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Abstract

We solve the inverse scattering problem for multidimensional vector fields and we use this result to construct the formal solution of the Cauchy
problem for the second heavenly equation of Plebanski, a scalar nonlinear partial differential equation in four dimensions underlying self-dual
vacuum solutions of the Einstein equations, which arises from the commutation of multidimensional Hamiltonian vector fields.
© 2006 Elsevier B.V. All rights reserved.
1. Introduction

In this Letter we solve the inverse scattering problem for
multidimensional vector fields and we use this result to con-
struct the formal solution of the Cauchy problem for the real
second heavenly equation

θtx − θzy + θxxθyy − θ2
xy = 0,

(1)θ = θ(x, y, z, t) ∈ R, x, y, z, t ∈ R,

where subscripts denote partial derivatives.
The heavenly equations, introduced in [1] by Plebanski, de-

scribe self-dual vacuum solutions of the Einstein equations.
Since θ ∈ R in Eq. (1), the corresponding metric is (2,2),
and so it is not directly relevant in general relativity. The 2-
dimensional reduction θz = θt = 0 of (1) is the Monge–Ampère
equation, relevant in Differential Geometry. As we shall see
in the following, the heavenly equation (1) plays also a distin-
guished role in the theory of commuting, 2-dimensional, Hamil-
tonian dynamical systems.
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The heavenly equation, together with the equations for the
self-dual Yang–Mills (SDYM) fields [2], are perhaps the most
distinguished examples of nonlinear PDEs in more than three
independent variables arising as commutativity conditions of
linear operators [3], and therefore amenable, in principle, to ex-
act treatments based on the spectral theory of those operators
[4,5]. If the SDYM equations are considered on an abstract Lie
algebra, then the heavenly equation can actually be interpreted
as a distinguished realization of the SDYM equations, corre-
sponding to the Lie algebra of divergence free vector fields in-
dependent of the SDYM coordinates [6]. Eq. (1) has been inves-
tigated within the twistor approach in [7,8]. A bi-Hamiltonian
formulation and a hodograph transformation for (1) have been
recently constructed in [9,10]; a nonlinear ∂̄-dressing and a gen-
erating equation for its hierarchy can be found in [11].

The present Letter is a simplified version of the manu-
script [12].

2. Integrable PDEs in arbitrary dimensions and
the heavenly equation

It is known that the commutation of multidimensional vec-
tor fields leads to nonlinear first order multidimensional PDEs
(see, e.g., [3]). In this spirit, we derive now a basic class of in-
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tegrable nonlinear PDEs in arbitrary dimensions possessing, as
distinguished reduction, the heavenly equation (1).

Consider the following pair of vector fields

L̂i = ∂ti + λ∂zi
+

N∑
k=1

uk
i ∂xk

= ∂ti + λ∂zi
+ �ui · ∇�x,

(2)i = 1,2,

where ∂x denotes partial differentiation with respect to the
generic variable x, �x = (x1, . . . , xN), ∇�x = (∂x1 , . . . , ∂xN

), �ui =
(u1

i , . . . , u
N
i ), i = 1,2, λ is a complex parameter and the vector

coefficients �ui depend on the independent variables ti , zi , xk ,
i = 1,2, k = 1, . . . ,N , but not on λ. The existence of a com-
mon eigenfunction f for the operators L̂1 and L̂2:

(3)L̂1f = L̂2f = 0,

implies their commutation, ∀λ:

(4)[L̂1, L̂2] = 0,

which is equivalent to the following determined system of 2N

first order quasi-linear PDEs in (4 + N) dimensions for the 2N

fields �u1, �u2:

(5a)�u1z2 = �u2z1,

(5b)�u1t2 − �u2t1 + (�u2 · ∇�x)�u1 − (�u1 · ∇�x)�u2 = �0.

Parametrizing the first set of equations in terms of the vector
potential �U

(6)�ui = �Uzi
, i = 1,2,

one obtains the following determined system of N nonlinear
PDEs for the N dependent variables �U in (4 + N) dimensions:

(7)�Ut1z2 − �Ut2z1 + ( �Uz1 · ∇�x) �Uz2 − ( �Uz2 · ∇�x) �Uz1 = �0.

