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Chaos in a double driven dissipative nonlinear oscillator
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We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a time-
dependent model for investigating quantum dissipative chaos. Our analysis is done in the framework of the
statistical ensemble of quantum trajectories in a quantum state diffusion approach. The quantum dynamical
manifestations of chaotic behavior, including the emergence of chaos, properties of strange attractors, and
guantum entanglement, are studied by numerical simulation of the ensemble averaged Wigner function and von
Neumann entropy.
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[. INTRODUCTION still many questions to be answered, and there is an obvious
need for more systems showing chaos, and further experi-
Quantum nonlinear systems with chaotic classical counments.
terparts have received much attention in the last two decades. In this paper we propose a type of physical system show-
This field of investigation is sometimes called “quantum ing dissipative chaotic dynamics. These systems are modeled
chaos”[1]. The usual procedure for studying quantum chaody a dissipative nonlinear oscillator driven by two periodic
is to take a system that exhibits chaotic motion when treateébrces of different frequencies. This model was proposed for
classically, and see what effects occur in a quantum treastudying quantum stochastic resonance in the authors’ previ-
ment. All real quantum systems are open and their classicalus papef10], where it was shown, in particular, that the
limit is related to the loss of coherence produced by interacmodel is available for experiments. It can be implemented at
tion with the environment. Thus, investigations of quantumleast for the dynamics of strongly interacting photons in an
chaotic systems are connected with the correspondence probptical cavity with ax® nonlinear mediun{11], and for
lem in general, and with decoherence and dissipation in payclotron oscillations of a single electron in a Penning trap
ticular. [12,13. We would especially like to study the transition to
It is now well established that the quantum dynamics ofquantum chaos and its control, the role of dissipation and
classically chaotic systems will show major departures fronguantum entanglement in chaotic dynamics, and related
the classical motion on a suitable time scale. Among thesquestions of characterizing quantum chaos. These investiga-
phenomena we note the dynamical localization of classicaifions are complemented by consideration of the information
diffusive excitation, due to quantum mechanical interferenceaspect of chaotic dynamics through the von Neumann en-
which is in close analogy with Anderson localization in atropy.
random potential. Dynamical localization has been well stud- In classical mechanics a standard characterization of
ied theoretically[2] and verified in experiment§3] with  chaos might be given in terms of the unpredictability of
laser-cooled atoms moving in a standing wave with periodiphase-space trajectories. However, the most important char-
cally modulated nodal positions. Much research on the subacteristic of classical chaotic systems—exponential diver-
ject of classical and quantum chaos is devoted to the kickedence of trajectories, starting at arbitrarily close initial points
rotor, which exhibits regions of regular and chaotic motionin phase space—does not have a quantum counterpart. The
in the Poincaresection(see, for examplg4]). This model is question has been posed of what constitutes the quantum
very popular in investigations of the transition to quantummechanical equivalent of chaos. Many criteria have been
chaos. Its experimental realization, and observation of theuggested to define chaos in quantum systems, varying in
model’s dissipation and decoherence effects, are carried otheir emphasis and domain of applicatidd]. As yet, there
on a gas of ultracold atoms in a magneto-optical trap subis no universally accepted definition of quantum chaos. Our
jected to a pulsed standing wayg,6]. In Ref.[7] it was  analysis of quantum chaos is based mainly on the time evo-
proposed to realize the parametrically kicked nonlinear oslution of von Neumann entropy and the Wigner function.
cillator model in a cavity involving Kerr nonlinearity. It was The system under research is dissipative and therefore it
also shown that a more promising realization of this systemhas a mesoscopic nature. Quite generally, chaos in classical
also including the guantum regime, is achieved in the dyconservative and dissipative systems has completely differ-
namics of cooled and trapped ions, interacting with a perient properties, e.g., strange attractors can appear only in dis-
odic sequence of both standing wave pulses and Gaussiaipative systems. Therefore, the system of our interest might
laser pulse$8]. Another suggestion for investigating quan- allow us to examine challenging problems of quantum dissi-
tum chaos in a single trapped ion was recently provided irpative chaos, including the problem of the quantum counter-
[9]. In fact, while numerous theoretical works on the subjectpart of a strange attractor. We note that, while the quantum
of quantum chaos have been carried out, their experimentalynamics of isolated or so called Hamiltonian systems with
realization remains somewhat scarce. Moreover, there amhaotic classical counterparts has been well studied, very
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little work has been done in looking at quantum chaos of Ho=AAa'a, 3
dissipative nonlinear systems. Among earlier studies of open

quantum chaotic systems the papgt§] should be noted.  H, ,=#{[Q,+ Q.exg —idt)]a’+[QF + Q% expidt)]a}
Further impetus to increasing the dissipative quantum chaos

area has recently been given by a study of decoherence and +hix(ata)?
the quantum-classical correspondence problem of chaotic ) ) )
systemd16,17. Here A= wy— w; is the detuning, and=w,— w; is the

