO interferom-
eters, M&80M ( for advanced, (11z)M&33106M ( for
LISA# are best searched for via their well-understood insp
waves; more massive BBHs must be searched for via t
poorly understood merger waves and/or their we
understood ringdown waves.

A search for massive BBHs based on the ringdown wa
can be performed using matched filtering. We show in S
VI A that the number of templates needed for such a sea
is about 6000 or less, assuming that one wants the event
reduction due to discreteness of the template family to be
more than 10%. Such a search with the first LIGO interf
ometers should be capable of finding equal-mass BBH
the mass range 100M ( – 700M ( out to about 200 Mpc. With
advanced LIGO interferometers, BBHs with 200M (&M (1
1z)&3000M ( should be detectable out toz;1, and with
LISA, BBHs with 106M (&(11z)M&33108M ( should
be visible out toz*100. These distances are reduced b
factor of ;(4m/M ) for non-equal-mass BBHs.

The effectiveness of a search based on the merger w
will depend on how much one has learned about the wa
from numerical relativity. With only knowledge of th
merger waves’ range of frequency bands and range of t
poral durations, a search can be performed using the no
monitoring search algorithm discussed above. Such a se
could increase the number of discovered BBHs by a facto
gy
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;10 over those found from the inspiral and ringdown wav
A full set of merger templates based on numerical relativ
simulations could further increase the event rate by an a
tional factor of up to;4.

F. Organization of this paper

The body of the paper is organized as follows. In Sec
we discuss the three methods of searching for gravitatio
wave signals referred to above. In Sec. III we discuss
assumptions about the BBH gravitational-wave signal:
splitting into three epochs, details of the emitte
gravitational-wave energy spectrum during each epoch,
reasonable estimates of the duration and bandwidth of
dynamical merger. In Sec. IV we devise a simple piece-w
power-law analytic fit@Eq. ~4.1!# to the noise spectra of a
initial LIGO interferometer, an advanced LIGO interferom
eter, and a space-based LISA interferometer. This single
mula, by adjustment of its parameters, can describe all th
interferometer types.

In Sec. V we insert these noise spectra models and
gravitational-wave energy spectra into the general SNR
mula ~1.2! to produce the matched filtering SNR for ea
type of interferometer and for each phase of BBH coal
cence. Detailed SNR results are given in Appendix B. W
give intuitive insight into these SNRs in Sec. V A by re
expressing the power SNR for a source as

r25E d~ ln f !@hchar~ f !/hn~ f !#2, ~1.6!

wherehchar( f ) is the source’s ‘‘characteristic amplitude’’ a
a function of frequency, andhn( f ) is the detector’s rms
noise in a bandwidth equal to frequency for sources w
random orientations. We give plots ofhchar( f ) and hn( f )
for five specific examples of binaries with widely varyin
masses and distances. In Sec. V B, we plot and discuss
SNRs as functions of source mass@Figs. 4, 5, and 6#. These
plots are the foundation for our conclusions, summariz
above, about what features of which binaries should be
servable with which interferometers. A detailed discussion
these conclusions is given in Sec. VI. In Sec. VI A, we es
mate the number of templates required for a search for r
down waves based on matched filtering and estimate
SNR detection thresholds and, hence, the range of the v
ous interferometers for ringdown waves. In Sec. VI B w
examine the prospects for searches for BBHs via th
merger waves, both with and without templates.

II. DERIVATION OF GENERAL FORMULAS
FOR SIGNAL-TO-NOISE RATIOS AND DETECTION

THRESHOLDS

In this section we discuss the various signal-search m
ods which were briefly described in the Introduction. In S
II A we derive the approximate relation~1.3! between the
SNR achievable using matched filtering searches for sig
and the SNR obtainable via band-pass filtering searches
Sec. II B we describe our proposed noise-monitoring sea
method, and derive the detection threshold~2.29! discussed
in Sec. I E. Finally, in Sec. II C we derive the general fo
mula ~1.2! discussed in the Introduction for the angl
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averaged, matched-filtering SNR for a gravitational-wa
source.

A. Searches for gravitational-wave bursts: Band-pass filtering
and matched filtering

Suppose that some arbitrary gravitational-wave bursth(t)
is present in the data streams(t), so that

s~ t !5h~ t !1n~ t !, ~2.1!

where n(t) is noise. If one integrates a filterK(t) against
s(t) to produce a number,Y5*K(t)s(t)dt, then the stan-
dard definition of the SNR is@61#

S

N
5

expected value ofY when signal present

rms value ofYwhen no signal present

5
^Y&

A^Y2&s50

5
4*0

`d fR@ h̃~ f !* K̃~ f !#

A4*0
`d f uK̃~ f !u2Sh~ f !

; ~2.2!

see, e.g., Refs.@58,59#. Here tildes denote Fourier transform
according to the convention

h̃~ f !5E
2`

`

e2p i f th~ t !dt, ~2.3!

andSh( f ) is the power spectral density of strain noise in t
detector@61#.

Now consider searching for a signalh(t) when the only
information one has about it is its approximate bandwidth
the frequency domain. Perhaps the simplest search algor
one could use to search forh(t) is to choose forK(t) the
following band-pass filter:

K̃~ f !5e2p i f t startQ~D f /22u f 2 f charu!. ~2.4!

HereQ is the step function andtstart is the starting time of the
filter. This filter chops out all the data in the frequency d
main except that in a bandwidthD f about a characteristic
central frequencyf char @71#. Suppose that the frequency in
terval has been chosen wisely, so that the signalh(t) has
negligible power outside the interval. Thenh̃( f ) can be
taken to vanish outside the chosen bandwidth, and Eqs.~2.2!
and ~2.4! yield

S S

ND
band-pass

5
h~ tstart!

A*D fd f Sh~ f !
'Af char

D f

h~ tstart!

hrms~ f char!
,

~2.5!

wherehrms( f )[Af Sh( f ) is the rms fluctuation in the nois
at frequencyf in a bandwidth equal tof . The starting time of
the filter, tstart, is then varied to give the maximum filte
output Y, which is achieved at some valuetbest of tstart. At
this maximum overlap time, the SNR is given by Eq.~2.5!
with tstart replaced bytbest. In particular, for broadband sig
nals for whichD f ; f char, Eq. ~2.5! simplifies to the standard
result @40#
e

n
m

-

S S

ND
band-pass

'
h~ tbest!

hrms~ f char!
. ~2.6!

By contrast, if the shape of the signal is known, one can
the well-known optimal or matched filter K̃( f )
5 h̃( f )/Sh( f ) @58,59,61#:

r25S S

ND
matched

2

54E
0

` u h̃~ f !u2

Sh~ f !
d f . ~2.7!

A crucial element of both matched filtering searches a
most especially band-pass filtering searches with grou
based interferometers is the use of coincidencing betw
different interferometers to circumvent the effects of no
Gaussian noise bursts@40#. Coincidencing between the 4 in
terferometers in the LIGO-VIRGO network~the Hanford 2
km, Hanford 4 km, Livingston 4 km and Pisa 3 km interfe
ometers! should be sufficient to achieve this. To be cons
vative, our assumed detection thresholds for the SNR va
are based on combining just the two LIGO 4 km interfero
eters, albeit with assumed Gaussian statistics.

In order for a signal to be detected with matched filterin
the waves’ measured SNR must be larger than the detec
thresholdr thresholdgiven by

erfc~r threshold/& !5
e

Nstart-timesNshapes
; ~2.8!

see, for example, Ref.@44#. Heree is the false alarm prob-
ability, which we will assume below to be 1023, correspond-
ing to a false alarm rate of once per 1000 yr if the length
the data set is 1 yr. The quantityNstart-timesis the number of
independent starting times of the gravitational wave sig
that are searched for in the data set, determined by the
duration of the data set~of order one year! and the sampling
time. The quantityNshapes5Nshapes(r threshold) is the number
of statistically independent waveforms with SNR<r threshold
in the set of signals to be searched for@72#; Eq. ~2.8! must be
solved self-consistently to determiner threshold. To a good
approximation, Eq.~2.8! reduces to

r threshold'A2 ln~Nstart-times/e!12 ln~Nshapes!. ~2.9!

Typical values of these parameters aree51023, a sampling
time of 0.01 s and a data set of 1 yr duration; for these val
Nstart-times/e;331012 and thus the value of the thresho
~2.9! depends only weakly onNshapessinceNshapes!1012.

There is a standard lore that the matched-filtering S
~2.7! is larger than the band-pass filtering SNR~2.6! by ap-
proximately the square root of the number of cycles in
waveform@1,40#. This relation is strictly speaking only ap
plicable to waveforms that are almost monochromatic, i
of the form h(t)5hamp(t)cos@F(t)#, where the amplitude
hamp(t) and instantaneous frequency@given by 2p f (t)
5dF/dt# are slowly evolving. The standard lore relation c
be obtained by inserting the stationary phase approxima
to the Fourier transform ofh(t) into Eq. ~2.7!, which yields

r25E d~ ln f ! ncyc~ f !
hamp@ t~ f !#2

hrms~ f !2
, ~2.10!
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wherencyc( f )[ f 2/ ḟ is the number of cycles spent within
bandwidthD f ; f centered onf , and t( f ) is the time at
which the gravitational-wave frequency isf . Comparing
Eqs.~2.6! and ~2.10!, we see thatncyc( f ) is the gain factor
in SNR squared for matched filtering over band-pass fil
ing, per logarithmic interval in frequency@1#.

This analysis does not apply to signals which are
quasi-monochromatic. We can, however, derive an appr
mate formula for the SNR~2.6! for general signals. Approxi-
matingSh( f ) to be constant in Eq.~2.7! gives @40#

S S

ND
matched

2

'
2

Sh~ f char!
E

2`

`

dt@h~ t !#2

'2 f charT
h̄2

hrms~ f char!
2 ~2.11!

where h̄ is an rms average ofh(t) and T is the effective
duration of the signal. Comparing Eqs.~2.11! and ~2.5! we
find that

~S/N!band-pass

~S/N!matched

'
h~ tbest!

h̄

1

ANbins

, ~2.12!

where

Nbins52TD f . ~2.13!

The quantityNbins can be interpreted as the ‘‘number ofa
priori frequency bins,’’ since when one searches for a sig
of duration <T and bandwidth<D f , the relevant data is
described byNbins real Fourier coefficients or, equivalently
frequency bins.

This notion of number ofa priori frequency bins is
closely related to the notion of number of cycles in the wa
form: the number of waveform cycles,Ncyc'T fchar, is
roughly equal toNbins for a broadband burst withf char
;D f . An important distinction, however, is thatNcyc is in-
trinsic to the signal, whereasNbins depends upon the chara
teristics of our band-pass filter. The number of frequen
bins thus characterizes in part oura priori assumptions abou
the signal.

The first factor on the right hand side of Eq.~2.12! is the
ratio between the peak strain amplitudeh(tbest) in the time
domain and an rms valueh̄ of this strain amplitude. By de
fining the effective durationT of the signal to be given by

E dt@h~ t !#25Th~ tbest!
2, ~2.14!

this factor reduces to unity. With this interpretation ofT in
Eq. ~2.13!, Eq. ~2.12! reduces to

~S/N!band-pass

~S/N!matched
'

1

ANbins

, ~2.15!

as discussed in the Introduction. We use this result in S
VI B.
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B. Searches for gravitational-wave bursts: Noise monitoring

In this section we describe a ‘‘noise-monitoring’’ metho
to search for gravitational wave bursts of unknown for
more details can be found in Ref.@73#. A variant of the
method was first suggested by Schutz@40# ~there called an
autocorrelation method!; here we modify slightly Schutz’s
suggestion and also calculate detection thresholds. In
sence, the method consists of monitoring the total rms no
in the detector output in the frequency band in which t
signal is expected, rms averaged over time scales of the
pected signal duration, and waiting for statistically signi
cant changes in one’s estimate of the noise power.

Suppose that the maximum expected signal duration isT,
and that the interferometer output iss(t). Focus attention on
the data streams(t) in the time interval t2T/2<t<t
1T/2. Since the data stream is discrete, this data can
represented by the numbers

sj5s~ t2T/21 j Dt ! ~2.16!

for 0< j <Ntotal5T/Dt, where Dt is the sampling time.
From Eq.~2.1! we have

sj5hj1nj , ~2.17!

wherehj is the gravitational-wave signal andnj is the noise.
Now because the interferometer noise is colored, the n
matrix

S i j [^ninj& ~2.18!

will not be diagonal. Here, angular brackets denote ensem
averaging over realizations of the noise. If one perform
fast Fourier transform~FFT! just of this finite stretch of data
the noise matrix on the new basis will not be diagonal eit
because of aliasing effects. However, it is possible to cha
to a basis which diagonalizes the matrix~2.18!. We will de-
note this new basis by capital Roman lettersI ,J,K. The data
points sI on this new basis can be chosen to correspo
approximately to frequenciesf I5I /T, I 51,21,2,22,...
@73#. Equation~2.18! can now be replaced by

^nInJ&5d IJs I
2 . ~2.19!