This system admits a natural reduction; indeed, applying the
operator ∇�x · to Eq. (7), one obtains

(8)

[
∂t1∂z2 − ∂t2∂z1 + ( �Uz1 · ∇�x)∂z2 − ( �Uz2 · ∇�x)∂z1

]
(∇�x · �U) = 0,

from which one infers that the condition

(9)∇�x · �U = 0

is an admissible reduction for Eq. (7), implying that the condi-
tion of zero-divergence:

(10)∇�x · �ui = 0, i = 1,2,

is an admissible constraint for the vectors �ui, i = 1,2.
From now on, we concentrate our attention on the following

important example:

(11)N = 2, zi = xi, i = 1,2,

and we make the following change of notation for the remaining
4 variables:

(12)t1 = z, t2 = t, x1 = x, x2 = y.
Then the system (7) reduces to the following determined system
of two PDEs in 4 dimensions:

�Utx − �Uzy + ( �Uy · ∇�x) �Ux − ( �Ux · ∇�x) �Uy = �0,

(13)�U ∈ R
2, �x = (x, y), ∇�x = (∂x, ∂y),

corresponding to the Lax pair:

(14a)L̂1 = ∂z + λ∂x + �u1 · ∇�x, �u1 = �Ux,

(14b)L̂2 = ∂t + λ∂y + �u2 · ∇�x, �u2 = �Uy.

In this case, the zero-divergence reduction (10) makes the two
vector fields �ui · ∇�x Hamiltonian, allowing for the introduction
of two Hamiltonians Hi, i = 1,2 such that:

(15)�ui = (Hiy,−Hix), i = 1,2,

which, due to (5a), are parametrized by a single potential θ :

Hi = θxi
, �U = (θy,−θx),

(16)�u1 = (θxy,−θxx), �u2 = (θyy,−θxy).

Then the compatible linear problems (3), (14) can be written
down as Hamilton equations with respect to the times z, t :

fz = {H1 + λy,f }�x,
(17)ft = {H2 − λx,f }�x,

where {·, ·}�x is the Poisson bracket with respect to the variables
x, y:

(18){f,g}�x = fxgy − fygx,

and the nonlinear system (13) reduces to the heavenly equation
in Hamiltonian form

(19)θtx − θzy + {θx, θy}�x = const,

equivalent to (1) after choosing the constant to be zero.

3. IST for the nonlinear PDEs (13) and (1)

Since the Lax pair (14) is made of vector fields, Hamiltonian
in the heavenly reduction (10), (11), the eigenfunctions satisfy
the following basic properties, which will introduce important
novelties in the Inverse Scattering Transform (IST).

(1) The space of eigenfunctions is a ring: if f1, f2 are two so-
lutions of the Lax pair (14), then an arbitrary differentiable
function F(f1, f2) of them is a solution of (14).

(2) In the heavenly (Hamiltonian) reduction (10), (11), the
space of eigenfunctions is also a Lie algebra, whose Lie
bracket is the natural Poisson bracket (18): if f1, f2 are two
solutions of the Lax pair (14), then their Poisson bracket
{f1, f2}(x,y) is also a solution of (14).

Now, interpreting the characteristic variable t as time and the
other three variables x, y, z as space variables, we consider the
Cauchy problem for the system (13) and for its heavenly reduc-
tion (1), assigning the initial conditions Ui(x, y, z,0), i = 1,2
and θ(x, y, z,0) within the class of rapidly decreasing, regular
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and real fields:

(20)
Ui, θ → 0, i = 1,2,

(
x2 + y2 + z2

) → ∞,

Ui, θ ∈ R, (x, y, z) ∈ R
3, t � 0.

To solve such a Cauchy problem by the IST method (see,
e.g., [4,5]), we construct the IST for the operator L̂1 in (14a),
within the class of rapidly decreasing (in the space variables
x, y, z), regular and real fields U

j
i , i, j = 1,2 and θ , interpret-

ing the operator L̂2 in (14b) as the time operator.
The formalism presented here can be generalized to the more

general vector fields (2) in a straightforward way.
The inverse problem presented in this Letter can be used, in

principle, to construct classes of solutions of Eqs. (13) and (1).
A detailed investigation of this problem will be the subject of a
forthcoming paper.