Below we use the traditional ensemble description ofdifference between driving frequencies, which works as a
Markovian open systems, based on the master equation. THigodulation frequency; are the Lindblad operators
equation is presented in quantum trajectories in the frame- _ _ t
work of the quantum state diffusiofQSD) approach18]. Li=V(N+1)ya,L,=VNya' S

Recently, it was shown how quantum state diffusion can be

A . L here vy is the spontaneous decay rate of the dissipation
used to model dissipative chaotic systems on individua
: ) ) process, andl denotes the mean number of quanta of a heat
quantum trajectorie§19,20. In contrast with these papers,

= . . bath. Note that only the case of a vacuum reserWit,0, is
here we show how it is possible to describe quantum chaos_ .
considered below.

using a statistical ensemble of trajectories, which is actually For 0,=0 this equation describes the single driven, dis-

realized in nature. Our results indicate that, although proper-. ative anharmonic oscillator. which is a well-known. and
ties of quantum chaotic dynamics do not appear in ensemblgP K

averaged oscillatory excitation numbers, these properties acg?:i::yaﬁa; m?g:(l;rllna?]%nlilr?esatéggysgit%tléZﬁislns trs],ferieg(-hibits
clearly seen in the entropy and Wigner function. PP y y

The outline of this paper is as follows. In the next sectionb'Stab'“ty’ which appears as the hysteresis behavior of the

we describe the system proposed, and give the analysis of i[%f‘?n ;)hscthﬁ\r/?/nn?lmkEgrl,]veHrs\l,va 5'trhetLthi d?turmri@it:?h
classical motion on the Poincasection in phase space. In strength o 9l - MOWever, he Nysteresis €

Sec. lll we develop the quantum description of the problemquantum mechanica! treatment disappears in the ensemble
veraged mean oscillatory numbe¢t)=(a'(t)a(t)), and

numericall Iving the m r ion through th ) > ! . . .
by numerically solving the master equation through the QS istability manifests itself in individual quantum trajectories,

method. We present the results for the mean excitation nu 7 o )
P s noise-induced transitions between two possible metastable

ber of a nonlinear oscillator averaged over quantum trajecto-t ted 23 Il as in the statisti f lat b
ries, and for both the Wigner function and the von Neumanrf ateq 23], as well as in the statistics of oscillatory numbers

. . 24].
entropy. We summarize our results in Sec. IV. . .
Py In the case of a double driven oscillator, when two exter-

_ nal forces are present, the corresponding Hamiltori@n
Il. MODEL OF THE DOUBLE DRIVEN OSCILLATOR: includes explicit time dependence, even in the rotating-wave
CLASSICAL PHASE MAP approximation. It may therefore be expected that the system

In this section we give the theoretical description of thePresented above will exhibit regions of regular and chaotic
system. The nonlinear oscillator driven by two periodic motion depending on the parametgrd\,();,05, andy. To
forces at frequencies; and w, and interacting with a res- illustrate the operational regimes of the oscillator, first we

ervoir is described by the following Hamiltonian: pay attention to the classical description. After making the
usual approximations, the classical limit of Eg) becomes