The datasI extend up to some high frequency~of order sev-
eral kHz! determined by the sampling time. We next disca
all data above some upper cutoff frequency; thus, we h
effectively band-pass filtered the data, since the restrictio
a segment of lengthT in the time domain removes frequenc
components atf &1/T. The total number of data points re
maining will be approximatelyNbins52TD f , whereD f is
the bandwidth of our effective band-pass filter.

In terms of this new basis, matched filtering consists
calculating, for each trial waveform shapehJ , the quantity

SJsJhJ /sJ
2

ASJhJ
2/sJ

2
. ~2.20!

~We are assuming here that all the trial waveform sha
have duration less thanT and most of their power within the
bandwidthD f .! We introduce the notationr I5hI /s I ; then,
the matched filtering SNR~1.1! becomes
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r25(
I

r I
25(

I

hI
2

s I
2 . ~2.21!

Thus, the quantityr I
2 is the matched filtering SNR-square

per data bin. Throughout this subsection, we user as a con-
venient parameterization of the signal strength, which
meaningful even in situations where templates are not av
able and where matched filtering cannot be carried out.

In this language, band-pass filtering~of a pre-whitened
data stream! approximately corresponds to calculating t
statistic

r̂BP[max
J

sJ

sJ
. ~2.22!

This will have an expected value of;r/ANbins @cf. Eq.
~2.15!# if the signal is spread out over the bandwidthD f
rather than peaked at some frequency.

In the noise-monitoring technique, the detection statis
is

Q~ t !52Nbins1 (
J52Nbins/2

J5Nbins/2 sJ
2

sJ
2 . ~2.23!

Up to an additive constant,Q(t) is an estimate of the nois
power in the given bandwidth over the given time interv
That constant,2Nbins, is chosen so that when no signal
present,̂ Q(t)&50 and soQ(t) fluctuates between positiv
and negative values. On the other hand, when a signa
present,Q(t) will with high probability be large and posi
tive. One monitorsQ(t) as a function of time, setting a
threshold that it has a very low probability of exceeding
the absence of a signal. This search method constitutes a
of nonlinear filtering.

Noise-monitoring is closely related to two common
used techniques in radio astronomy. In the first such te
nique, observers sum the power from frequency bins wh
are expected to contain harmonics of the signal they are
ing to detect. This procedure is not as effective as cohere
combining the signal from all the frequency bins, but is co
putationally much easier. The second technique@74# is ap-
plicable when one is looking for periodic signals in a da
train that is too long to Fourier transform. One splits the d
into shorter segments, takes the FFT of each segment,
adds the FFTs incoherently~i.e., adds the individual powe
spectra!. This is not the optimal search method, but is oft
useful given finite computational resources. Although noi
monitoring and the radio astronomy techniques have dif
ent motivations~in radio astronomy, one adds frequency bi
incoherently to save computational cost; in noise-monitori
one performs such an addition because the phase rela
ships are unknown!, they are operationally quite similar.

We now turn to a derivation of the efficiency and perfo
mance of the method. From Eq.~2.23!, when a signal is
present,

^Q~ t !&5r2,

^@Q~ t !2^Q~ t !&#2&54r212Nbins.
~2.24!
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With no signal present, Eqs.~2.24! continue to hold withr
50. These equations show that a signal should be detect
in the regime

N bins
1/4 !r&N bins

1/2 , ~2.25!

as well as at largerr: in the regime~2.25! the expected value
~2.24! of Q is large compared to its rms value in the absen
of a signal. By contrast, a signal is detectable using ba
pass filtering only in the regimer*N bins

1/2 @Eq. ~2.22! above
and associated discussion#.

The approximate SNR threshold predicted by Eqs.~2.24!
is correct in order of magnitude, but to obtain an accur
SNR threshold one needs to calculate the full probabi
distribution for the statisticQ. This probability distribution
is given by, from Eqs.~2.17!, ~2.19! and ~2.23!,

P@Q~ t !>Q0#5
G„Nbins/2,~Q01Nbins!/2…

G~Nbins/2!
~2.26!

whereG~¯ ,¯! is the incomplete gamma function andG~¯!
is the usual gamma function. Suppose that we exam
Nstart-timesstarting timest. We wish to find the numberQ0
such that the probability~2.26! of Q(t) exceedingQ0 for any
t, in the absence of a signal, is some small numbere ~below
we will take e51023!. This thresholdQ0 is obtained by
solving

G„Nbins/2,~Q01Nbins!/2…

G~Nbins/2!
5

e

Nstart-times
. ~2.27!

From Eqs.~2.24!, this threshold will be exceeded by a sign
whenever the signal strength~2.21! satisfies

r>r* 5AQ0. ~2.28!

Equations~2.27! and ~2.28! determine the thresholdr* as a
function of the parameterse, Nstart-times, andNbins; we use
these formulas in Sec. VI B. ForNbins@1, r* is approxi-
mately given by solving the equation

r
*
2 52 ln~Nstart-times/e!1Nbinsln~11r

*
2 /Nbins!.

~2.29!

The above derivation is based on frequentist statistics
Ref. @73# a Bayesian analysis is outlined of the detection
gravitational wave signals of unknown form which automa
cally identifies the statisticQ(t) as optimal, and which also
approximately reproduces the detection thresholdr* .

In practice, this search method would be combined w
coincidencing between interferometers to achieve high
tection reliability and to reduce the effects of non-Gauss
noise, as is the case with band-pass and matched filte
discussed above. Matched filtering could be more effici
than the noise-monitoring method at combating no
Gaussian noise via coincidencing: when coincidencing w
templates, one can demand that the SNR in each interfer
eter be above the appropriate threshold,and that the signal-
parameter values deduced in each interferometer be co
tent with each other. For the noise-monitoring searches,
can only demand that the SNR in each interferometer
above the appropriate threshold. Hence, matched filtering
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more discriminating power against situations in which all t
interferometers have moderately large non-Gaussian n
spikes somewhere in the relevant time window. No
Gaussian noise may therefore make the less-discrimina
noise-monitoring search perform somewhat worse in pr
tice, relative to matched filtering searches, than is indica
by the threshold~2.29!.

C. Signal-to-noise ratio for matched filtering in terms
of waves’ energy spectrum

In this section we derive the relation~2.30! between the
expected value of the matched-filtering SNR~2.7! and the
energy spectrum of emitted gravitational waves. In gene
the SNR~2.7! for a burst of waves depends on the details
the gravitational waveform, on the orientation of the sou
with respect to the interferometer, and on the direction to
source. By contrast, the quantity^r2&, the average of the
squared SNR over all orientations of and directions to
source, depends only on the total energy per unit freque
dE/d f carried off from the source by the waves. Conside
gravitational-wave source located at a cosmological reds
z and corresponding luminosity distanceD(z). Let the lo-
cally measured frequency of the waves near the source
f e , related to the frequencyf measured at the interferomet
by f 5 f e /(11z). Let the locally measured energy spectru
of the waves bedEe /d fe( f e). Then the orientation-average
SNR squared is given by

^r2&5
2~11z!2

5p2D~z!2 E
0

`

d f
1

f 2Sh~ f !

dEe

d fe
@~11z! f #.

~2.30!

Note that the relation~2.30! refers to an angle-average
SNR obtained from anrms averageof signal amplitudes
over different possible orientations of the source and in
ferometer. This averaging convention differs from th
adopted in Refs.@1,10#, where the angle-averaged SNR
taken to be a cube root of an average of cubed signal am
tudes. That ‘‘cube root of a mean cube’’ method is approp
ate for calculating the expected event detection rate@1#. As a
result, the SNR formulas used in Refs.@1,10# are a factor of
A3/2 larger than those used in this paper, the factor ofA3/2
being an approximation to the effect of the different ang
averaging methods.

Turn now to the derivation of Eq.~2.30!. First, consider a
source close enough that cosmological effects can be
glected. Let the source be at a distancer from the detector
and at a location~u,w! on the sky. Let~i,b! denote the direc-
tion towards the detector~spherical polar angles! with re-
spect to a set of Cartesian axes centered at and determin
the source. Let the two independent polarizations of
strain amplitude at the interferometer beh1(t,r ,i,b) and
h3(t,r ,i,b), and let the polarization angle bec. Then the
response of the interferometer will beh(t)1n(t), where
n(t) is the noise, and

h~ t !5F1~u,w,c!h1~ t,r ,i,b!1F3~u,w,c!h3~ t,r ,i,b!.

~2.31!
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Here F1 and F3 are the interferometer beam pattern fun
tions, given in, e.g., Ref.@1#. The dependence of the Fourie
transformed waveformh̃1 on r is of the form

h̃1~ f ,r ,i,b!5H1~ f ,i,b!/r ~2.32!

for some functionH1 ; we define H3( f ,i,b) similarly.
Combining Eqs.~2.7!, ~2.31! and ~2.32! gives

r2~r ,u,w,c,i,b!5
4

r 2 E
0

` uF1H11F3H3u2

Sh~ f !
d f .

~2.33!

We now average over the anglesu, w, c, i and b. The
average over polarizations and over the sky location gi
^F1

2 &5^F3
2 &51/5, ^F1F3&50 @1#, where the meaning o

the angular brackets is given by, for example,

^F1
2 &[

1

4p E dVu,wE
0

p dc

p
F1~u,w,c!2. ~2.34!

From Eq.~2.33! this gives

^r2&5
4

5r 2 E
0

` H~ f !2

Sh~ f !
d f , ~2.35!

where

H~ f !2[
1

4p E dVi,b@ uH1~i,b!u21uH3~i,b!u2#.

~2.36!

We now express the energy spectrumdE/d f of the waves
in terms of the quantityH( f )2. The local energy flux is

dE

dAdt
5

1

16p F S ]h1

]t D 2

1S ]h3

]t D 2G , ~2.37!

where the overbar means an average over several cycle
the wave. Switching to the frequency domain using Par
val’s theorem, inserting a factor of 2 to account for the fo
ing of negative frequencies into positive, and usi
u h̃1,3( f )u2dA5uH̃1,3( f )u2dV gives

dE

dVd f
5

p f 2

2
@ uH̃1~i,b!u21uH̃3~i,b!u2#. ~2.38!

Combining Eqs.~2.35!, ~2.36! and ~2.38! now yields

^r2&5
2

5p2r 2 E
0

`

d fE dV
1

f 2Sh~ f !

dE

dVd f
~ f !.

~2.39!

This is Eq.~2.30! with z50 andD(z)5r , the limiting form
that applies when cosmological effects are neglected.

Consider now sources at cosmological distances. F
observe that Eq.~2.39! is valid for arbitrary bursts of gravi-
tational waves provided that we interpret the quantity

1

r 2

dE

dVd f
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as the locally measured energy fluxdE/dAd f. Next, note
that the number of gravitons per unit solid angle per u
frequency is conserved for propagation in a Friedma
Robertson-Walker background in the geometric optics lim

dE

dVd f
~ f !5

dEe

dVd fe
@~11z! f #. ~2.40!

Here f e is the frequency at the source andf 5 f e /(11z) is
the frequency at the detector. Finally, the conversion fac
at the detector from energy per unit solid angle to energy
unit area is (11z)2/D(z)2, where D(z) is the luminosity
distance@75#. Hence

dE

dAd f
~ f !5

~11z!2

D~z!2

dEe

dVd fe
@~11z! f #. ~2.41!

Combining this with Eq.~2.39! yields Eq.~2.30!.

III. GRAVITATIONAL-WAVE SIGNAL
FROM COALESCING BLACK HOLES

In this section we describe our assumptions concern
the gravitational-wave signal from BBH mergers and the e
dence that underlies those assumptions.

A. Three phases of the gravitational-wave signal

As discussed in the Introduction, the coalescence and
associated gravitational-wave signal can be divided i
three successive epochs in the time domain: inspiral, mer
and ringdown. The inspiral consists of the coalescence ep
in which the black holes are separated bodies that gradu
lose energy and angular momentum, slowly spiraling
wards one another. The merger is the epoch in which
dynamics is highly nonlinear and must be treated by num
cal relativity. With this in mind, it is useful to define the en
of inspiral as the time and frequency at which numerica
generated templates become needed@76#. Up to this time,
post-Newtonian templates, possibly supplemented w
IBBH templates, will be used~cf. Sec. I B!.