3.1. Basic eigenfunctions

The localization (20) of the vector potential �u1 implies that,
if f is a solution of L̂1f = 0, then

f (�x, z,λ) → f±(�ξ,λ), z → ±∞,

(21)�ξ := �x − (λ,0)z;
i.e., asymptotically, f is an arbitrary function of (x − λz), y

and λ.
A central role in the theory is played by the real Jost eigen-

functions ϕ1,2(�x, z,λ), the solutions of L̂1ϕ1,2 = 0 uniquely
defined by the asymptotics

ϕ1(�x, z,λ) → x − λz ≡ ξ,

(22)ϕ2(�x, z,λ) → y, z → −∞.

In this Letter we often use the compact vector notation: �f =
(f1, f2)

T . Then

(23)�ϕ(�x, z,λ) ≡
(

ϕ1(�x, z,λ)

ϕ2(�x, z,λ)

)
→

(
ξ

y

)
≡ �ξ, z → −∞.

The Jost eigenvector �ϕ is equivalently characterized by the in-
tegral equation

(24)

�ϕ(�x, z,λ) +
∫
R3

d �x′ dz′ G(�x − �x′, z − z′;λ)

× (�u1(�x′, z′) · ∇�x′
) �ϕ(�x′, z′, λ) = �ξ,

in terms of the Jost Green’s function

(25)G(�x, z;λ) = θ(z)δ(x − λz)δ(y).

A crucial role in the IST for the vector field L̂1 is also
played by the analytic eigenfunctions �ψ±(�x, z,λ), the solutions
of L̂1 �ψ± = �0 satisfying the integral equations

(26)

�ψ±(�x, z,λ) +
∫
R3

d �x′ dz′ G±(�x − �x′, z − z′;λ)

× (�u1(�x′, z′) · ∇�x′
) �ψ±(�x′, z′, λ) = �ξ,
where G± are the analytic Green’s functions

(27)G±(�x, z;λ) = ± δ(y)

2πi[x − (λ ± iε)z] .

The analyticity properties of G±(�x, z,λ) in the complex λ-
plane imply that �ψ+(�x, z,λ) and �ψ−(�x, z,λ) are analytic, re-
spectively, in the upper and lower halves of the complex λ-
plane, with the following asymptotics, for large λ:

(28)�ψ±(�x, z,λ) = �ξ + �Q±(�x, z)

λ
+ O

(
λ−2), |λ| � 1,

where

�Q±(�x, z) = ±P

∫
R2

dx′ dz′

2πi(z − z′)
�u1(x

′, y, z′)

(29)− 1

2

( x∫
−∞

−
∞∫

x

)
dx′ �u1(x

′, y, z),

entailing that

(30)�u1(�x, z) = − �Q±x(�x, z).

It is important to remark that the analytic Green’s functions
(27) exhibit the following asymptotics for z → ±∞:

G±(�x, z;λ) → ± δ(y)

2πi[ξ ∓ iε] , z → +∞,

(31)G±(�x, z;λ) → ± δ(y)

2πi[ξ ± iε] , z → −∞.

It follows that the z = +∞ asymptotics of �ψ+ and �ψ− are ana-
lytic respectively in the lower and upper halves of the complex
plane ξ , while the z = −∞ asymptotics of �ψ+ and �ψ− are ana-
lytic respectively in the upper and lower halves of the complex
plane ξ . This mechanism was first observed in [13].

3.2. Spectral data

The z = +∞ limit of �ϕ defines the scattering vector �σ of
L̂1:

(32)lim
z→+∞ �ϕ(�x, z;λ) ≡ �S(�ξ,λ) = �ξ + �σ(�ξ,λ).

The direct problem is the mapping from the real vector po-
tential �u1, function of the three real variables (�x, z), to the real
scattering vector �σ , function of the three real variables (�ξ,λ).
Then the counting is consistent. We remark that the small field
limit of this mapping is the Radon transform [14]

(33)�σ(ξ, y,λ) = −
∫
R

�u1(ξ + λz, y, z) dz.

The impact of the heavenly constraint (10), (11) on the spectral
data will be discussed in Section 3.5.