H=hwea'a+hy(a'a)?+a{[Qexp —iw;t) .
1
+Qexp( —iwot)]at+h.c}+Hioss, (1) &a(t)Z—Eya—i[A+x(1+2|a|2)]a

wherea anda' are boson annihilation and creation opera- —i[Q+ Q.exp(—idt)], (5)
tors, wq is an oscillatory frequency, ang is the strength of
the anharmonicity. The couplings with two driving forces arewhere « is the dimensionless complex amplitude corre-
given by Rabi frequencie®,; andQ),. H,ss=al''+a'l' is  sponding to the operata. We analyze the time-dependent
responsible for the linear losses of oscillatory states, due tgolution of this equation in the phase space of dimensionless
couplings with heat reservoir operators giving rise to theposition and momentunX=Rea, Y=Ima. There are a
damping ratey. The reduced density operatprwithin the  number of ways to make this analysis. We adopt a discrete
framework of the rotating-wave approximation, in the inter-surface or Poincarsection of this system. Let,, Y, be an
action picture corresponding to the transformatign  arbitrary initial phase-space point of the system at the time
He—iwlaTatpeiwlaTat, is governed by the master equation to. Then we define a constant phase map in Kgr plane
by the sequence of pointX{,Y,) = (X(t,),Y(t,)), changing
p the time intervals byt,=ty+(27/8)n,n=0,1,2 . ... This
ot %[HOJF Hint,p] means that for any=t, the system is at one of the points of
the Poincaresection. Our analysis shows that, for extended

1 1 i i i i
A T TR T time scales exceeding the damping rate, the asymptotic dy-
+i221,2 LipLi 2L' Lip 2pL' Li, @ namics of the system is regular in the limits of small and
large values of modulation frequency, i.6<y and 6> vy,
where and also when one of the perturbation forces is much greater

046219-2



CHAOS IN A DOUBLE DRIVEN DISSIPATIVE . .. PHYSICAL REVIEW E 64 046219

crease of(); or Q,, and with decrease of the decay rate
Below we give the general consideration of this effect, con-
sidering Eq.(5) in the following integral form:

t
a(t) — eif(t)— 'yt/2|: —j (Ql+ Qze—ié‘tl)eif(tl)eytllzdtl
to

+ a(to) e‘ytol2

: (6)

Here ag= a(ty) is the initial value at=ty, andf(t) is in-
troduced as follows:

t
(0= [ {a+ M1+ 2l ettt @
0

It is easy to estimate the modulus of the complex ampli-
tude|a(t)|, taking into account that(t) is a real function.
For its maximum value in the time intervaky,y
=max|a(t)| we obtain

(4] +[Q,])
—

-
Amax=

®

This formula determines the border of a classical map de-
pending on the Rabi frequencies and decay rate, and explains
the above conclusion about the size of the strange attractor in
phase space. It is interesting that this border size for the
anharmonic oscillator is independent of the parameter of
nonlinearity y and the detuninga and 6. This should be
noted as a peculiarity of the system proposed regarding
strange attractors. As can be seen from the numerical results,
the attractors depicted in Fig(a) and Fig. 1c) for different
parameters have the same form in phase space and differ
from each other only in scale. It is obvious that this property
is the consequence of a scaling symmetry of the classical
equation(5). Indeed, it is easy to verify that E€G) remains
-15 410 -5 0 5 10 invariable for the scaling transformation of the complex am-
Rea plitude a— a’=\a, where\ is a real positive dimension-
] less coefficient, if the parametesg A, 4, and Q, are
FIG. 1. Poincaresection(approximately 20000 pOinlitor the Corresponding|y transformed %S_)X,:X/)\Zl A—=A'=A
dimensionless classical complex amplitude of a double driven an- y(1— l/)\z), andQ, ,—Q} ,=\Q;,. We have illustrated
harmonic oscillator, plotted at times of constant phgsi=27n.  ;.h symmetry in Figs.(&) and Xc) where the attractors are
The dimensionless parameters are in the feg"?” of chaps/y presented for two sets of parameters coupled by the scaling
=0.7, Aly=-15, Q;/y=Q,/y=10.2, 8/ y=5; (b) x/y=0.5, . :
Aly=—25, Qyly=0yly=25, 6ly=15; () xly=0.1, Aly transformations. We note that in the quantum treatment the
— 15 O fy= o[ y=27 Slv=5. diffusion term in the master equatid®) affects the scaling
y 2811y 21y y Oy S .
symmetry roughly. In Sec. Ill, we will discuss this and other

properties of strange attractors together with the Wigner
than the otherf);<Q, or Q,<(;. The dynamics of the function, in more detail.

system is chaotic in the range of parametéesy and (),
={(),. Figure 1 shows the results of numerical calculations of
the classical maps, for parameters chosen in the range of
chaos. These figures clearly indicate the classical strange at-
tractors with fractal structure that are typical for a chaotic In this section we examine the problem of quantum dissi-
Poincaresection(we chose,=0 for all cases It is expected pative chaos on the basis of the von Neumann entropy and
from these results that the domain of phase space which irthe Wigner function. The peculiarities and advantages of
cludes an attractor strongly depends on the parametesich a consideration for interpreting quantum chaos in an
Q,,Q,, and y. In particular, the domain increases with in- ensemble theory are as follows.