After merger, the system will gradually settle down to
Kerr black hole; the last gravitational waves we expect to
are those produced by the quasi-normal modes of
merged black hole. It is clear that there will be a smoo
transition in the gravitational waveform from the merger p
tion to the ringdown portion, as the effects of nonlinearit
become less and less important with time. As this happ
the signal should become increasingly well approximated
a linear combination of exponentially decaying sine wav
This is the behavior that has been seen in numerical sim
tions of, for example, head-on collisions@77,78#. At late
times, thel 5m52 mode will probably dominate over othe
quasi-normal modes, for two reasons which are of com
rable importance:~i! The l 5m52 mode is the most slowly
damped of all the QNR modes@14#, and ~ii ! during coales-
cence, the binary will have a rotating shape roughly cor
sponding to spheroidal harmonic indicesl 5m52, so this
mode will be preferentially excited@79#. We define the ring-
down as beginning when the waveform becomes domina
by the l 5m52 QNR mode; the merger thus contains tho
portions of the waveform where other modes and/or n
it
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linear mode-mode couplings are important. Clearly there
some arbitrariness in the exact time at which the ringdo
starts, related to the accuracy we require of the fit of
waveform to the ringdown signal.

By definition, the three phases of the signal are disjoin
the time domain. It does not follow that they should be d
joint in frequency: their energy spectra might overlap. Ho
ever, it is at least approximately true that the inspiral a
merger are disjoint in both time and frequency. The adiab
approximation is only just beginning to break down at t
end of inspiral; thus, there is a well-defined frequency a
function of timef (t) over almost the entire inspiral. Becaus
the inspiral chirps upward monotonically in frequency, a
most all energy emitted before the merger lies at frequen
less thanf merge, the gravitational-wave frequency at the en
of inspiral. We discuss below estimates off merge. We shall
assume that the merger waves’ spectrum is confined to
frequency regimef . f merge. One particular component o
the gravitational-wave signal, the Christodoulou memo
@80#, will violate this assumption. This component has m
of its power belowf mergein the frequency domain, but accu
mulates gradually during the inspiral, merger and ringdo
in the time domain. It will probably not be detectable wi
ground-based interferometers, but very probably will be
tectable with LISA@81#. We will neglect the memory com
ponent of the waves in our analysis, since it will not be
easy to detect as the components we do discuss.

B. Energy spectrum of the emitted gravitational radiation
from the merger phase

The total amount of energy radiated in BBH mergers, a
its distribution in frequency, is highly uncertain because d
tailed numerical calculations of these mergers have not
been made. In this subsection, we discuss what little e
dence there is about the energy radiated, and describe
crude model of the spectrum.

The total amount of energy radiated during a BBH co
lescence will be some fractione of the total massM5m1
1m2 of the system:Eradiated5eM . The fractione will de-
pend only on the mass ratiom1 /m2 , on the initial spinsS1

andS2 of the two black holes, and on the initial directionL̂
of the orbital angular momentum@82#:

e5eS m1

m2
,

S1

M2 ,
S2

M2 ,L̂ D . ~3.1!

We can very roughly divide up this fraction as

e5e inspiral1emerger1e ringdown, ~3.2!

according to the amounts of energy radiated in the three
ferent epochs of the waveform. We emphasize that ther
some arbitrariness in this division, related to the choice
frequency at the end of inspiral and the time at the beginn
of ringdown.

We now discuss estimates of the frequencyf merge. From a
data-analysis oriented viewpoint,f mergeshould represent the
frequency at which post-Newtonian templates cease to
useful and numerical templates will be needed. On the o
hand,f mergecould be chosen at the supposed point of tran
tion from a radiation-reaction driven inspiral to a freely fa
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ing plunge@8,11,12#. These two viewpoints turn out to giv
roughly the same value forf merge.

To estimate the frequency where numerical templates
likely to be needed, we examined numerical initial data s
of black holes binaries generated by Cook@9#. Comparing
the predictions of second post-Newtonian order calculati
to his initial data sets, Cook finds that the discrepancy in
binding energy between the two methods is;5% at f
'0.02/M ~whereM is the total system mass! and is;15%
at f '0.05/M . Thus, numerical relativity’s predictions beg
to significantly deviate from post-Newtonian theory neaf
50.02/M .

The ‘‘innermost stable circular orbit’’~ISCO! for black
hole binaries only exists, strictly speaking, in the test part
limit m1!m2 , and it is not clear that it is well defined, eve
approximately, in the equal mass case. Nevertheless, va
methods have been proposed to locate the supposed tr
tion point from inspiral to plunge. Cook estimates the gra
tational wave frequency at the ISCO to bef ISCO;0.055/M
for equal mass black holes@9#, by using his initial data sets
together with the calculation of an ‘‘effective potential.’’ I
post-Newtonian theory, the ISCO can be defined by ar
cially turning off the radiation reaction terms in the equatio
of motion. Using this method, Kidder, Will and Wisema
estimatef ISCO;0.02/M @8#. This value varies by less tha
;20% as the mass ratio is varied. Finally, earlier analy
by Blackburn and Detweiler used a variational principle
gether with the assumption of periodic solutions to Einstei
equations to obtain the approximate lower boundf ISCO
*0.06/M @83#. All of these estimates are for equal mas
non-spinning black holes; the value of the frequencyf ISCO
can presumably also vary by factors of*2 if the black holes
are spinning and/or have different masses.

Given this uncertainty, we adopt the conservative valu

f merge5
0.02

M
5205 HzS 20M (

M D . ~3.3!

This ~low! value of f mergeis conservative in the sense that w
can be reasonably sure numerically generated templates
not be needed beforef 5 f merge. On the other hand, it may
overestimate the merger SNR by increasing the numbe
cycles in what we define as our merger waveform at
expense of the inspiral.

We next discuss our choice of upper frequency shutoff
the merger energy spectrum. As discussed above, we d
the end of merger to occur at a timetqnr after which the
waveform can be accurately fit by thel 5m52 QNR signal.
The merger and ringdown will therefore be disjoint in t
time domain, but not necessarily in the frequency domain
seems likely, however, that an approximate upper bound
the frequencies carrying appreciable power during
merger is the quasinormal ringing frequency itself. This co
jecture is supported by calculations in the test particle li
~cf. Fig. 2 of Ref.@68#! and calculations of the head-on co
lision of two black holes@77,78#. It is not clear how relevan
these calculations are to the merger of comparable m
black holes, but there is no other guidance available at
time.

Therefore, we use the frequencyf qnr of the l 5m52
quasi-normal mode as our upper merger frequency. This
re
ts
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quency depends on the dimensionless spin parametera of the
final Kerr black hole; for concreteness, we use the value
a5.98, for which f qnr.0.9/(2pM ) @56,15#:

f qnr5
0.13

M
51320 HzS 20M (

M D . ~3.4!

Our reasons for assuming a high value ofa are discussed in
Sec. III D below.

Finally, consider the total amount of energy

Erad5~emerger1eringdown!M ~3.5!

radiated during the final merger and ringdown. We consi
two methods of estimating this radiation efficiency, whi
yield consistent results. The first method, due to Sm
@67,77#, is an extrapolation from perturbation theory: the e
ergy radiated in the test particle limit is of the form

Erad5km2/M , ~3.6!

where k is a dimensionless constant,m is the mass of the
particle, andM the total mass of the system. Replacingm by
the reduced mass of the system, one finds that the form
~3.6! reliably predicts~to within ;20%! the energy radiated
in the head-on collision of two black holes@68,77,78,84#.
Consider applying a similar extrapolation to an inspir
preceded merger. Detweiler@68# examined the amount o
energy radiated per orbit by a test particle on the final, m
ginally bound orbit of a Kerr black hole. He found that th
energy radiated is of the form~3.6!, with 0.65<k<2.8 as the
spin of the black hole varies from 0 to .95. Assuming th
there will be*1 effective orbit during the final plunge, De
tweiler estimates@68#

0.03MF~m/M !&Erad&0.2MF~m/M !, ~3.7!

whereF(m/M ) is given in Eq.~1.5!.
A second method, based on angular momentum conse

tion, also suggests a lower bound onErad of about 0.1M for
equal-mass BBHs in the most favorable cases. Roug
speaking, the system’s angular momentum divides up as

S11S21Lorb5Jrad1Sfinal , ~3.8!

whereS1 andS2 are the black hole spins just before the fin
plunge,Lorb is the orbital angular momentum just before t
plunge,Jrad is the angular momentum radiated in the merg
and ringdown waves, andSfinal is the spin of the final Kerr
black hole. This splitting of the spacetime’s total angu
momentum is, strictly speaking, well defined only in a po
Newtonian type of limit; however, the effects of this amb
guity are presumably not important for the purposes of
crude estimate. Specialize now to the most favorable c
where S1 , S2 and Lorb are all aligned. We assumeuLorbu
'0.9M2, the value predicted by Cook’s initial data sets
f 5.02/M @9#. We also assume that both black holes are r
idly spinning, so thatuS1u'uS2u'(M /2)2. Equation ~3.8!
then yields

uJradu*0.4M2, ~3.9!
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sinceuSfinalu<M2. Next, we use that fact that the energyErad
and the angular momentumJrad carried off by gravitons of
frequencyf and azimuthal multipole orderm are related by
@85#

Erad52p f Jrad/m. ~3.10!

If we estimatef '( f merge1 f qnr)/2, and make the admittedl
optimistic assumption that most of the radiation is quadru
lar, we obtain from Eqs.~3.9! and ~3.10! the estimate@86#

Erad*0.1M . ~3.11!

This estimate includes both merger and ringdown radiat
we need to subtract the ringdown portion to obtain the
ergy radiated in the merger. Below we estimate;0.03M to
be an approximate upper bound for the ringdown ener
Hence most of the energy~3.11! should be radiated a
merger waves.

There is an additional, separate argument one can m
which indicates that most of the energy~3.11! should be
radiated as merger waves and not as ringdown waves
noted by Eardley and Hirschmann@87#, any system withJ
.M2 cannot evolve toJ,M2 by radiating quadrupola
waves at the ringing frequencyf qnr;1/(2pM ) of a near-
extremal Kerr black hole. This is because at this high f
quency, too much mass-energy is radiated per unit ang
momentum radiated; Eq.~3.10! with m52 and with f 5 f qnr
yields DJ5D(M2). Hence, since the final black hole mu
haveJ,M2, a substantial amount of the radiation must
emitted at lower frequencies.

Based on the estimates~3.7! and ~3.11!, and on the esti-
mated upper bound;0.03M which we derive below for the
ringdown radiated energy, we take 0.1M as our radiated en
ergy for the merger in the equal mass case. For non-eq
mass BBHs we assume that the radiated energy is reduce
the factor~1.5!, so that

Emerger5emergerF~m/M ! M50.1F~m/M !M . ~3.12!

This rather high radiation efficiency is probably most pla
sible in the context of rapidly spinning coalescing bla
holes. In particular, if the spins and the orbital angular m
mentum are somewhat misaligned, one would intuitively
pect that such systems have more ‘‘settling down’’ to do
get to the final Kerr black hole, and that correspondingly
nonlinear, highly dynamical phase should last longer and
produce more radiation. Also, the potential barrier that s
rounds the final black hole~which normally tends to reflec
back into the black hole the dominant waves of frequen
f ;1/a few times M ! presumably will effectively not be
present during the violent phase of a merger in which
spins and orbital angular momentum are of comparable m
nitude and are misaligned.

Coalescences which radiate as much energy as Eq.~3.12!
may also radiate a substantial amount of linear moment
the consequent recoil of the final black hole could cor
spond to a kick velocity that is a moderate fraction of t
speed of light.
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Finally, consider the shape of the energy spectrumdE/d f
betweenf mergeand f qnr. For simplicity, and for lack of evi-
dence in favor of anything more specific, we choose a
spectrum:

dE

d f
5

emMF~m/M !

f qnr2 f merge
Q~ f 2 f merge!Q~ f qnr2 f !

50.91M2F~m/M !Q~ f 2 f merge!Q~ f qnr2 f !,

~3.13!

whereem5emerger50.1 andQ is the step function.

C. Energy spectrum of the radiation from the inspiral phase

The standard quadrupole formula prediction for the
spiral energy spectrum is~see, e.g., Ref.@88#!

dE

d f
5

1

3
p2/3mM2/3f 21/3. ~3.14!

This formula is adequate to estimate the SNR obtained fr
matched filtering of the inspiral waveform; it will be accura
to within a few tens of a percent up tof 5 f merge@63#. Using
Eq. ~3.14! to estimate the SNR assumes that both
gravitational-wave signal and the templates used to filter
data stream are given by the quadrupole approxima
~3.14!. The SNR we calculate using Eq.~3.14! will be ap-
proximately the same as that found by cross-correlating
signals against sufficiently accurate theoretical templa
@which incorporate higher order corrections to Eq.~3.14!#.
As outlined in Sec. I B, the required template accura
should be achievable by post-Newtonian expansions@48,89#,
perhaps supplemented with alternative techniques for the
ter, high frequency part of the signal at 0.01/M& f
&0.02/M ~the IBBH regime!. We assume that the inspira
energy spectrum shuts off atf 5 f merge50.02/M , as dis-
cussed in Sec. III B above.