The Jost solutions ϕ1,2 form, together with the constant
eigenfunction λ, a basis in the space of the eigenfunctions of
L̂1 (which is a ring). The representation of the analytic eigen-
functions �ψ± in terms of �ϕ yields
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�ψ±(�x, z,λ) = �K±
( �ϕ(�x, z,λ), λ

)
(34)= �ϕ(�x, z,λ) + �χ±

( �ϕ(�x, z,λ), λ
)
,

and this formula defines the spectral data �χ±. Since the z →
−∞ limit of (34) reads

(35)lim
z→−∞

�ψ± − �ξ = �χ±(�ξ,λ),

the above analyticity properties of the LHS of (35) in the com-
plex ξ -plane imply that �χ+(�ξ,λ) and �χ−(�ξ,λ) are analytic re-
spectively in the upper and lower halves of the complex plane ξ ,
decaying at ξ ∼ ∞ like O(ξ−1). Therefore their Fourier trans-
forms �̃χ+( �ω,λ) and �̃χ−( �ω,λ) have support respectively on the
positive and negative real ω1 semi-axes.

The spectral data �χ± can be constructed from the scattering
vector �σ through the solution of the following linear integral
equations

�̃χ+( �ω,λ) + θ(ω1)

(
�̃σ( �ω,λ) +

∫
R2

d �η �̃χ+(�η,λ)Q(�η, �ω,λ)

)
= �0,

(36)

�̃χ−( �ω,λ) + θ(−ω1)

(
�̃σ( �ω,λ) +

∫
R2

d �η �̃χ−(�η,λ)Q(�η, �ω,λ)

)

= �0,

involving the Fourier transforms �̃σ and �̃χ± of �σ and �χ±:

�̃σ( �ω,λ) =
∫
R2

d�ξ �σ(�ξ,λ)e−i �ω·�ξ ,

(37)�̃χ±( �ω,λ) =
∫
R2

d�ξ �χ±(�ξ,λ)e−i �ω·�ξ

and the kernel

(38)Q(�η, �ω,λ) =
∫
R2

d�ξ
(2π)2

ei(�η−�ω)·�ξ [ei �η·�σ(�ξ,λ) − 1
]
.

To prove this result, one first evaluates (34) at z = +∞, obtain-
ing

(39)lim
z→∞

�ψ± − �ξ = �σ(�ξ,λ) + �χ±
(�ξ + �σ(�ξ,λ), λ

)
.

Applying the integral operator
∫

R2 d�ξe−i �ω·�ξ for ω1 > 0 and
ω1 < 0 respectively to Eqs. (39)+ and (39)−, using the above
analyticity properties and the Fourier representations of �χ±
and �σ , one obtains Eq. (36).

We end this section remarking that the reality of the po-

tentials: �u1 ∈ R
2 implies that, for λ ∈ R, �̄ϕ = �ϕ, �̄ψ+ = �ψ−;

consequently: �̄σ = �σ , �̄χ+ = �χ−.

3.3. Inverse problem

An inverse problem can be constructed from Eq. (34). Sub-
tracting �ξ from Eqs. (34)− and (34)+, applying respectively the
analyticity projectors P̂+ and P̂−:

(40)P̂± ≡ ± 1

2πi

∫
dλ′

λ′ − (λ ± iε)

R

and adding up the resulting equations, one obtains the following
nonlinear integral equation for the Jost eigenfunction �ϕ:

�ϕ(�x, z,λ) + 1

2πi

∫
R

dλ′

λ′ − (λ + iε)
�χ−

( �ϕ(�x, z,λ′), λ′)

(41)− 1

2πi

∫
R

dλ′

λ′ − (λ − iε)
�χ+

( �ϕ(�x, z,λ′), λ′) = �ξ .

Given the spectral data �χ±, one reconstructs the eigenfunction
�ϕ from (41), the analytic eigenfunctions from (34), and �u1 from
Eq. (30). This inversion procedure was first introduced in [15].

3.4. t -evolution of the spectral data

As the potentials �u1,2 evolve in time according to equation
(13), the t -dependence of the spectral data �σ and �χ±, defined in
(32) and (34), is described by the equations:

(42a)�σ(�ξ,λ, t) = �σ (�ξ − (0, λ)t, λ,0
)
,

(42b)�χ±(�ξ,λ, t) = �χ±
(�ξ − (0, λ)t, λ,0

)
.