N
3

IIl. QUANTUM SIGNATURES OF CHAOS: ENTROPY
AND WIGNER FUNCTION
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The von Neumann entropy, which is defined through thechaotic dynamics in our QSD numerical study. There are two

reduced density operator as ways to realize the controlling transition from regular to cha-
otic dynamics by changing one of the parameters of the sys-
S=—=Tr(pInp), (9 tem. One of these ways is to vary the stren@th of the

second force in the range frof,<, to Q,>Q4. In the

is ameasure of dissipation and decoherence. The entropy it 0,<0Q, the system is reduced effectively to the model
an isolated quantum system does not change under time evgr 5 gingle driven anharmonic oscillator, which exhibits bi-

lution. If_ the time eyolution qf the system is perturbed stability for a definite range of parameters\,Q;, andy. In
through interaction with the environment, the averaging ovetyis jimit our analysis of the time-dependent stochastic tra-
the perturbation typically leads to an entropy increase. Thza

<o i - ional ctories for expectation numbers(t)=(V|a'a|¥,)
von Neumann entropy also is a sensitive operational measutg,, s that the system in the bistability range spends most of

of entanglezmenft, ﬁs well as a measure of the prJ]urity of quari time close to one of the semiclassical solutions of (&Y.
tum stateg25]. If the system is in a pure state, the entropy S\ith guantum interstate transitions occurring at random in-

Yervals. On increasing the amplitudk, the stimulated pro-

: cesses, i.e., dynamical interstate transitions, become suffi-

chaos in terms of guantum ent.anglement. . cient for the other parameters chosen to lead to bistability in
For an extended time-evolution period the classically Cha’[erms of the semiclassical solution. Their contribution at

otic system at momen_tsn=t0+(27r/5)n, n=013..., 0,=(, leads to the emergence of a chaotic regime in the
fills the Poincaresection in phase space. There are a numbe

L : .~ -guantum trajectories. In the limi,>(); the regular dy-
of methods to treat the Poincasection quantum mechani- & ] 2 ! 9 y

v, W te Ref[26]. wh thod of tizati ¢ namics is restored. This limit is equivalent to the case of
cally. Ve note Re [26], where a method of quan 1zation o 0,>Q,, because we can choose an interaction picture such
classical dissipative maps was proposed. The Poireece

. . . that the time-dependent exponent in E8). will appear near
tion of one quantum trajectory was considered[19®,20. P b &gy bp

i H —iw,alat_iwralat
For our dynamical model we adopt the method of the Wigne21: I fact, using the transformatiop—e~*2 % pe'®2%
function and study the correspondence between the Wigné]I the red_uced densny opgrator, we arrive at the master equa-
function, which is taken at one of the momentst,=t, o (2) with the Hamiltonian
+(2/8)n, and the Poincarsection. The correspondence )
was obtained through a computer simulation of the Wigner Ho=h(A— da'a,
function.

We analyze the problem of dissipation on the basis of the ,» . T % . .
QSD method, which operates with stochastic stiegt)), Hin=A{[ Q2+ Qsexpion) Jal+ (0 +Qyexp(—idt)Ja}
describing the evolution along a quantum trajectory. The +#x(ata)?. (13
equation of motion is

(9) for a doubly driven oscillator will allow us to examine

i 1 This is obtained from Eq(3) by the replacements, ;)
|dW )= — = (Hot Hint)|‘1’g>dt—§ > (LiL—2(LhL —wy1), Q12— Q1) A—A—5. Nevertheless, these
! marginal cases differ in detail, as explained below.
In another scenario of transition to chaos the modulation
H(LNLI[W Hdt+ X (Li—(L)| P )dE . frequencys is varied, with the other parameters unchanged.
! In the range of small frequenciés< y the modulation of the
(10) system is adiabatic. So, in the range of bistability the system
oscillates between the two possible metastable states. With
Here ¢ indicates the dependence on the stochastic processicreasing frequency, af=vy, a strong entanglement of
the complex Wiener variablegd¢; satisfy the fundamental these states occurs, and the system comes to chaos. It should
correlation properties be noted that, as we will show below, the transition from
regular to chaotic dynamics in the classical system is marked
M(d¢)=0M(d&d¢)=0M(d&dér)=6,;dt, (11)  in the quantum system by an increase of the von Neumann
entropy, as well as by a strong transformation of the Wigner

and the expectation value {&)=(W|Li|¥). According functions. For the casé>y, the dynamics of the system
to this method the reduced density operator is calculated asecomes regular again.