D. Energy spectrum of the radiation from the ringdown phase

The ringdown of the gravitational-wave signal is that po
tion which can be fit fairly accurately by an exponentia
decaying sinusoid corresponding to thel 5m52 quasi-
normal mode of the final black hole. The shape of the cor
sponding energy spectrum is well understood: it is a re
nance curve~although see Appendix B for discussion of
subtlety in the applicability of the concept of the wave
energy spectrum to calculating ringdown SNRs!. The overall
amplitude of the energy spectrum, however, is not well u
derstood.

The QNR gravitational waveformsh1(t,i,b) and
h3(t,i,b) are given by@15#

h12 ih35
AM

r 2S2
2~i,b,a!e22ip f qnrt2t/t1 iw0, ~3.15!

for t.0. Here we have chosent50 to be the start of the
ringdown, M is the final black hole mass,aM2 is its spin,
andw0 is a constant phase. The quantitiesi andb are spheri-
cal polar coordinates centered on the black hole@cf. Sec.
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II C#, 2S2
2(i,b,a) is a spin weighted spheroidal harmon

whose angle averaged rms value is

S 1

4p E dVu2S2
2~i,b,a!u2D 1/2

5
1

A4p
, ~3.16!

andA is a dimensionless coefficient that describes the m
nitude of the perturbation when the ringdown begins. T
quantities f qnr and t are the frequency and damping tim
respectively, of thel 5m52 QNR mode. The quality facto
Q of the mode is given byQ5pt f qnr.

As mentioned in the Introduction, there is a mapping,
plored by Leaver@90# and Echeverria@15#, between the
(M ,a), and (f qnr,t). Using the Teukolsky equation, Leave
produced catalogs oft and f qnr as functions of black hole
mass M and dimensionless spina @90#. From that data,
Echeverria@15# produced the following analytic fits, which
are good to about 5%:

f qnr'@120.63~12a!3/10#
1

2pM

5@120.63~12a!3/10#S 20M (

M D1620 Hz

Q[p f qnrt'2~12a!29/20. ~3.17!

The energy spectrum for the QNR waveform~3.15! is
derived in Appendix A and is given by

dE

d f
5
A2M2f 2

32p3t2 H 1

@~ f 2 f qnr!
21~2pt!22#2

1
1

@~ f 1 f qnr!
21~2pt!22#2 J ~3.18!

'
1

8
A2QM2f qnrd~ f 2 f qnr!@11O~1/Q!#.

~3.19!

Approximating the energy spectrum by a delta function as
Eq. ~3.19! will often ~but not always! provide a fairly good
approximation to the SNR; see Appendix A for more deta

The value of the spina of the final black hole and also o
the amplitudeA will depend on the initial parameters of th
system, as in Eq.~3.1!. This dependence is very poorly un
derstood at present. We expect the final black hole to
rapidly spinning since, as explained in Sec. III B, the to
angular momentum of the binary at the end of the inspira
;0.9M2 when the individual black holes are non-spinni
@65#, and the individual black hole spins can augment th
Moreover, the individual black holes may typically hav
been spun up to near maximal rotation by an accretion d
@91#. For definiteness, we somewhat arbitrarily takea
50.98, which corresponds, from Eq.~3.17!, to Q512 and
f qnr50.13/M . The final ringdown SNRs we obtain vary on
weakly with our assumed value ofa @cf. Eq.~B14!#, for fixed
total energy radiated in the ringdown.

Although the value of the overall amplitudeA is uncer-
tain, we can estimate an upper bound on it for equal m
BBHs. Consider a Kerr black hole, distorted by anl 5m
g-
e

-

n

.

e
l
s

.

k

ss

52 perturbation such that the horizon’s cross section i
rotating oval, rather than a circle. Quantify the distortion
computing the ratio of the polar circumference about
long axis of this oval to that about the short axis. LetA2
denote the perturbation amplitude such that this ratio of
cumferences is 2:1. Clearly, the validity of linear perturb
tion theory must break down for amplitudesA*A2 ~due to
nonlinear couplings between thel 5m52 mode and other
modes!. At this 2:1 distortion ratio, the signal will not be
very well approximated by just thel 5m52 mode. There-
fore,A2 is a reasonable upper bound for the true amplitu
A.

In principle, we could calculateA2 by writing the space-
time metric as

gab5gab
KERR1A2 hab

QNR

where gab
KERR is the Kerr metric andhab

QNR is the l 5m52
quasinormal mode whose asymptotic form at larger is given
by Eq.~3.15!, and by calculating from this metric the ratio o
circumferences@92#. For this paper, we used a much le
sophisticated method to estimateA2 . Using the quadrupole
formula, we examined the radiation produced by a so
body that is distorted to this 2:1 circumference ratio, a
obtained the estimateA2'0.4 @93#. Setting our waveform
amplitudeA to this value yields an rms angle-averag
waveformh5(0.4/A4p)(M /r )50.1(M /r ) at the beginning
of ringdown. From Eq.~3.18!, the corresponding radiate
energy is

Eringdown'
1

8
A2M2f qnrQ'0.03M . ~3.20!

As mentioned in the Introduction, comparable ringdown
diation efficiencies of;3% have been seen in numeric
simulations of the evolution of distorted, spinning bla
holes@66#.

To summarize, our assumed values for the black hole s
parametera and for the amplitudeA for equal-mass BBHs
are

a50.98

A50.4. ~3.21!

These imply the values

f qnr5
0.13

M
51320 HzS 20M (

M D
Q512

e ringdown5Eringdown/M50.03. ~3.22!

For non-equal-mass BBHs, we assume thate ringdown is re-
duced by the factor~1.5!.

E. Number of independent frequency bins
for the merger phase

In Sec. II A we showed that for any burst of gravitation
waves, the band-pass filtering SNR is smaller than
matched filtering SNR by a factor of approximately
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ANbins5A2TD f ~3.23!

@cf. Eq. ~2.13! and associated discussion#. In this section, we
estimateNbins for the merger gravitational waves, and hen
determine the factor by which the SNR is degraded if ba
pass filtering rather than matched filtering is used for mer
wave searches.

First consider the bandwidthD f . Our assumed bandwidt
for the merger signal isD f 5 f qnr2 f merge' f qnr @since f merge
! f qnr; cf. Eqs. ~3.3! and ~3.4!#. We cannot, however, be
completely confident that all signal power in the merger w
lie at frequencies belowf qnr, and so a more appropriat
choice might beD f ;2 f qnr. Also the quasi-normal ringing
frequencyf qnr depends on the dimensionless spin param
a of the final black hole as given by Eq.~3.17!. Choosing the
highest possible value,f qnr5@1/(2pM )#, yields

D f ;
1

pM
. ~3.24!

Turn, now, to the effective durationT of the merger, de-
fined by Eq.~2.14!. We expect thatT will vary considerably
from event to event, depending on the black hole parame
To get a feeling for the range possible values ofT, consider
first the type of coalescence described in Sec. III B, w
both black holes nearly maximally spinning with spins a
orbital angular momentum aligned. In this favorable ca
recall that the binary has to shed an excess angular mom
tum of about 0.4M during the merger in order to settle dow
its final Kerr state. Thus, the two black holes might well
centrifugally hung-up, orbiting for many cycles before the
event horizons merge, so that the duration of the mer
might be quite long. By contrast, when two non-spinni
black holes merge, there is probably no excess angular
mentum that must be shed after the orbital dynamical in
bility, and so the merger might be fairly quick.~In such a
case, the ringdown waves might carry most of the emit
energy.!

To estimateT in the angular-momentum-excess scena
assume that the luminositydE/dt during the merger is abou
the same as the luminosity at the start of the ringdow
2e ringdownM /t. Since the total energy radiated in the merg
is emergerM , we find

T'
1

2

emerger

e ringdown
t. ~3.25!

Clearly this estimate will become invalid for high values ot
(a→1); in that limit, the high quality factor of the QNR
mode causes a low QNR luminosity, whereas there is
reason for the merger luminosity to be comparably low. N
ertheless, we insert our assumed parameter values~3.12!,
~3.22!, and ~3.21! into Eqs. ~3.17! and ~3.25! and find T
;50M . Combining this with Eqs.~2.13! and ~3.24! yields

ANbins;A30;5. ~3.26!

For inspiraling Schwarzschild black holes, on the other ha
T may not be much larger than a single QNR damping tim
T't'10M ~assuminga50.5 say!, yielding ANbins'A6.
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The factor ANbins is thus likely to lie in the range 2
&ANbins&5. We adopt the estimateANbins54 in Sec. VI B
to estimate the reduction in SNR resulting from using ba
pass filtering instead of matched filtering. We use the c
servatively large valueNbins560 in Sec. VI B to estimate
detection thresholds for noise-monitoring searches for
nals.

IV. INTERFEROMETER NOISE CURVES

In this section we describe our piecewise power law, a
lytic approximation to the noise curves for initial LIGO in
terferometers, advanced LIGO interferometers, and the L
interferometer. We express our model in terms of the dim
sionless quantityhrms( f )[Af Sh( f ), where Sh( f ) is the
one sided power spectral density of the interferometer no
@61#. Our model for the noise spectrum is

hrms~ f !55
`, f , f s ,

hm~a f / f m!23/2, f s< f , f m /a,

hm , f m /a< f ,a f m ,

hm@ f /~a f m!#3/2, a f m, f .

~4.1!

The noise curve depends on four parameters:~i! A lower
shutoff frequencyf s below which the noise rapidly become
very large and can be taken to be infinite. For ground-ba
interferometers, this low-frequency shutoff is due to seism
noise; for LISA, it is due to accelerometer noise~Ref. @7#, p.
23!. ~ii ! A frequencyf m , which is the location of the cente
of the flat portion of the spectrum.~iii ! A dimensionless pa-
rameterhm , which is the minimum value ofhrms( f ). ~iv! A
dimensionless parametera which determines the width o
the flat portion of the noise curve. We approximate the no
curves by piecewise power laws in this way for calculation
convenience.

For initial and advanced LIGO interferometers, we det
mined best-fit values of the parametersf s , f m , hm anda by
fitting to the noise curves given in Ref.@3#. ~Note that Fig. 7
of Ref. @3# is a factor of 3 too small from;10 Hz to
;70 Hz. This error does not appear in Fig. 10 of that ref
ence@94#.! The resulting parameter values are

f s540 Hz
f m5160 Hz
a51.4

hm53.1310222
J initial LIGO

interferometer, ~4.2!

and

f s510 Hz
f m568 Hz
a51.6

hm51.4310223
J advanced LIGO

interferometer. ~4.3!

For ground-based interferometers, thef 23/2 portion of our
approximate formula~4.1! models the thermal suspensio
noise and thef 3/2 portion models the laser shot noise@97#.

For the space-based LISA interferometer, we determi
best-fit values of the parametersf m , hm anda by fitting to
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the noise curve given in Ref.@10#, and obtained the lowe
cutoff frequencyf s from Ref. @7#. The resulting paramete
values are

f s51024 Hz
f m53.731023 Hz
a55.5

hm55.8310222
J LISA

interferometer. ~4.4!

Our piecewise power-law model is less accurate for LI
than for the LIGO interferometers, but it is still a fairly goo
approximation.

The sensitivity of LISA at the lower end of its frequenc
window may be degraded somewhat by a background
gravitational waves from white dwarf binaries@7#. We ne-
glect this issue here as this white dwarf noise level is fa
uncertain~see Ref.@99# for a recent discussion!.

V. SIGNAL-TO-NOISE RATIOS

In this section we calculate the angle-averaged SNRs
the three coalescence epochs~inspiral, merger, and ring
down! for initial LIGO interferometers, for advanced LIGO
interferometers, and for LISA.

A. Specific examples

We start by rewriting the general formula~2.30! for the
SNR in a more useful form. If we define the characteris
gravitational-wave amplitude

hchar~ f !2[
2~11z!2

p2D~z!2

dE

d f
@~11z! f #, ~5.1!

then from Sec. II C the SNR squared~2.7! for an optimally
oriented source can be written as

roptimal orientation
2 5E d~ ln f !

hchar~ f !2

hrms~ f !2 , ~5.2!

where hrms( f )5Af Sh( f ). From Eq. ~2.30!, the angle-
averaged SNR squared is a factor of 5 smaller than the
timal value~5.2!; so we can rewrite Eq.~2.30! as

^r2&5E d~ ln f !
hchar~ f !2

hn~ f !2 , ~5.3!

wherehn( f )[A5hrms( f ) is the rms noise appropriate fo
waves from random directions with random orientatio
@100#. Plottinghchar( f ) andhn( f ) for various sources illus-
trates@from Eq. ~5.3!# the possible SNR values and the d
tribution of SNR squared with frequency.

In Fig. 1, we show the rms noise amplitudehn( f ) for our
model~4.1! of the initial and advanced LIGO interferomet
noise curves, together with the characteristic amplitu
hchar( f ) for two different BBH coalescences: a coalescen
of total mass 20M ( at a distance ofD5200 Mpc and a
30M ( coalescence at redshiftz51. ~We assume that the
cosmological parameters are V051 and H0
575 km s21 Mpc21.! In each case, the sloped portion of th
dashedhchar line is the inspiral signal, the flat portion is ou
crude model of the merger, and the separate dotted portio
of

y

or

c

p-

s

e
e

is

the ringdown. Note that the ringdown and merger overlap
the frequency domain since~as we have defined them! they
are disjoint in the time domain, while the inspiral and merg
are approximately disjoint in both the frequency and tim
domains~Sec. III A above!.