To prove it, we first observe that

φ1(�x, z,λ, t) ≡ ϕ1(�x, z,λ, t),

(43)φ2(�x, z,λ, t) ≡ ϕ2(�x, z,λ, t) − λt

are, together with λ, a basis of common Jost eigenfunctions of
L̂1 and L̂2. The y = +∞ limit of equation L̂2 �φ = �0 yields �σt +
λ�σy = �0, whose solution is (42a). Analogously,

π±1(�x, z,λ, t) ≡ ψ±1(�x, z,λ, t),

(44)π±2(�x, z,λ, t) ≡ ψ±2(�x, z,λ, t) − λt

are a basis of common analytic eigenfunctions of L̂1 and L̂2;
therefore

(45)π±1 = Ǩ±1( �φ,λ), π±2 = Ǩ±2( �φ,λ),

for some functions Ǩ±1,2 depending on (�x, z, t) only through
�φ. Comparing, at t = 0, these equations with equations (34),
one expresses Ǩ±1,2 in terms of K±1,2, obtaining Eq. (42b).

3.5. The heavenly reduction

In the heavenly (Hamiltonian) reduction (10), (11), the trans-
formations �ξ → �S(�ξ,λ), �ξ → �K±(�ξ,λ) are constrained to be
canonical:

(46){S1,S2}�ξ = {K±1,K±2}�ξ = 1,

or, in terms of �σ(ξ, y,λ) and �χ±(ξ, y,λ):

(47)
σ1ξ + σ2y + {σ1, σ2}�ξ = χ±1ξ + χ±2y + {χ±1, χ±2}�ξ = 0.

To prove it, we recall that the Poisson bracket of the eigen-
functions ϕ1 and ϕ2 is also an eigenfunction: L̂1{ϕ1, ϕ2}�x = 0.
Using the asymptotics (22), one infers that {ϕ1, ϕ2}�x → 1, at
z → −∞; therefore, by uniqueness, {ϕ1, ϕ2}�x = 1. Evaluating
now this Poisson bracket at z = +∞ and using (32), one obtains
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the constraint (46) for �S . We also observe that the eigenfunc-
tions {ψ+1,ψ+2}�x and {ψ−1,ψ−2}�x are analytic in the upper
and lower halves of the λ-plane and go to 1 at |λ| → ∞. Since
1 is also an eigenfunction, by uniqueness they are identically 1:
{ψ±1,ψ±2}�x = 1. Therefore, from the equations:

(48){ψ±1,ψ±2}�x = {K±1,K±2}(ϕ1,ϕ2){ϕ1, ϕ2}�x = 1,

consequence of (34), one infers the constraints (46) for �K±.

4. Commuting λ-families of dynamical systems

It is well known (see, e.g., [16]) that linear first order PDEs
like (3) are intimately related to systems of ordinary differen-
tial equations describing their characteristic curves. The vector
fields L̂1,2 (14) are associated with the following two λ-families
of commuting dynamical systems

(49)

L̂1: d �x
dz

= (λ,0) + �u1(�x, z, t),

L̂2: d �x
dt

= (0, λ) + �u2(�x, z, t).

In the heavenly reduction (10), (11), they read

(50)

L̂1: d �x
dz

+ {H1 + λy, �x}�x = �0,

L̂2: d �x
dt

+ {H2 − λx, �x}�x = �0.

Therefore: the heavenly equation characterizes the commuta-
tion, ∀λ, of two λ-families of Hamiltonian dynamical systems,
with Hamiltonians:

(51)H̃1 = H1(�x, z, t) + λy, H̃2 = H2(�x, z, t) − λx.

There is a deep connection between the above IST and the
z-scattering theory for the commuting flows (49) and (50). Let
�φ(�x, z,λ, t) be the common eigenfunctions of L̂1 and L̂2 de-
fined in (43); then, solving the system �ω = �φ(�x, z,λ, t) with
respect to x and y (assuming local invertibility), one obtains
the following common solution of the commuting flows (49):

�ω = �φ(�x, z,λ, t) ⇔ �x = �r(z, t, λ, �ω) ∼
(

λz

λt

)
+ �ω,

(52)z ∼ −∞.