the ensemble mean We give the results of QSD analysis in the regimes of
Lo strong anharmonicity, considering the parameters figm

_ — i =0.7 tox/y=0.1. The former case is strongly quantum me-

PO=M(W(¥ ) nilinxm Eg WV LOXY (0] chanical, since the maximum mean number of oscillatory

(12 excitations is about 10, while the cagéy=0.1 corresponds
to a quasiclassical regime, when the maximum oscillatory
over the stochastic pure stafe;(t)) describing the evolu- number in time is about 130. The truncated basis of Fock
tion along a quantum trajectory. number states of the harmonic oscillator is used for the ex-
Let us first qualitatively describe the most important pansion of state vectof® (t)), and an initial vacuum state
physical processes, which are responsible for the origin ois chosen.
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A. Time evolution of the mean oscillatory numbers ber. Now we will show how quantum chaos emerges in both

The mean excitation number of the double driven anharth® Wigner function and the von Neumann entropy.

monic oscillator versus time interval is of particular interest o _ _
in this paper. Figures(@) and 2b) depict the ensemble av- B. Chaos in Wigner functions and quantum interference effect

eraged mean oscillatory numbers:(a'a) for both cases of We apply the QSD to determine Wigner functions for the
regular and chaotic dynamics which are realized in the clasquantum states of a double driven anharmonic oscillator dur-

sical limit. The parameters for Fig(t® are chosen the same iNg time evolution. For this we use the well-known expres-
as for Fig. 1c). The classical oscillatory number=|al|? sion for the Wigner function in terms of the matrix elements

derived from Eq.(5) for the same parameters as the above’)”m:w.’)|m> of the density operator in the Fock state rep-
: . A - . .. resentation

chaotic regime is illustrated in Fig(®. From these figures it

is evident that while the classical resfiig. 2(c)] shows the

usual chaotic behavior, its quantum ensemble counterpart W(r,0)= 2 ppaWine(r,6), (14

[Fig. 2(b)] has clear regular behavior. Thus, the chaotic be- mn

havior in the classical model transforms into periodic dy-where {,#6) are the polar coordinates in the complex phase-

namics in the quantum treatment that involves ensemble awgpace planeX=r cosf, Y=rsing, and the coefficients

eraging. These results indicate that quantum dissipativeV,,(r,) are the Fourier transform of the matrix elements

chaotic dynamics is not evident in the mean oscillatory num-of the Wigner characterization functig@7]

[n!
(_ 1)n Wel(mfn)ﬁ(Zr)mfneferanfn(A]_rZ), m=n

Wmn(rie): (15)

SHENEEEREN

[m!
(_1)m Fel(m—n)a(Zr)n—me—Zranm—m(4r2)' n=m,

where L‘g are Laguerre polynomials. In our calculation we presented in Fig. @). It contains only one hump, rota_ting
assume that the oscillator is initially prepared in a vacuunround the center of the phase space within the period. As
state, and regimes of strong anharmonigityy=(0.7-0.1)  mentioned above, the limi2,>(; is physically equivalent
are realized. to the opposite cas@ ,>(),, when the system at each mo-
In F|g 3 we demonstra‘[e the moving Of our System fromment Of t|me iS C|OS€' to the mOdel Of a Single driVen nonlin-
regular to chaotic dynamics by plotting the Wigner functionar oscillator. The difference is that the Rabi frequefigy
for three values of),: Q,/y=1 (@), Q,/y=Q,/y=10.2 N this casd Fig. 3(c)] is taken outside the bistability range,
(b), andQ,/y=20 (c), at a fixed moment of time. The val- vyhere the system is in the upper level. So the.Wigner fupc-
ues ofA/y,y/y, andQ, /y are chosen to lead to bistability tion has approximately the same form as the Wigner function
in the model of’ a singlle driven oscillatof2=0) for a single driven anharmonic oscillator, in the monostable