In both cases, 20M ( and 30M ( , the waves’ characteris
tic amplitudehchar( f ) is rather larger thanhn( f ) for most of
the merger spectrum for the advanced interferometers, i
cating the detectability of the merger waveform wh
matched filtering can be used. In particular, note that
waves should be quite visible to the advanced interfero
eters for the 30M ( binary even though it is at a cosmologic
distance. Even if such binaries are rare, they are visible
such great distances that they may be an important and

FIG. 1. An illustration of the relative magnitudes of our es
mates of theinspiral, mergerand ringdownenergy spectra in two
different cases. The solid lines are the rms noise amplitu
hn( f )[A5 f Sh( f ) for our assumed model~4.1! of the LIGO initial
and advanced interferometer noise spectra. The dashed and d
lines show the characteristic amplitudehchar( f )}AdE/d f of the
waves, defined by Eq.~5.1!. The definition ofhchar is such that the
signal-to-noise ratio squared for a randomly oriented source
given by (S/N)25*d(ln f )@hchar( f )/hn( f )#2. The upper dashed
and dotted lines correspond to a binary of two 10M ( black holes at
a distance ofD5200 Mpc. The sloped portion of the dashed line
the inspiral, which gives an SNR for the initial~advanced! interfer-
ometer noise curve of 2.6~84!. The flat portion is our crude mode
of the merger, which gives an SNR of 2.1~16!. The dotted line is
our estimate of the ringdown, which gives an SNR of 0.1~0.86!.
The lower dashed and dotted lines correspond to a binary of
15M ( black holes at redshiftz51 ~or at a luminosity distance o
D54.6 Gpc; the cosmological parametersV051 and H0

575 km s21 Mpc21 were assumed!. In this case the inspiral
merger and ringdown SNRs for the initial~advanced! interferom-
eters are 0.08, 0.42, and 0.07~6.6, 7.2, and 0.5! respectively. Black
hole binaries with constituents this massive will be visible to gr
distances, making them a possibly important source, dependin
the very uncertain event rate. The SNR from the merger is enhan
for these massive distant sources in part because the combinati
cosmological redshift and lower intrinsic frequency brings t
merger waves down to lower frequencies where the interferom
noise is smaller.
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4550 57ÉANNA É. FLANAGAN AND SCOTT A. HUGHES
teresting source. Cosmological binaries have an enhan
SNR in part because the cosmological redshift moves t
frequency spectrum down closer to LIGO’s optimal band

Figure 1 also shows that, of these two example BBH c
lescences, only the nearby one at a distance ofD
5200 Mpc would be detectable by the initial interferom
eters. As discussed in the Introduction, such coalesce
may yield an interesting event rate for the initial interfero
eters.

A qualitatively different, possibly important type o
source for the initial LIGO interferometers~and also for the
advanced interferometers! is the coalescence of black ho
binaries with masses of order 100M ( , as we have discusse
in the Introduction. In Fig. 2 we show the characteristic a
plitudehchar( f ) for a hypothetical BBH coalescence of tot
mass 100M ( at redshiftz50.5, corresponding to a luminos
ity distance ofD52.2 Gpc. Note in particular that the initia
LIGO interferometer noise curve has best sensitivity n
200 Hz just where the~redshifted! ringdown frequency is
located. We discuss further in Sec. VI the range of init
LIGO interferometers for this type of source.

Turn, now, to the detection of supermassive BBH sign
by the space-based detector LISA@5,6#. LISA can study
BBH mergers with far higher accuracy and resolution th
the ground-based interferometers, because the SNR va
are typically much higher (*103). When calculating inspira
SNRs for LISA, it is necessary to restrict the integral ov
frequency in Eq.~2.30! to a domain that corresponds to, sa
1 yr of observation—some binaries require hundreds of ye
to pass through LISA’s band. See Appendix B for details

Figure 3 shows our approximate model@Eqs. ~4.1! and
~4.4!# of LISA’s projected noise spectrum, together with t
gravitational-wave amplitudehchar( f ) for the inspiral,
merger and ringdown stages of two different BBH coal
cences: a BBH of total mass 106M ( at redshiftz55 and a

FIG. 2. A merger of a binary consisting of two 50M ( black
holes at redshiftz50.5, together with the rms noise amplitud
hn( f ) for both the initial and advanced interferometer noise cur
for LIGO ~see caption of Fig. 1!. The SNRs for the inspiral, merge
and ringdown stages are about 0, 1.7 and 1.0 respectively for
initial interferometer noise level, and about 11, 52 and 11 resp
tively for advanced interferometers.
ed
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BBH of total mass 53104M ( at redshiftz51. The 106M (

BBH enters the LISA waveband atf 5 f s.1024 Hz roughly
1 week before the final merger. The SNRs obtained in t
case from the inspiral, merger and ringdown signals are
proximately 1800, 4600 and 1700 respectively. T
53104M ( BBH enters the LISA waveband about 20 yr b
fore the final merger. The SNR obtained from the last yea
the inspiral signal, from f .1.631024 Hz to f .
431022 Hz is approximately 900, while the merger an
ringdown SNRs are about 70 and 4 respectively.

B. General signal-to-noise ratio results

We now turn from these specific examples to the dep
dence of the SNR values on the mass of and distance to
binary in general. In Appendix B we obtain analytic form
las for the SNR values for the three phases of BBH coa
cences and for the various interferometers. In this section
plot the results for equal-mass BBHs, which are shown
Figs. 4, 5 and 6. The inspiral and merger curves in th
figures ~except for the LISA inspiral curves; see Append
B! are obtained from Eqs.~B4! and ~B10! of Appendix B,
while the ringdown curves are obtained by numerically in
grating Eq.~3.19! in Eq. ~2.30!.

The SNR values for the initial LIGO interferometers a
shown in Fig. 4. This figure shows that an important sou
for the initial LIGO interferometers may be the coalescen
of binary black holes with total masses of the order of s
eral hundred solar masses. These would be visible ou
almost 1 Gpc. For such sources, the inspiral portion of
signal would not be detectable, and one would need to se

s

he
c-

FIG. 3. The noise spectrumhn( f ) of the space-based detecto
LISA, together with the characteristic amplitudeshcharof two equal-
mass BBH coalescences~see caption of Fig. 1!. The first is a binary
of total mass 106M ( at redshiftz55. The inspiral signal of this
binary enters the LISA waveband atf .1024 Hz about 1 week
before the final merger; the SNRs from inspiral, merger and ri
down are about 1800, 4600 and 1700 respectively. The second
binary of total mass 53104M ( at redshiftz51, which enters the
LISA waveband about 20 years before the final merger. For
binary an SNR of approximately 900 would be obtained for the l
year of inspiral~from f .1.631024 Hz to f .431022 Hz!. The
SNRs from the merger and ringdown would be about 70 and 4
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for the ringdown or merger to detect the waves. See Sec
for further discussion. The event rate for such high m
BBHs is very uncertain; see Ref.@17# for a possible forma-
tion scenario. Intermediate mass BBHs withm!M ~e.g.,
m1510M ( , m25500M (! are presumably much more com
mon than the intermediate mass BBHs withm;M discussed
above. The SNRs for such mixed binaries will be mu
lower, however. As seen in Appendix A, the merger a
ringdown SNRs scale as (m/M )2, while the inspiral ring-
down scales asm/M . ~The scaling difference arises becau
the inspiral duration scales as 1/m, whereas the merger an
ringdown durations are approximately independent ofm.!

Figure 4 also shows that the inspiral of BBH mergers w
M&30M ( should be visible to about 200 Mpc~the SNR
detection threshold is about 5@44#!. The ground-based inter
ferometers will, over a period of years, gradually be i
proved from the initial sensitivity levels to advanced sen
tivity levels @3#. Roughly halfway between the initial an
advanced interferometers, the range of the detector sys
for M&30M ( BBHs will be ;1 Gpc. If the BBH birthrate
is as large as was discussed in the Introduction, they sh
be detected early in the gradual process of interferom
improvement.

Figure 5 shows the SNR values for the advanced LIG
interferometers. It can be seen that for advanced LIGO in
ferometers, equal-mass BBH inspirals will be visible out
z;1/2 for the entire range of masses 10M (&(11z)M

FIG. 4. The SNR for equal-mass BBH coalescences detecte
LIGO initial interferometers, assuming matched filtering, as a fu
tion of the redshifted mass (11z)M of the final black hole, at a
luminosity distance ofD51 Gpc. For fixed redshifted mass, th
SNR values are inversely proportionalD. The solid, dotted, and
dashed curves are the SNR values from the inspiral, merger
ringdown respectively. For non-equal-mass binaries, the insp
SNRs will be reduced by the factor;A4m/M , while the merger
and ringdown SNRs will be reduced by;4m/M ; thus the inspiral
will be enhanced relative to the merger and ringdown. This p
indicates that BBH coalescences of systems with masses o
order of several hundred solar masses may be an important so
for the initial LIGO interferometers. These events would be visi
to almost 1 Gpc. For such sources, the inspiral would not be de
able, and the waves would have to be detected using either
ringdown or the merger.
I
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d

-
-

m

ld
er

r-

&300M ( . Thus, there is likely to be an interesting eve
rate. Indeed, the SNRs will be high enough even for rat
large distances that it should be possible to extract each
nary’s parameters with reasonable accuracy@10#. By con-
trast, the ringdown SNR is fairly small except for the large
mass systems. For very massive binaries or binaries tha
closer than 1 Gpc, advanced interferometers may mea
fairly large ringdown SNRs, which would allow fairly goo
estimates of the mass and spin of the final black hole@15,16#.

Figure 6 shows the SNR values obtainable from the th
phases of BBH coalescences by LISA: the last year of
spiral, the merger and the ringdown. We also show the S
value obtainable from 1 yr of integration of the inspiral si
nal 100 yr before the merger, and a similar curve for 1000
before the merger. This figure shows that LISA will be ab
to perform very high accuracy measurements of BBH me
ers~SNR values*103! essentially throughout the observab
Universe (z&10) in the mass range 106M (&M&109M ( .
As discussed in the Introduction, there is a good chance th
will be an interesting event rate. The SNR curves in Fig
for measurements 100 and 1000 yr before merger show
many inspiraling BBHs that are far from merger should
detectable by LISA as well. If the merger rate of SMB
binaries turns out to be about one per year throughout
observable Universe, then at any given time one would
pect roughly 1000 SMBH binaries to be 1000 yr or less aw
from merger. LISA will be able to monitor the inspiral o
such binaries~if they are of sufficiently low mass! with mod-
erate to large SNR@10#.

Finally, it should be noted that the relative magnitude
the merger and ringdown SNR values is somewhat uncert
We have assumed a total radiated energy of 0.1M in the
merger portion of the signal and 0.03M in the ringdown
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FIG. 5. The SNR values for advanced LIGO interferometers
the inspiral~solid line!, merger~dotted line! and ringdown~dashed
line! phases of equal-mass BBH coalescences at a luminosity
tance ofD51 Gpc; see the caption of Fig. 4. For values of t
redshifted final mass lower than;60M ( the inspiral SNR is larg-
est, while for larger BBH systems the merger and/or ringdown p
tions of the signal dominate.
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portion, a ratio of 3:1. It may turn out that in individual cas
the ratio is as high as 10 or as low as&1. It may even turn
out to be the case that for many coalescences, the ringd
portion of the waveform carries most of the radiated ene
of the combined merger and ringdown regime~depending
possibly on the distribution of initial spins!. Thus, the SNR
values shown in Figs. 4, 5 and 6 should merely be taken
illustrative.

VI. IMPLICATIONS FOR DETECTABILITY
OF THE GRAVITATIONAL-WAVE SIGNAL

One of the reasons that coalescences of compact ob
are such good sources for gravitational-wave detectors is
the inspiral is very predictable, so that matched filtering m
be used for signal searches@1#. As we have discussed
matched filtering enhances the achievable inspiral SNR
ues by a factor of roughlyANcyc, whereNcyc is the number
of cycles of the waveform in the frequency band of the d
tectors. For neutron-star–neutron-star~NS-NS! coalescences
Ncyc will be on the order of several thousand, while for lo
mass (M&50M () BBH coalescences it will be on the orde
of several hundred@44#. Thus, for NS-NS coalescences a
for low mass BBH coalescences, the inspiral will be used

FIG. 6. The SNR for equal-mass BBH coalescences detecte
LISA, assuming matched filtering, as a function of the redshif
mass (11z)M of the final black hole, at a luminosity distance
D51 Gpc. The dotted and dashed curves are the SNR values
the merger and ringdown, respectively. The upper solid curve is
SNR that would be obtained from measuring the last year of
inspiral. For (11z)M&106M ( , the last-year-inspiral SNR is larg
est; for larger BBH systems the merger and/or ringdown domin
Also shown~lower solid curves! are the SNRs that would be ob
tained from 1 yr of integration of the inspiral at 100 and 1000
before the final merger. If the rate of SMBH coalescences wit
z&(a few) is roughly one per year, then one would expect roug
one thousand SMBH binaries to be a 1000 yr or less away f
merger. This plot shows that LISA will be able to measure
inspiral of such binaries~provided they are of sufficiently low mass!
with moderate to large SNR@10#.
wn
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detectthe entire waveform. In these cases, it is not necess
to searchfor the merger and ringdown portions of the wav
form, since it will be known roughly where in the interfe
ometer data stream they are expected to lie.

