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Chaos in a double driven dissipative nonlinear oscillator
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We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a time-
dependent model for investigating quantum dissipative chaos. Our analysis is done in the framework of the
statistical ensemble of quantum trajectories in a quantum state diffusion approach. The quantum dynamical
manifestations of chaotic behavior, including the emergence of chaos, properties of strange attractors, and
quantum entanglement, are studied by numerical simulation of the ensemble averaged Wigner function and von
Neumann entropy.
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I. INTRODUCTION

Quantum nonlinear systems with chaotic classical co
terparts have received much attention in the last two deca
This field of investigation is sometimes called ‘‘quantu
chaos’’ @1#. The usual procedure for studying quantum cha
is to take a system that exhibits chaotic motion when trea
classically, and see what effects occur in a quantum tr
ment. All real quantum systems are open and their class
limit is related to the loss of coherence produced by inter
tion with the environment. Thus, investigations of quantu
chaotic systems are connected with the correspondence p
lem in general, and with decoherence and dissipation in
ticular.

It is now well established that the quantum dynamics
classically chaotic systems will show major departures fr
the classical motion on a suitable time scale. Among th
phenomena we note the dynamical localization of class
diffusive excitation, due to quantum mechanical interferen
which is in close analogy with Anderson localization in
random potential. Dynamical localization has been well st
ied theoretically@2# and verified in experiments@3# with
laser-cooled atoms moving in a standing wave with perio
cally modulated nodal positions. Much research on the s
ject of classical and quantum chaos is devoted to the kic
rotor, which exhibits regions of regular and chaotic moti
in the Poincare´ section~see, for example,@4#!. This model is
very popular in investigations of the transition to quantu
chaos. Its experimental realization, and observation of
model’s dissipation and decoherence effects, are carried
on a gas of ultracold atoms in a magneto-optical trap s
jected to a pulsed standing wave@5,6#. In Ref. @7# it was
proposed to realize the parametrically kicked nonlinear
cillator model in a cavity involving Kerr nonlinearity. It wa
also shown that a more promising realization of this syste
also including the quantum regime, is achieved in the
namics of cooled and trapped ions, interacting with a p
odic sequence of both standing wave pulses and Gaus
laser pulses@8#. Another suggestion for investigating qua
tum chaos in a single trapped ion was recently provided
@9#. In fact, while numerous theoretical works on the subj
of quantum chaos have been carried out, their experime
realization remains somewhat scarce. Moreover, there
1063-651X/2001/64~4!/046219~10!/$20.00 64 0462
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still many questions to be answered, and there is an obv
need for more systems showing chaos, and further exp
ments.

In this paper we propose a type of physical system sh
ing dissipative chaotic dynamics. These systems are mod
by a dissipative nonlinear oscillator driven by two period
forces of different frequencies. This model was proposed
studying quantum stochastic resonance in the authors’ pr
ous paper@10#, where it was shown, in particular, that th
model is available for experiments. It can be implemented
least for the dynamics of strongly interacting photons in
optical cavity with ax (3) nonlinear medium@11#, and for
cyclotron oscillations of a single electron in a Penning tr
@12,13#. We would especially like to study the transition
quantum chaos and its control, the role of dissipation a
quantum entanglement in chaotic dynamics, and rela
questions of characterizing quantum chaos. These inves
tions are complemented by consideration of the informat
aspect of chaotic dynamics through the von Neumann
tropy.

In classical mechanics a standard characterization
chaos might be given in terms of the unpredictability
phase-space trajectories. However, the most important c
acteristic of classical chaotic systems—exponential div
gence of trajectories, starting at arbitrarily close initial poin
in phase space—does not have a quantum counterpart.
question has been posed of what constitutes the quan
mechanical equivalent of chaos. Many criteria have be
suggested to define chaos in quantum systems, varyin
their emphasis and domain of application@14#. As yet, there
is no universally accepted definition of quantum chaos. O
analysis of quantum chaos is based mainly on the time e
lution of von Neumann entropy and the Wigner function.

The system under research is dissipative and therefo
has a mesoscopic nature. Quite generally, chaos in clas
conservative and dissipative systems has completely dif
ent properties, e.g., strange attractors can appear only in
sipative systems. Therefore, the system of our interest m
allow us to examine challenging problems of quantum dis
pative chaos, including the problem of the quantum coun
part of a strange attractor. We note that, while the quan
dynamics of isolated or so called Hamiltonian systems w
chaotic classical counterparts has been well studied, v
©2001 The American Physical Society19-1
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little work has been done in looking at quantum chaos
dissipative nonlinear systems. Among earlier studies of o
quantum chaotic systems the papers@15# should be noted.
Further impetus to increasing the dissipative quantum ch
area has recently been given by a study of decoherence
the quantum-classical correspondence problem of cha
systems@16,17#.

Below we use the traditional ensemble description
Markovian open systems, based on the master equation.
equation is presented in quantum trajectories in the fra
work of the quantum state diffusion~QSD! approach@18#.
Recently, it was shown how quantum state diffusion can
used to model dissipative chaotic systems on individ
quantum trajectories@19,20#. In contrast with these paper
here we show how it is possible to describe quantum ch
using a statistical ensemble of trajectories, which is actu
realized in nature. Our results indicate that, although prop
ties of quantum chaotic dynamics do not appear in ensem
averaged oscillatory excitation numbers, these properties
clearly seen in the entropy and Wigner function.