We can see that for the case of a weak second fdfige ::(iat%?e of operation above threshold, when the system is ex-
3(a)] the Wigner function has two humps, corresponding to As we see, the Wigner function reflecting chaotic dynam-

the lower and upper levels of the excitation of the anhariesrig. 3b)] has a complicated structure. Nevertheless, it is
monic oscillator in the bistability region. The hump centered

> ; easy to observe that its contour plots in theY) plane are
close to X=Y=0 describes the approximately coherentgenerally similar to the corresponding classical Poinsae
lower state, while the other hump shows that the upper staton. Now we will consider this problem in more detail, com-
is squeezed. The effect of squeezing is displayed as squeezaring the results summarized in Fig. 1 with the numerical
ing of the Gaussian. This result represents the known propzalculations of the Wigner functions for the same sets of
erty of the Wigner function for the single driven anharmonic parameters as for the classical maps.

oscillator[28]. The graphs in Fig. 3 are given at an arbitrary ~ We present our results in Fig. 4. It can be seen in Fig). 4
time, exceeding the damping time. As the calculations showthat for the deep quantum regime y/(y=0.7A/y

for the next time intervals during the period of modulation = — 15,6/ y=5) the contour plot of the Wigner function is
t=2m/4, the hump corresponding to the upper level rotatessmooth and concentrated approximately around the attractor
around the central peak. When we increase the strength ¢Fig. 1(@)]. Nevertheless, the different branches of the attrac-
the second force, the classical system reaches chaotic dier are hardly resolved in Fig(d). It can also be seen that in
namics. The Wigner function for the chaotic dynamics isthis deep quantum regime an enlargement of the Wigner
depicted in Fig. &). On further increasing),, the system function occurs, in contrast to the Poincasection.

returns to regular dynamics. The corresponding Wigner Taking a smallery/y, the contour plot of the Wigner
function at an arbitrary time exceeding the transient time ifunction approaches the classical Poincseetion. This can
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FIG. 2. (a),(b) Ensemble averaggdver 1000 trajectorigsnean

oscillatory numberga'a) versus dimensionless scaled time for FIG. 3. Transition from regular to chaotic dynamics in the
both regular(a) and chaotic(b) dynamics for parameter® x/y  Wigner functions for three values @,/y: Q,/y=1 (a); Q,/y
=0.1, A/y=—15, Q. /y=Q,/y=27, 5ly=50; (b) x/y=0.1, =10.2 (b); Q,/y=20 (c). The parameters arg/y=0.7, Aly
Aly=—-15,Q4/y=Q,/y=27, 6/y=5. (c) The classical oscilla- =-150,/y=0Q,/y=10.2, 5/y=5. The averaging is over 2000

tory mean numbefa|?

the same as fofb).

for chaotic dynamics. The parameters are trajectories.

state of the system considered. It follows that the ranges of
be seen in Figs. #) and 4c). For the last case the corre- negative values of the Wigner function increase with increas-
spondence is maximal, and some details of the attrEtgr  ing parametey/y, when the system moves to the deep quan-
1(c)] are resolved much better in Fig(ch This analysis tum regime. Nevertheless, ranges of negative values of the
allows us also to note that the scaling symmetry of strang&Vigner function are also observed for a comparatively small
attractors shown in Figs.(d and Xc) disappears for the parametel/vy, where an operation regime close to the semi-
corresponding contour plots of Wigner functioii§gs. 4a)  classical is realized. This is illustrated in Fig. 5 for the pa-
and 4c)] in the quantum treatment of dissipative chaos.  rametery/ y=0.1, where the mean excitation number equals

It should be specified that for all contour plots in Fig. 4 130.

the corresponding Wigner functions have regions of negative Since our model is dynamical, we can also consider the
values. These results are related to chaotic regimes. Obviorrespondence between the Wigner function and the Poin-
ously, this fact reflects quantum interference in the chaoticaresection taken at,=t,+27n/ ¢ for arbitraryt,. Despite
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il

il

FIG. 5. lllustration of quantum interference effect on the Wigner
function for the parameterg/y=0.1, A/y=—15, Q. /y=Q,/y
=27, 6/ y=5. The averaging is over 1000 trajectories.

These analyses complete the above studies of quantum dis-
sipative chaos in the Wigner function.