For larger mass BBHs, however, our results show that
merger and ringdown SNRs can be larger than the insp
SNRs. For equal-mass BBHs, this will occur whenever
1z)M*30M ( for the initial LIGO interferometers, and
whenever (11z)M*60M ( for the advanced LIGO interfer
ometers. Indeed, the inspiral SNR completely shuts off
large enough (11z)M , as can be seen from Figs. 4 and
Admittedly, BBH binaries of total mass@20M ( may well
be very much more rare than BBH binaries of;20M ( ;
however, they will be visible to such great distances t
there may be an interesting event rate. Moreover, for
initial LIGO interferometers, the mass scale;30M ( at
which the inspiral SNR becomes much smaller than
merger and ringdown SNRs is not terribly high.

In such high mass cases for which the merger and insp
SNRs exceed the inspiral SNR, it will be necessary to p
form a search for the merger and/or ringdown portions of
signal, independently of any searches for inspiral signals
order that all possible events be detected. If one seek
detect the waves merely by optimal filtering for the inspi
waveform, some fraction of the events will be missed wh
otherwise might have been detectable. In fact, it may v
well turn out that merger signals from BBH coalescenc
could be the dominant source for the initial LIGO interfe
ometers.

One might imagine that the gravitational waves wou
generally be easier to detect by searching for the me
signal than for the ringdown, since we have estimated t
the SNR values for the merger phase are typically a facto
a few larger than those for the ringdown~cf. Figs. 4 and 5!.
There are several factors that complicate this conclus
however. On the one hand, the ringdown’s waveform sh
is better understood, which makes it easier to produce se
templates and hence easier to detect the signal. On the o
hand, the ratio between the merger and ringdown SNR
really quite uncertain, as discussed in Sec. V B, and so
plausible that the merger SNR will be larger than we ha
indicated relative to the ringdown SNR. In any case, the ra
between merger and ringdown SNRs will presumably var
lot from event to event. Thus, it would seem that searc
will be necessary forboth types of signal in the data stream
at least for the mass range in which the ringdown SNR
expected to exceed the inspiral SNR.@From Sec. V we esti-
mate this mass range to be (11z)M*200 M ( for the ad-
vanced interferometers, and (11z)M*60M ( for the initial
interferometers.#

We summarize the discussion of this subsection by d
playing the optimum search strategies for various m
ranges for the three different interferometers. In each c
below, the mass range marked merger refers to matched
tering searches for merger signals. If merger templates
available, then in the indicated mass ranges merger sear
will probably be more successful than inspiral or ringdow
searches; the question mark is a reminder that merger
plates may not be available.
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inspiral : 1M (&M&60M (

ringdown : 60M (&M&1000M (

merger~?! : 30M (&M&1000M (

J LIGO
initial
interf.

~6.1!

inspiral : 1M (&M&200M (

ringdown : 200M (&M&3000M (

merger~?! : 80M (&M&3000M (

J LIGO
advanced
interf.

~6.2!

inspiral : 103M (&M&107M (

ringdown : 107M (&M&109M (

merger~?! : 23106M (&M&109M (

J LISA
interf.

~6.3!

A. Detectability of high mass black-hole coalescences
via the ringdown signal

Consider first the search for ringdown signals. In th
case, since the shape of the signal is known up to sev
unknown parameters, it will be feasible to implement
matched filtering search. The numberNtemplatesof required
templates@72# can be estimated by combining the formalis
developed by Owen@89# and the results of Echeverria an
Finn on the expected measurement accuracy of the ringd
frequency and damping time@15,16#. Using Eqs.~4.15! of
Ref. @16# and Eqs.~2.23! and~2.28! of Ref. @89# we find that
the metric defined by Owen on the space of parameter
given by @101#

ds25
1

8Q2 dQ21
Q2

2 f qnr
2 d fqnr

2 , ~6.4!

where Q is the quality factor. The formula~6.4! for the
Owen metric is valid only in the highQ limit; it has correc-
tions of order 1/Q2. Moreover, the formula is also only vali
when the noise spectrumSh( f ) does not vary significantly
within the resonance bandwidthD f ; f qnr/Q. Therefore esti-
mates obtained from Eq.~6.4! for the number of template
shapes required for ringdown searches will only be accu
to within factors of order unity; this is adequate for our pu
poses.

Using Eq.~2.16! of Ref. @89# we find that that the numbe
of required templates is approximately

Ntemplates'
1

8
Qmax~12MM !21lnFMmax

Mmin
G , ~6.5!

whereQmax, Mmin and Mmax are the extremal values of th
quality factor and of the black hole mass that define
range of signal searches. The quantityMM in the formula
~6.5! is theminimal matchparameter introduced by Owen.
lattice of templates with minimal matchMM will have an
event detection rate smaller than the ideal rate~achieved with
an infinitely dense template grid! by the factor (MM )3 @89#.
We assumeMM50.97 as in Ref.@89#, corresponding to a
10% event rate loss, and takeQmax5100 @which by Eq.
~3.17! corresponds to 12a.1024#. For the initial and ad-
ral

n

is

te

e

vanced LIGO interferometers, the mass range to be sear
corresponds to roughlyMmin.1M( and Mmax55000M ( ,
yielding

Ntemplates&4000. ~6.6!

This is a rather small number of templates compared to
number expected to be necessary for inspiral searches@89#,
and so a ringdown search should be fairly easy to implem
A similarly small number of required template shap
(Ntemplates&6000) is obtained for LISA assumingMmin

;103M ( andMmax;109M ( .
We next discuss the distance to which BBH merg

should be detectable via their ringdown signals. As explain
in Sec. II C, an estimate of the appropriate SNR threshold
detection using one interferometer is@102#

r threshold'A2 ln@NtemplatesT/~eDt !# ~6.7!

whereT is the observation time,Dt is the sampling time and
e51023 is as defined in Sec. II B. In fact coincidencin
between the 4 different interferometers in the LIGO-VIRG
network will be carried out, in order to increase detecti
reliability and combat non-Gaussian noise~see Sec. II A!. If
the noise were exactly Gaussian, the appropriate detec
criterion would be to demand that

(
j

r j
2>r threshold

2 , ~6.8!

where the sum is over the different SNRs obtained in e
interferometer. In order to combat non-Gaussian noise,
detection criterion will be modified to require approximate
equal SNRs in each interferometer:

r j>r threshold/& for all j . ~6.9!

We have chosen a factor of& here to be conservative; i
corresponds to combining the outputs of just two interfero
eters~say, the two LIGO 4 km interferometers! instead of
four interferometers.

Taking T5107 s and Dt51 ms yields the estimate
r threshold/&'6.0 for the initial and advanced LIGO interfer
ometers. Therefore, from Fig. 4, we see that the initial LIG
interferometers should be able to see ringdowns from eq
mass BBHs in the mass range 100M (&M&700M ( out to
about 200 Mpc, if the radiation efficiencye ringdown is as large
as we have estimated. The advanced LIGO interferome
by contrast, should see ringdowns in the mass ra
200M (&(11z)M&3000M ( out toz;1 ~from Fig. 5!. For
non-equal-mass BBHs, these distances are reduced rou
by the factor;(4m/M ).

For LISA, the detection threshold is given by Eq.~6.7!.
Although LISA does incorporate several partially indepe
dent interferometers, we have used the noise spectrum~4.4!
which is the effective noise spectrum that applies to
LISA detector as a whole@7#. Thus it is consistent to trea
LISA as one interferometer. TakingT5107 s andDt51 s,
and using the valueNshapes56000 estimated above yield
r threshold'7.5. Hence, from Fig. 6, LISA should see ring
downs in the mass range 106M (&(11z)M&33108M (

out to z*100.
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B. Detectability of high mass black hole coalescences
via the merger signal

We next discuss the feasibility of searches for the mer
signal. As we have explained, this will be most necess
when the merger SNR is larger than both the inspiral a
ringdown SNRs by factors of a few~since the fractional loss
in event detection rate, if searches for the merger signal
not carried out, is the cube of the ratio of the SNR value!.

Consider first the ideal situation in which theoretical te
plate waveforms are available, so that matched filtering
be used in searches. From Figs. 4 and 5 it can be seen
the merger SNR values are larger than the inspiral and r
down values by a factor of up to;4, in the mass range
30M (&M&200M ( for initial LIGO interferometers and
100M (&M&400M ( for advanced LIGO interferometers
More precisely, in this mass range,

S S

ND
merger

maxF S S

ND
inspiral

,S S

ND
ringdown

G &4A emerger/0.1

e ringdown/0.03
.

~6.10!

The detection threshold for merger searches should be
proximately the same as that for inspiral and mer
searches, if the number of template shapesNshapesis not too
large ~see further discussion below!. Therefore, the gain in
event rate over inspiral and ringdown searches should v
between 1 and about 43564, depending on the mass of th
system, if our estimates ofemerger and e ringdown are reason-
able. The large possible gain in event rate clearly dem
strates the importance of merger searches@103#.

Note, however, that it is not clear how feasible it will b
to produce a set of numerically generated templates tha
complete enough to be used to successfully implemen
optimal filtering search. There may be a very large num
of distinct waveform shapes, each of which will require e
tensive numerical computations. If both black holes are sp
ning rapidly, the waveforms could depend in significant a
nontrivial ways on 6 distinct angular parameters, sugges
that the number of distinct shapes could be very large.

Next, consider the situation in which merger templates
unavailable. Consider first band-pass filtering searches. F
the estimateANbins54 of Sec. III E, combined with Eq
~2.15!, we see that the merger SNR in a band-pass filter
search is reduced by a factor of 4 from the values prese
in Appendix B and Figs. 4, 5, and 6. By Eq.~6.10!, the
achievable band-pass filtering merger SNR is likely to
essentially no larger than the inspiral and ringdown SNR

Noise monitoring searches for the merger will be mo
efficient than band-pass filtering searches, approaching
effectiveness of matched filtering searches.@By contrast,
noise-monitoring searches for inspiral waves would perfo
very badly, sinceNbins is much larger (*1000) for inspiral
waves than it is for merger waves (&60)#. The event-
detection rate from noise-monitoring is a factor of

R5S r*
r threshold

D 3

~6.11!
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lower than the event rate from matched filtering. Herer* is
the noise-monitoring detection threshold, given by E
~2.27! and~2.28! as a function of the parameterse, Nstart-times
andNbins, and r threshold is the matched filtering threshold
given by Eq.~2.8! as a function of the parametersNshapesand
Nstart-times. As discussed in Sec. II B, the calculation we ha
given of the thresholdr* assumes Gaussian noise behavi
the possible residual non-Gaussianity of real data even a
coincidencing between detectors may degrade the effec
ness of noise-monitoring.

We now estimate the loss factor in event rateR. To ob-
tain the most pessimistic estimate, we use the following
sumptions:~i! The number of template shapes in the match
filtering search isNshapes51. A realistic larger number would
yield a smallerR. ~ii ! The number of frequency bins i
Nbins560, twice the upper limit estimated in Sec. III
@104#. ~iii ! The number of starting times in the data stream
Nstart-times5108, corresponding to a sampling time of 0.1 s
a data set of one-third of a year. Such a large sampling t
~and smallNstart-times) would only be appropriate for the larg
est BBHs; more realistic sampling times will be smalle
Larger values ofNstart-timesgive smaller values ofR. ~iv! The
parametere in Eqs.~2.27! and ~2.8! is e51023. With these
assumptions we obtainr threshold56.8, r* 510.3; the result-
ing loss factor is

R53.5.

Hence, noise-monitoring searches should only be a facto
at most;4, and more typically;2, worse than matched
filtering searches.

The above discussion assumed thatNshapesis small. As the
numberNshapesincreases, the advantage of matched filter
searches decreases; at some numberNshapes,max, matched fil-
tering and noise monitoring perform about equally well.
Ref. @73# we show that@105#

ln~Nshapes,max!'
1

2
Nbinsln~11r2/Nbins!. ~6.12!

From Eqs.~6.12! and~2.27!, the critical value of the numbe
of shapes is;1013 for Nbins560, and;107 for Nbins520,
assumingNstart-times5108.