The z = +∞ limit of the solution �r(z, t, λ, �ω):

(53)�x = �r(z, t, λ, �ω) ∼
(

λz

λt

)
+ �Ω( �ω,λ), y ∼ +∞

defines the scattering vector �Δ( �ω) = �Ω( �ω) − �ω of (49), which
is connected to the IST data �S by inverting the system �ω =
�S(x − λz, y − λt, λ,0) with respect to x and y:

(54)

�ω = �S(x − λz, y − λt, λ,0) ⇔ �x =
(

λz

λt

)
+ �Ω( �ω,λ).

In the heavenly reduction, the transformation �ω → �Ω( �ω,λ) is
clearly canonical: {Ω1,Ω2}�ω = 1, and the scattering vector �Δ
exhibits the following constraint:

(55)Δ1ω1 + Δ2ω2 + {Δ1,Δ2}�ω = 0.

The above IST theory allows one to reconstruct, from the scat-
tering vector �Δ, the potentials �u1,2 of the dynamical systems
(49) and (50).

5. Other inverse problems

Due to the ring property of the space of eigenfunctions, there
are other distinguished ways to do the inverse problem.

5.1. A nonlinear RH problem

We begin with a more traditional (nonlinear) Riemann–
Hilbert (RH) problem. Solving the algebraic system (34)− with
respect to �ϕ: �ϕ = L( �ψ−, λ) (assuming local invertibility) and
replacing this expression in the algebraic system (34)+, one
obtains the representation of the analytic eigenfunction �ψ+ in
terms of the analytic eigenfunction �ψ−:

(56)�ψ+ = �R( �ψ−, λ) = �ψ− + �R( �ψ−, λ), λ ∈ R,

which defines a vector nonlinear RH problem on the real λ axis.
The RH data �R are therefore constructed from the data �χ± by
algebraic manipulation. Vice versa, given the RH data �R, one
constructs the solutions �ψ± of the nonlinear RH problem (56)
and, via the asymptotics (28), the potential �u1.

As for the other spectral data, one can show that the t -
dependence of �R is described by �R(�ξ,λ, t) = �R(�ξ − (0, λ)t,

λ,0), and the reality constraint takes the following form, for

λ ∈ R: �R( �R(�̄ζ ,λ), λ) = �ζ ,∀�ζ . At last, the heavenly constraint
reads {R1,R2}�ζ = 1, or, in terms of �R(�ζ ,λ):

(57)R1ζ1 + R2ζ2 + {R1,R2}�ζ = 0.

5.2. Linearization of the inverse problem

It is possible to construct a linear version of the inverse
problem of Section 3.3 by exponentiating the Jost and analytic
eigenfunctions used so far. Consider the following scalar func-
tions:

(58a)Φ(�x, z,λ, �α) ≡ ei �α· �ϕ(�x,z,λ),

(58b)Ψ±(�x, z,λ, �α) ≡ ei �α· �ψ±(�x,z,λ), �α ∈ R
2.

Due to the ring property of the space of eigenfunctions, also Φ

and Ψ± are eigenfunctions; Φ is characterized by the asymptot-
ics Φ → exp(i �α · �ξ), z → −∞, while Ψ±(�x, z,λ�α) are analytic
respectively in the upper and lower halves of the λ plane, with
asymptotics:

(59)Ψ± = ei �α·�ξ
(

1 + i �α · �Q±(�x, z)

λ
+ O

(
λ−2)).

From Eqs. (58) and (34) it follows that

Ψ±(�x, z,λ, �α)

(60)= Φ(�x, z,λ, �α) + ei �α· �ϕ(�x,z,λ)
(
ei �α· �χ±( �ϕ(�x,z,λ),λ) − 1

)
.
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The last term of this equality is clearly equal to its anti-Fourier
transform:

(61)

ei �α· �ϕ(
ei �α· �χ±( �ϕ,λ) − 1

) =
∫
R2

d �β K±(�α, �β,λ)ei �β· �ϕ, �ξ ∈ R
2,

where

(62)K±(�α, �β,λ) ≡
∫
R2

d�ξ
(2π)2

ei(�α− �β)·�ξ [ei �α· �χ±(�ξ,λ) − 1
]
.