Two ways of producing chaos in a controlled manner will
be considered, by monitoring the system through varying
either the strength of the driving force or the difference fre-
quencysé. We calculate the evolution of the entropy by for-
mula (9), using the results for the reduced density matrix
expressed through an ensemble of trajectories. The calcula-
. tions are performed by diagonalization of the majjy, in
10 the truncated Fock state basis.

First (Fig. 6), we demonstrate the transition of the system
from regular dynamics to chaos by plotting the von Neu-
mann entropy for three values of the strength of the driving
(©) field: Q,/y=1 (8, Q,/y=Q,/y=10.2 (b), and Q,/y
=20(c). The same parameters are chosen as in Fig. 3 for the
Wigner function. In Fig. 62) and Fig. &c) we plot the en-
tropy evolution for regions with classically regular behavior,
while Fig. 6b) shows entropy production for chaotic motion.
The essential difference between the behavior of the entropy
for regular and chaotic dynamics is clearly displayed in these
figures. The common feature is that, for times exceeding the
time scale of transient dynamics, the entropy production in

-20 : _ ) )
. . — the chaotic regime dominates over the entropy production of

-20 -10 0 10 20 regular dynamics. These results are in good qualitative

X agreement with the above results on the Wigner function,

and reflect the dependence of entropy production on both the
guantum entanglement and the formation of states in the sys-
tem. Naturally, entropy production is stipulated by the entan-
gling interaction between the anharmonic oscillator and its
environment on the one hand, and is determined by the struc-
e of the mixed states of the nonlinear oscillator, on the
er hand. As a result, the maximal value of the entropy

Ig. 6(b)] is realized for chaotic dynamics with a large num-
ber of mixed states as depicted in Figb3 while its mini-
mum occurs for regular dynamics with a one-hump Wigner
function[Fig. 3(c)]. Also, we note that the oscillations of the

As shown in Sec. Il A, quantum chaotic dynamics is notentropy evident in Fig. 5 have the frequengyThe simula-
displayed clearly in the ensemble averaged oscillatory excitions also show a definite difference between the transient
tation number. The purpose of this subsection is merely tdimes of regular and chaotic dynamics. There is some ambi-
demonstrate how chaos is seen in the von Neumann entropguity in the definition of the transient time because of the
which is one of the significant characteristics of a quantunoscillatory nature of the curves. Nevertheless, it is clearly
ensemble. We also clarify other important questions in relaevident that the transient time of entropy evolution for the
tion to quantum chaos and entanglement in the systemegular case exceeds that for chaotic dynamics.

FIG. 4. Contour plots of Wigner functions corresponding to
chaos. The parameters for the case&pf(b), and(c) are the same
as in Figs. 1a), 1(b), and 1c), respectively. The averaging is over
2000 trajectories.

the different forms that the Wigner function and the Poincard4r
section have acquired, the correspondence features are t
same.

C. The emergence of chaos in the von Neumann entropy
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1 IV. CONCLUSION

We have presented a type of time-dependent system

0 . . . showing chaotic dynamics and intrinsically quantum proper-
0 2 4 4 8 8 10 ties. These systems are modeled by a dissipative anharmonic

oscillator driven by two forces of different frequencies. We

FIG. 6. Transtition to chaos in the von Neumann entrof@: emphasize that this model is different from those using a

and (c) regular dynamics(b) chaotic dynamics. The averaging is single driven nonlinear oscillator, where a pulsed pump field
over 2000 trajectories. could be used, and might be proposed as a possible experi-
mental test of quantum chaos in the area of quantum optics
In addition to providing criteria to characterize chaos, weWith @ continuous cw laser. The proposed model seems ex-

have also studied the behavior of the entropy versus the cofferimentally feasible with state-of-the-art equipment and can
be realized at least in two experimental schemes. So the non-

trolling parameterg), and 6. The results of numerical cal- ) X S : .
culations at a definite time moment exceeding the transier{ near hehavior .Of a_smgle mode_ field In a medlu_m W'th a
time are presented in Fig(aj, where minimum values of the ird order .nonllneanty may provide a S|mple realization of