The actual number of shapes,Nshapes, will vary with the
SNR levelr. We can define an effective dimensionNd of the
manifold of signals by the equation

ln@Nshapes~r!#5
1

2
Nd~r!ln@11r2/Nd~r!#; ~6.13!

the parameterNd(r) is the dimension of the equivalent~lin-
ear! space of signals that has the same number of distingu
able wave shapes with SNR<r as the true, curved, manifold
of merger signals@57#. In Fig. 7, we show the gain factorR
as a function ofNbins for the valuesNd50, 5, and 10. The
true value ofNd is quite uncertain; at high SNR levels
could conceivably be as large as;10.

Combining the gain factor of 64 discussed above with
loss factorR, it follows that noise-monitoring searches fo
merger waves could increase the event rate—and hence
number of discovered BBHs—by a factor up to about
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over those found from inspiral and ringdown searches
ground-based interferometers.~For LISA, the expected
SNRs are so high that the availability of merger templa
will likely have no impact on event detection rates.!

VII. CONCLUSIONS

It seems quite likely that gravitational waves from mer
ing BBH systems will be detected by the ground-based
terferometers that are now under construction. Initial LIG
interferometers will be able to detect low mass (&30M ()
coalescences of equal-mass BBHs to about 200 Mpc
their inspiral waves, and higher mass (100M (&M
&700M () systems to about 200 Mpc via their ringdow
waves. Advanced LIGO interferometers will be able to d
tect equal-mass BBH coalescences in the mass ra
10M (&M&300M ( to z;1/2 via their inspiral waves and
higher mass (200M (&M&3000M () systems toz;1 via
their ringdown waves. For non-equal-mass BBHs, these
tances will be reduced by a factor of aboutA4m/M for in-
spiral signals and about 4m/M for ringdown signals.

Searches for massive BBHs (M*50M ( for LIGO-
VIRGO! based on merger waves could increase the rang

FIG. 7. The factor by which the event detection rate is increa
when one uses matched filters for the merger waves vs using a
monitoring search. Plotted on the horizontal axis is the num
Nbins52TD f of independent frequency bins characterizing t
space of signals one searches for;T is the maximum expected sig
nal duration andD f is the frequency bandwidth. The vertical ax
shows gain factorR in event rate. This gain factor depends on t
number of statistically independent waveform shapes in the se
signals one is searching for, which is currently unknown. This nu
ber of waveform shapes can be characterized by the effective
mensionNd of the manifold of signals; cf. Eq.~6.13!. The solid line
shows the gain factor in the limit in which the number of wavefo
shapes is small (Nd50); it is an upper limit on the gain facto
obtainable from matched filtering. The lower two dashed lines sh
the gain factor whenNd55 andNd510. Our best estimate ofNbins

is roughly 30, corresponding toT550M and D f 51/(pM ); it is
unlikely to be much larger than 100~Sec. III E!. This plot can be
generated by combining Eqs.~2.27!, ~2.28!, ~2.8! and ~6.13! of the
text, with the parameter valuesNstart-times5108 ande51023.
r
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the interferometers by a additional factor of;2, without
requiring detailed knowledge of the waveform shapes
seems likely that BBH coalescences will be detected earl
the gradual improvement towards advanced interferomet
and there is a strong possibility that they will be the fi
sources of gravitational radiation to be detected.

Theoretical template waveforms obtained from numeri
relativity supercomputer simulations will be crucial for an
lyzing the measured merger waves. A match of the detec
waveform with a predicted waveform would be a triumph f
the theory of general relativity and an absolutely unambi
ous signature of the existence of black holes. A complete
of such theoretical templates would also aid the search
BBHs, but not by a large amount.

The space-based interferometer LISA will be an e
tremely high precision instrument for studying the coale
cences of supermassive BBHs. Coalescences with mass
the range 106M (&(11z)M&109M ( should be detectable
out toz;10 with very large SNRs (*103), via their merger
and ringdown waves. Additionally, systems in the ma
range 104M (&(11z)M&33107M ( should be detected to
similar distances and with SNRs*102 via their inspiral
waves.
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APPENDIX A: ENERGY SPECTRUM
FOR RINGDOWN WAVES

There is a subtlety in calculating the SNR for the rin
down waves, related to the fact that the SNR squared d
not accumulate locally in the time domain. In order to e
plain this subtlety, let us focus not on the angle-averag
SNR squared which was our main concern in the body of
paper, but rather on the SNR squared obtained in one in
ferometer from a specific source with specific relative an
lar orientations. In this case the waveformh(t) seen in the
interferometer, fort.0, is of the form

h~ t !5h0cos~2p f qnrt1c0!e2t/t ~A1!

for some constantsh0 andc0 , while h(t) is the ~unknown!
merger waveform fort,0.

Let us also focus first on the simple, idealized case
white noise, Sh( f )5Sh5const. Then, the SNR square
~2.7! accumulates locally in time:
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r25
2

Sh
E

2`

`

dt h~ t !2. ~A2!

Hence, for white noise, the SNR squared from the ringdo
is clearly unambiguously given by

r ringdown
2 5

2

Sn
E

0

`

h0
2cos2~2p f qnrt1c0!2e22t/t

5
h0

2t

2Sh
F11

cos~2c0!2Q sin~2c0!

11Q2 G
'

h0
2t

2Sh
@11O~1/Q!#, ~A3!

whereQ5p f qnrt. Now consider the case when the noise
not exactly white. Naively, we expect that in the Four
domain the energy spectrum of the ringdown signal will b
resonance curve that peaks atf 5 f qnr with width ; f qnr/Q.
Thus, for largeQ we would expect that most of the SN
squared will be accumulated nearf 5 f qnr, unless the noise
spectrum varies very strongly with frequency. Moreover
the noise spectrumSh( f ) does not vary much over the ban
width ; f qnr/Q of the resonance peak, then we would exp
the formula~A3! to be valid to a good approximation, wit
Sh replaced bySh( f qnr). We show below that this is indee
the case: under such circumstances, Eq.~A3! is fairly accu-
rate, and the resulting approximate ringdown SNR is emb
ied in our approximate delta-function energy spectrum~3.19!
and in Eqs.~B13!–~B17! of Appendix B @106#.

In many cases of interest, it will indeed be true that m
of the SNR squared for ringdown waves will be accumula
in the vicinity of the resonance peak, so that the SNR w
approximately be given by Eq.~A3!. However, this will not
always be the case. For instance, suppose that we were l
enough that two 105M ( black holes were to merge at th
center of our own galaxy. Would such an event be detecta
by advanced LIGO interferometers? Clearly, most of
power in the ringdown waves in this case would be far bel
the LIGO-VIRGO waveband. However, given that th
merger is only at;10 kpc, one might hope to be able
detect the tail of the ringdown waves that extends upward
frequency into the LIGO-VIRGO waveband. Or consider t
detectability of a ringdown of a nearby 103M ( black hole by
LISA. In this case most of the ringdown power is conce
trated at frequencies above LISA’s optimum waveband,
the detectability of the signal is determined by the amoun
power in the low frequency tail of the ringdown. In suc
cases, it is clearly necessary to understand the power ca
in the ringdown waves at frequencies far from the reson
frequency.

Normally, such an understanding is obtained simply
taking a Fourier transform of the waveformh(t). In the case
of ringdown waves from BBH mergers, however, the wav
form for t,0 is the unknown, merger waveform. In order
obtain the SNR squared from the ringdown signal alone,
might guess that the appropriate thing to do is to takeh(t)
50 for t,0, and insert this together with Eq.~A1! into the
standard formula~2.7! for the signal to noise squared. How
ever, the resulting energy spectrum has unrealistic high
n
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quency behavior due to a discontinuity inh(t) at t50 @or a
discontinuity inh8(t) at t50 in the casec05p/2], and the
resulting SNRs can in some cases differ from the corr
values~see below! by factors*10. Other choices forh(t)
for t,0 @for instanceh(t)5h(0)# get around this problem
but instead have unrealistic low frequency behavior. In a
case, it is clear that these choices are somewhatad hocand
that there should be some more fundamental, unique wa
calculate the SNR.

We now explain the correct method to calculate the SN
The question that effectively is being asked is, what is
probability that there is a ringdown waveform present in t
data stream, starting at~say! t50? This probability is to be
calculated given only the data fromt.0, without using the
measured data fromt,0 which is contaminated by the un
known merger waveform. To do this one must effective
integrate over all possible realizations of the noise fort,0.
The necessity for such an integration is illustrated by
following simple analogy. Suppose that one is measur
two real variables,h1 ~‘‘waveform for positivet ’’ ! andh2

~‘‘waveform for negativet ’’ !, and that the measured value
of these variables areh̄1 and h̄2 . Suppose that because o
the noise in the measurement process, the probability di
bution for the true values of these parameters given th
measured values is

p~h1 ,h2!5
1

2ps2 expH 2
1

2s2 @~h12h̄1!21~h22h̄2!2

12«~h12h̄1!~h22h̄2!#J . ~A4!

Thus,h1 andh2 are Gaussian distributed about their mea
h̄1 and h̄2 , and they are correlated. If we assume thath2

50 @analogous to assumingh(t)50 for t,0#, we obtain,
for the probability distribution forh1 ,

p~h1uh250!5
1

A2ps
e2~h12h̄18 !2/~2s!2

, ~A5!

where h̄18 5h̄12«h̄2 . By contrast, if we instead calculat
the probability distribution forh1 alone by integrating over
h2 we find

p~h1!5
1

A2ps*
e2~h12h̄1!2/~2s* !2

, ~A6!

wheres* 5s/A12«2. It is clear in this simple example tha
one should use the reduced distribution~A6! rather than the
distribution~A5!. Note also that the widths of the probabilit
distributions~A5! and~A6! are different, and that the correc
distribution~A6! could not have been obtained from the joi
distribution ~A4! for any assumed choice ofh2 .
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Turn now to the analogous situation for random p
cesses. If n(t) is the interferometer noise, letCn(Dt)
[^n(t)n(t1Dt)& denote the autocorrelation function. D
fine the inner product

^h1uh2&[E
0

`

dtE
0

`

dt8 K~ t,t8! h1~ t !h2~ t8! ~A7!

on the space of functionsh(t) for t.0, where the kerne
K(t,t8) is determined from

E
0

`

dt9K~ t,t9!Cn~ t92t8!5d~ t2t8! ~A8!

for t,t8>0. The quantityK(t,t8) is analogous to the modi
fied width s* in Eq. ~A6! above. Using the inner produc
~A7!, the usual theory of matched filtering@59,60# can be
applied to random processes on the half linet.0. Thus, if
s(t) is the interferometer output andh(t) is the waveform
~A1!, the detection statistic isY5^suh&, and the SNR
squared for the measurement is

r2[
E@Y#2

E@Y2#2E@Y#2

5^huh&

5E
0

`

dtE
0

`

dt8K~ t,t8!h~ t !h~ t8!, ~A9!

whereE@¯# means expectation value. If we define

G~ f , f 8!5E
0

`

dt E
0

`

dt8 e2p i f te22p i f 8t8K~ t,t8!

~A10!

and

h̃~ f !5E
0

`

e2p i f th~ t ! dt, ~A11!

the SNR squared can be rewritten as

r25E
2`

`

d f E
2`

`

d f8 h̃~ f !* G~ f , f 8! h̃~ f 8!. ~A12!

Note that the Fourier transformG( f , f 8) of K(t,t8) is not
proportional tod( f 2 f 8)/Sh( f ) but instead is in genera
non-diagonalin frequency.

The formula ~A12! resolves the ambiguities discuss
above in the method of calculating the ringdown SNR;
result does not require a choice of the waveformh(t) for t
,0. Unfortunately, the final answer~A12! is complicated in
the sense that it cannot be expressed in the form~2.30! for
any effective energy spectrumdE/d f . This is somewhat in-
convenient for the purposes of this paper: the wave’s ene
spectrum is a useful and key tool for visualizing and und
standing the SNRs. Clearly, an approximate, effective ene
spectrum~to the extent that one exists! would be very useful.
We now turn to a derivation of such an approximate, eff
tive energy spectrum, namely the spectrum~3.18! which is
used throughout the body of this paper.
-

e

y
-
y

-

We start our derivation by describing an alternati
method of calculating the exact ringdown SNR given by E
~A1! and~A9!. It is straightforward to show that the quantit
~A9! can be obtained by~i! choosinganywaveformh(t) for
t,0, ~ii ! calculating the SNR from the usual formula~2.7!,
and~iii ! minimizing over all choices of the functionh(t) on
the negative real axis. We have experimented with sev
choices of h(2t) for t.0, namely h(2t)50, h(2t)
5h(0), h(2t)5h(t). We found that the SNR obtained b
minimizing over these choices is always~for the entire black
hole mass ranges discussed in Sec. V! within a few tens of a
percent of the SNR obtained from the following prescriptio
~i! Assume thath(t) for negativet is identical to the wave-
form for positivet except for the sign oft/t; i.e., that

h~ t !5h0cos~2p f qnrt1c0!e2utu/t ~A13!

for positive and negativet. ~ii ! Calculate the total SNR using
the standard formula~2.7!. ~iii ! Divide by a correction factor
of & in amplitude to compensate for the doubling up. Th
prescription gives the correct, exact result~A9! for white
noise. For more realistic noise curves, the errors of a
tens of a percent resulting from this prescription are un
portant compared to the uncertainty in the overall amplitu
A of the ringdown signal. Moreover, the resulting SNR va
ues multiplied by& are an upper bound for the true SN
@since if ourad hocchoice ofh(t) for t,0 happened to be
exactly right, then the prescription would underestimate
SNR by&#.