Then, using (58a), the last term in the RHS of (60) becomes a
linear expression in terms of Φ , and Eq. (60) give the linear
representations the analytic eigenfunctions Ψ± in terms of the
Jost eigenfunction Φ:

Ψ±(�x, z,λ, �α)

(63)= Φ(�x, z,λ, �α) +
∫
R2

d �β K±(�α, �β,λ)Φ(�x, z,λ, �β).

Multiplying Eqs. (63)+ and (63)− by exp(−i �α · �ξ), subtract-
ing 1, applying respectively P̂− and P̂+, and adding the result-
ing equations, one obtains the following linear integral equa-
tion for Φ:

Φ(λ, �α)

+ 1

2πi

∫
R

dλ′

λ′ − (λ + iε)

×
∫
R2

d �β K−(�α, �β,λ′)Φ(λ′, �β)eiα1(λ
′−λ)z

− 1

2πi

∫
R

dλ′

λ′ − (λ − iε)

(64)×
∫
R2

d �β K+(�α, �β,λ′)Φ(λ′, �β)eiα1(λ
′−λ)z = ei �α·�ξ ,

in which we have omitted, for simplicity, the parametric depen-
dence on (�x, z) of Φ . Once Φ is reconstructed from (64) and,
via (63), Ψ± are also known, the potentials are reconstructed in
the usual way from the asymptotics (59) of Ψ±.

We finally observe that the reality constraints for the eigen-
functions Φ,Ψ± and for the data K± read, for λ ∈ R,

Φ(�x, z,λ, �α) = Φ(�x, z,λ,−�α),

Ψ+(�x, z,λ, �α) = Ψ−(�x, z,λ,−�α),

(65)K+(�α, �β,λ) = K−(−�α,− �β,λ),

while the t -evolution of K± is given by

(66)K±(�α, �β,λ, t) = K±(�α, �β,λ,0)eiλ(α2−β2)t .

6. Dressing

Dressing schemes corresponding to the three inverse prob-
lems presented in this Letter can always be formulated (see,
e.g., [17] for a general treatment). Here we restrict our attention
to that corresponding to the RH inverse problem of Section 5.1,
but for the eigenfunctions �π± defined in (44). The proof, quite
standard in the dressing philosophy, is left to the reader.

Consider the following nonlinear RH problem on the real
λ-axis:

(67)�π+ = �π− + �̌
R(�π−, λ) ≡ �̌R(�π−, λ), λ ∈ R,

for the functions �π+(�x, z, t, λ) and �π−(�x, z, t, λ), analytic re-
spectively in the upper and lower halves of the complex plane
λ, with asymptotics:

�π±(�x, z,λ) =
(

x − λz

y − λt

)
+ �Q±(�x, z, t)

λ
+ O

(
λ−2).

(68)|λ| � 1,

where the vector �̌
R(�π−, λ) depends on (�x, z, t) only through

�π−. Assume also the unique solvability of the RH problem (67)
and of its linearized version

�ν+ = �ν− + ρ(�π−, λ)�ν−, λ ∈ R,

(69)(ρ)ij (�ζ ,λ) ≡ ∂Ři(�ζ ,λ)

∂ζj

.

Then �π± are solutions of L̂1 �π± = L̂2 �π± = �0, where L̂1, L̂2 are
defined in (14) with:

(70)�u1(�x, z, t) = − �Q±x, �u2(�x, z, t) = − �Q±y.

It follows that the potentials �u1,2 are solutions of the nonlinear
system of PDEs (13). If, in addition, the spectral data satisfy the
Hamiltonian constraint

(71)Ř1ζ1 + Ř2ζ2 + {Ř1, Ř2}�ζ = 0,

then the potentials �u1,2 satisfy the heavenly equation (1). At
last, the reality constraints

(72)�̌R( �̌R(�̄ζ ,λ), λ
) = �ζ , ∀�ζ , λ ∈ R

imply that �π+ = �π−, and the reality of the potentials:
�u1, �u2 ∈ R

2.
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