. the dynamics of a driven anharmonic oscillator. In fact, a
entropy for different}, are presented. Let us compare thesesingle mode field is well described in terms of an anhar-
results with the emergence of chaos in the classical limit. It i%onic oscillator, and the nonlinear medium could be an op-
easy to check that for the classical case and for the param—.| fiber or aX’(s) crystal, placed in a cavity. In the latter
eters shown in Fig. 6 chaos appears at the critical point 0f55e the anharmonicity of mode dynamics comes from the
0,=0.,=8.195, and disappears@p=12.745. Itisa well-  sg|f_phase modulation due to the photon-photon interaction
known property of classical chaos that it appears suddenlyy the y(3) medium, and dissipative effects arise from the
As is seen in Fig. (&), quantum chaos appears smoothly: thejeakage of photons through the cavity mirrors. Such a system
entropy increases as the value(@§ approaches the critical under two driving fields is described by the Hamiltonidn
value(Q),. Another way to probe chaos is to vary the detun-with a,a’ being the operators of a single cavity mode. Cy-
ing &. In Fig. 7(b) the behavior of the entropy versus the clotron oscillations of a single electron in a Penning trap
modulation frequency is displayed. with a magnetic field are another realization of the quantum

046219-8
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anharmonic oscillator. Its anharmonicity comes from theratio x/y the contour plots of Wigner functions are relatively
nonlinear relativistic correction to the electron motion, while close to the strange attractors. Indeed, as we have shown in
dissipative effects arise from the spontaneous emission dfig. 1(c) and Fig. 4c), some details of the attractor are re-
synchrotron radiatiof12]. The trapped electron driven by a solved on the contour plots. This similarity of quantum and
single coherent field has been experimentally realized andlassical distributions vanishes in the deep quantum regime
studied in Refs[13]. The model we present here correspondgsee Fig. 1a) and Fig. 4b) for y/y=0.7]. An important
to the one-electron cyclotron oscillator in two coherent fieldspoint to emphasize is that the scaling symmetry of strange
at different frequencies. The corresponding Hamiltonian isattractors in the model studied here is violated in the quan-
given by Eq.(1), where the operators,a’ describe the cy- tum treatment of chaos. The drastic difference between the
clotron quantized motion at the cyclotron frequency. Thetime-dependent behavior of the von Neumann entropy for
values of the parametey/y used in our calculations have the regular and chaotic regimes is clearly displayed in Fig. 6.
been achieved experimentally for both the above mentione@he von Neumann entropy indicates the connection between
physical systems. chaos and entanglement, and has also been used to study
The dynamics of the double driven anharmonic oscillatorcharacteristic time scales of the emergence of chaos. For
exhibits a rich phase-space structure, including regimes dhort time intervalg<0.4y~ ! the entropy is a linearly in-
regular and chaotic motion, with the two Rabi frequenciescreasing function of time for both the regular and chaotic
), and(}, and the differencé between the driving frequen- regimes. For times exceeding the time scale of transient dy-
cies being the control parameters. We suppose that an adamics this behavior transforms to the periodic one; how-
equate way of investigating quantum chaos is not only theaver, the entropy for the chaotic regime dominates over the
investigation of the behavior of an individual realization of entropy for the regular dynamics. It has also been shown that
trajectories, as suggested by several authors, but also a stuthe transient time for the chaotic regime is smaller than in the
of the dynamics of the statistical ensemble of quantum traregular regime.
jectories, which is naturally realized in experiments. For re- In our analysis we have not investigated all possible quan-
alization of this program of studies the quantum state diffutum effects of chaotic dynamics. In particular, we have
sion simulation method based on a master equation afpecified that the Wigner function for the chaotic regime has
Lindblad form is used. We also conclude that the distinctionregions of negative values even for relatively high values of
between regular and chaotic dynamics can be most easily/y (x/v=0.1in Fig. 5, where the mean oscillatory number
understood by studying the dynamics of essentially quantum= 130). This fact reflects the quantum interference effect in
properties; the von Neumann entropy and the Wigner funcehaotic dissipative dynamics. However, we have not ana-
tion are only two examples. In fact, our numerical analysislyzed the correlation between the emergence of chaos and
has shown that the quantum dynamical manifestation of chaguantum interference, which is an interesting albeit compli-
otic behavior does not appear in ensemble averaged oscillgated option for the future.
tory excitation numbers, but is clearly seen in the entropy
and probability distributions. The connection bgtween quan- ACKNOWLEDGMENTS
tum and classical treatments of chaos was realized by means
of a comparison between strange attractors on the classical This work was partially supported by INTAS Grant No.
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