We now explain how to obtain the energy spectrum~3.18!
from the above approximate prescription. From Eqs.~2.31!
and ~3.15! it can be seen that the waveform as seen in o
interferometer, before angle averaging, is given by Eq.~A1!
with

h0eic05
AM

r
@F1~u,w,c!1 iF 3~u,w,c!#2S2

2~i,b,a!eiw0.

~A14!

Here the anglesu, w, c, i andb have the meanings explaine
in Sec. II C. Let us now insert the waveform~A1! into the
formula ~A9! for the exact SNR, and then average over t
anglesu, w, c, i and b using Eqs.~2.34! and ~3.16!. This
yields for the angle-averaged, exact SNR squared

^rexact@h~ t !#2&5
1

20p
$rexact@h1,0~ t !#21rexact@h3,0~ t !#2%,

~A15!

where rexact@h(t)# denotes the exact SNR functional~A9!
and

h1,0~ t !5
AM

r
cos~2p f qnrt !e

2t/t

h3,0~ t !5
AM

r
sin~2p f qnrt !e

2t/t, ~A16!

for l .0. Now, for each of the two terms on the right-han
side of Eq. ~A15!, we make the approximation discusse
above consisting of using Eqs.~2.7! and~A13! and dividing
by 2. This yields
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^rexact@h~ t !#2&'
1

10p E
0

`

d f
@ u h̃1,0~ f !u21u h̃1,0~ f !u2#

Sh~ f !
,

~A17!

where it is understood thath1,0 andh3,0 have been extende
to negativet in the manner of Eq.~A13!. Finally, evaluating
the Fourier transforms yields an angle averaged S
squared of the form~2.30!, with the energy spectrum give
by Eq. ~3.18!.
R

APPENDIX B: SIGNAL-TO-NOISE RATIO FORMULAS

In this appendix, we give the details of our SNR calcu
tions. Note that throughout this appendix we use ‘‘MM (’’
~mega solar-mass! as shorthand for 106M ( .

1. Inspiral

To calculate the angle-averaged SNR squared for the
spiral, we insert the inspiral energy spectrum~3.14! and our
parameterized model~4.1! of an interferometer’s noise spec
trum into Eq.~2.30!, and integrate fromf 5 f s to f 5 f merge.
The result is
trum
^r2&55
Fi~M ,z,D !F9a1/32

36

5
a21/32

4

5
a21/3v10/32a3S f s

f m
D 8/3G , a f m< f merge/~11z!,

Fi~M ,z,D !F9a1/328S v
a D 1/3

2a3S f s

f m
D 8/3G , f m /a< f merge/~11z!,a f m ,

Fi~M ,z,D !Fa1/3S a2

v D 8/3

2a3S f s

f m
D 8/3G , f s< f merge/~11z!, f m /a ,

0, f merge/~11z!, f s ,

~B1!

where

v[
~11z!a f m

f merge
~B2!

and

Fi~M ,z,D !5
@~11z!M #5/3@4m/M #

80p4/3D~z!2hm
2 f m

1/3 . ~B3!

HereD(z) is the luminosity distance to the source,f s , a, f m andhm are parameters characterizing the detector noise spec
~4.1!, and f merge is given by Eq.~3.3!.

Inserting the values of the noise spectrum parameters from Eq.~4.2! for initial LIGO interferometers, we obtain the
following numerical values for the SNR in the equal-mass casem5M /4:

S S

ND
initial

55
2.8S 200 Mpc

D~z! D S ~11z!M

18M (
D 5/6F120.20S ~11z!M

18M (
D 10/3G1/2

, ~11z!M<18M (,

4.7S 200 Mpc

D~z! D S ~11z!M

18M (
D 5/6F120.71S ~11z!M

18M (
D 1/3G1/2

, 18M (,~11z!M<36M (,

2.7S 200 Mpc

D~z! D S ~11z!M

36M (
D 21/2F120.06S ~11z!M

36M (
D 8/3G1/2

, 36M (,~11z!M<102M (,

0, 102M (,~11z!M .

~B4!

For the noise curve parameters~4.3! appropriate for advanced LIGO interferometers we obtain

S S

ND
advanced

55
27S 1 Gpc

D~z! D S ~11z!M

37M (
D 5/6F120.16S ~11z!M

37M (
D 10/3G1/2

, ~11z!M<37M ( ,

43S 1 Gpc

D~z! D S ~11z!M

37M (
D 5/6F120.65S ~11z!M

37M (
D 1/3G1/2

, 37M (,~11z!M<95M ( ,

31S 1 Gpc

D~z! D S ~11z!M

95M (
D 21/2F12.021S ~11z!M

95M (
D 8/3G1/2

, 95M (,~11z!M<410M ( ,

0, 410M (,~11z!M .

~B5!
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As explained in Sec. V A, the calculation of the inspiral SNR for LISA differs from the other SNR calculations i
following way. If one were to integrate over the whole frequency domain in the interferometer waveband up tof 5 f merge~as
is done for the initial and advanced interferometers in LIGO!, in some cases one would obtain the SNR for a measureme
several hundred years duration, which is obviously irrelevant. Thus, it is necessary to restrict the integral over frequen
~2.30! to the domain that corresponds to, say, 1 yr of observation when calculating inspiral LISA SNRs. Using the New
relationship for the rate of frequency sweep, we obtain, for the frequency at timeT before merger in the equal-mass case

f insp~T!5F f merge
28/3 1

64

5
p8/3M5/3~11z!5/3TG23/8

. ~B6!

Binaries of redshifted total mass (11z)M larger than about 53105M ( enter the LISA waveband atf 5 f s51024 Hz less than
1 yr before merger, while binaries of smaller redshifted mass spend more than 1 yr in the LISA waveband. To calcu
SNR, we insert Eq.~3.14! into Eq.~2.30! and integrate numerically from the larger off s and f insp~1 yr! to f merge. The resulting
SNR values are shown in Fig. 6. We also show in Fig. 6 the SNR obtained from 1 yr of observation 100 yr before t
merger, obtained by integrating fromf insp~100 yr! to f insp~99 yr!, as well as a similar curve for 1000 yr prior to merger.

Equation ~B1! applies to LISA only for (11z)M*53105M ( . By combining Eqs.~B1! and ~4.4! for (11z)M*
53105M ( together with an approximate fit to Fig. 6 for (11z)M&105M ( we obtain, for the SNR from the last year o
inspiral in the equal-mass case,

S S

ND
LISA

'5
1.53104S 1 Gpc

D~z! D S ~11z!M

0.5MM (
D , 100M (&~11z!M&0.5MM ( ,

1.93104S 1 Gpc

D~z! D S ~11z!M

0.5MM (
D 5/6F120.38S ~11z!M

0.5MM (
D 1/3G1/2

, 0.5MM (,~11z!M<6.0MM ( ,

5.03104S 1 Gpc

D~z! D S ~11z!M

6MM (
D 21/2F120.006S ~11z!M

6MM (
D 8/3G1/2

, 6.0MM (,~11z!M<41MM ( ,

0, 41MM (,~11z!M .

~B7!

2. Merger

To calculate the merger SNR we use the energy spectrum~3.13! and follow the same procedure as above. The resu

~B8!

Herev is given by Eq.~B2!, em is the fraction of total mass energy radiated during the merger~which we have also denote
by emerger in the body of the paper!, k[ f qnr/ f merge, and

Fm~em ,M ,z,D !5
2emM ~11z!2@4m/M #2

15p2D~z!2hm
2 f merge~k21!

. ~B9!

Lines marked with the superscript ‘‘I’’ turn out to hold for the initial LIGO interferometer parameters, those with ‘‘A’’ h
for advanced LIGO interferometer parameters, and those with ‘‘L’’ hold for LISA.
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Using the numerical values of the noise curve parameters~4.2! for initial LIGO interferometers, and Eqs.~3.3!, ~3.4!, ~B2!,
and ~B8! we find, for the initial LIGO interferometers in the equal-mass case,

~B10!

Similarly using Eq.~4.3! we find, for advanced LIGO interferometers,

~B11!

Finally, using the parameters~4.4! appropriate for LISA, we obtain
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~B12!

3. Ringdown

The ringdown SNRs are calculated a little differently from the inspiral and merger SNRs. First, we use the effective
spectrum~3.18! which yields an estimate of the true SNR obtainable from the model waveform~3.15! that is accurate to within
a few tens of a percent~see Appendix A!. Second, the integral over frequency in the SNR formula~2.30! with the noise
spectrum~4.1! and the energy spectrum~3.18! cannot easily be evaluated analytically. Hence, we calculated this inte
numerically to produce the plots of ringdown SNR versus BBH mass shown in Figs. 4, 5, and 6.

In the remainder of this appendix we derive approximate formulae for the ringdown SNR as a function of ma
approximating the ringdown energy spectrum as a delta function at the ringdown frequency@cf. Eq. ~3.19!#. This approxima-
tion yields ~see Appendix A and Ref.@106#!

^r2&5
~11z!3M2A2Q@4m/M #2

20p2D~z!2f qnrSh@ f qnr/~11z!#
. ~B13!

Using Eq. ~3.17! and the relation~3.22! between the dimensionless coefficientA and the radiated energy we can rewr
formula ~B13! as

^r2&5
8

5

1

F~a!2 e r

~11z!M

Sh@ f qnr/~11z!# F ~11z!M

D~z! G2F4m

M G2

, ~B14!

wheree r5e ringdown is the fraction of the total mass energy radiated in the ringdown, and

F~a!512
63

100
~12a!3/10. ~B15!

An equivalent formula was previously obtained by Finn@16,107#.
We find the following numerical result when we insert our assumed valuese r50.03 anda50.98 for the ringdown signa

together with the parameters for the initial LIGO interferometer noise curve in the equal-mass case:

S S

ND
initial

55
0.08S e r

0.03D
1/2S 200 Mpc

D~z! D S ~11z!M

18M (
D 5/2

, ~11z!M<118M ( ,

8.8S e r

0.03D
1/2S 200 Mpc

D~z! D S ~11z!M

118M (
D , 118M (,~11z!M<230M (,

17S e r

0.03D
1/2S 200 Mpc

D~z! D S ~11z!M

230M (
D 21/2

, 230M (,~11z!M<660M ( ,

0, 660M (,~11z!M .

~B16!
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The corresponding formulas for advanced LIGO interferometers are

S S

ND
advanced

55
0.71S e r

0.03D
1/2S 1 Gpc

D~z! D S ~11z!M

37M (
D 5/2

, ~11z!M<240M ( ,

77S e r

0.03D
1/2S 1 Gpc

D~z! D S ~11z!M

240M (
D , 240M (,~11z!M<620M ( ,

200S e r

0.03D
1/2S 1 Gpc

D~z! D S ~11z!M

620M (
D 21/2

, 620M (,~11z!M<2600M ( ,

0, 2600M (,~11z!M .

~B17!

Finally, the corresponding formulas for LISA are

S S

ND
LISA

55
96S e r

0.03D
1/2S 1 Gpc

D~z! D S ~11z!M

0.2MM (
D 5/2

, ~11z!M<1.3MM ( ,

1.03104S e r

0.03D
1/2S 1 Gpc

D~z! D S ~11z!M

1.3MM (
D , 1.3MM (,~11z!M<39MM ( ,

3.13105S e r

0.03D
1/2S 1 Gpc

D~z! D S ~11z!M

39MM (
D 21/2

, 39MM (,~11z!M<260MM ( ,

0, 260MM (,~11z!M .

~B18!

By comparing Eqs.~B16!–~B18! with Figs. 4–6 it can be seen that the delta-function energy spectrum approximation is
good except forM*3000M ( for advanced LIGO interferometers andM*33108M ( for LISA. The approximation fails to
capture the high mass tails of the SNR curves.
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ing to the approximate delta function energy spectrum~3.19!,
proceed as follows. Starting from Eq.~A14!, average over the
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yields

^h0~u,w,c,i,b!2&5
1

10p

A2M2

r 2 .

Substitute this into Eq.~A3!, make the replacementSh

→Sh( f qnr), and make the appropriate substitutions to acco
for cosmological effects as explained in Sec. II C to obta
Eq. ~B13!.

@107# The smallz, equal-mass limit of Eq.~B14! agrees with the
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