The outline of this paper is as follows. In the next secti
we describe the system proposed, and give the analysis o
classical motion on the Poincare´ section in phase space. I
Sec. III we develop the quantum description of the probl
by numerically solving the master equation through the Q
method. We present the results for the mean excitation n
ber of a nonlinear oscillator averaged over quantum traje
ries, and for both the Wigner function and the von Neuma
entropy. We summarize our results in Sec. IV.

II. MODEL OF THE DOUBLE DRIVEN OSCILLATOR:
CLASSICAL PHASE MAP

In this section we give the theoretical description of t
system. The nonlinear oscillator driven by two period
forces at frequenciesv1 andv2 and interacting with a res
ervoir is described by the following Hamiltonian:

H5\v0a†a1\x~a†a!21\$@V1exp~2 iv1t !

1V2exp~2 iv2t !#a†1h.c.%1Hloss, ~1!

wherea and a† are boson annihilation and creation ope
tors,v0 is an oscillatory frequency, andx is the strength of
the anharmonicity. The couplings with two driving forces a
given by Rabi frequenciesV1 andV2 . Hloss5aG†1a†G is
responsible for the linear losses of oscillatory states, du
couplings with heat reservoir operators giving rise to
damping rateg. The reduced density operatorr within the
framework of the rotating-wave approximation, in the inte
action picture corresponding to the transformationr
→e2 iv1a†atreiv1a†at, is governed by the master equation

]r

]t
52

i

\
@H01Hint,r#

1 (
i 51,2

S LirLi
†2

1

2
Li

†Lir2
1

2
rLi

†Li D , ~2!

where
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H05\Da†a, ~3!

Hint5\$@V11V2exp@2 idt !#a†1@V1* 1V2* exp~ idt !#a%

1\x~a†a!2.

Here D5v02v1 is the detuning, andd5v22 v1 is the
difference between driving frequencies, which works as
modulation frequency.Li are the Lindblad operators

L15A~N11!ga,L25ANga†, ~4!

where g is the spontaneous decay rate of the dissipat
process, andN denotes the mean number of quanta of a h
bath. Note that only the case of a vacuum reservoir,N50, is
considered below.

For V250 this equation describes the single driven, d
sipative anharmonic oscillator, which is a well-known a
archetypal model in nonlinear physics@21,22#. In the semi-
classical approach and in steady state this system exh
bistability, which appears as the hysteresis behavior of
mean oscillatory number, versus either the detuningD or the
strength of drivingV1 @21#. However, the hysteresis in th
quantum mechanical treatment disappears in the ense
averaged mean oscillatory numbern(t)5^a†(t)a(t)&, and
bistability manifests itself in individual quantum trajectorie
as noise-induced transitions between two possible metas
states@23#, as well as in the statistics of oscillatory numbe
@24#.

In the case of a double driven oscillator, when two ext
nal forces are present, the corresponding Hamiltonian~3!
includes explicit time dependence, even in the rotating-w
approximation. It may therefore be expected that the sys
presented above will exhibit regions of regular and chao
motion depending on the parametersx,D,V1 ,V2, andg. To
illustrate the operational regimes of the oscillator, first w
pay attention to the classical description. After making t
usual approximations, the classical limit of Eq.~2! becomes

d

dt
a~ t !52

1

2
ga2 i @D1x~112uau2!#a

2 i @V11V2exp~2 idt !#, ~5!

where a is the dimensionless complex amplitude corr
sponding to the operatora. We analyze the time-depende
solution of this equation in the phase space of dimension
position and momentumX5Rea, Y5Im a. There are a
number of ways to make this analysis. We adopt a disc
surface or Poincare´ section of this system. LetX0 , Y0 be an
arbitrary initial phase-space point of the system at the ti
t0. Then we define a constant phase map in the (X,Y) plane
by the sequence of points (Xn ,Yn)5„X(tn),Y(tn)…, changing
the time intervals bytn5t01(2p/d)n,n50,1,2, . . . . This
means that for anyt5tn the system is at one of the points o
the Poincare´ section. Our analysis shows that, for extend
time scales exceeding the damping rate, the asymptotic
namics of the system is regular in the limits of small a
large values of modulation frequency, i.e.,d!g and d@g,
and also when one of the perturbation forces is much gre
9-2
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CHAOS IN A DOUBLE DRIVEN DISSIPATIVE . . . PHYSICAL REVIEW E 64 046219
than the other:V1!V2 or V2!V1. The dynamics of the
system is chaotic in the range of parametersd*g and V1

.V2. Figure 1 shows the results of numerical calculations
the classical maps, for parameters chosen in the rang
chaos. These figures clearly indicate the classical strang
tractors with fractal structure that are typical for a chao
Poincare´ section~we choset050 for all cases!. It is expected
from these results that the domain of phase space which
cludes an attractor strongly depends on the parame
V1 ,V2, andg. In particular, the domain increases with i

FIG. 1. Poincare´ section~approximately 20 000 points! for the
dimensionless classical complex amplitude of a double driven
harmonic oscillator, plotted at times of constant phasetnd52pn.
The dimensionless parameters are in the region of chaos:~a! x/g
50.7, D/g5215, V1 /g5V2 /g510.2, d/g55; ~b! x/g50.5,
D/g5225, V1 /g5V2 /g525, d/g515; ~c! x/g50.1, D/g
5215, V1 /g5V2 /g527, d/g55.
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crease ofV1 or V2, and with decrease of the decay rateg.
Below we give the general consideration of this effect, co
sidering Eq.~5! in the following integral form:

a~ t !5ei f (t)2gt/2F2 i E
t0

t

~V11V2e2 idt1!ei f (t1)egt1/2dt1

1a~ t0!egt0/2G . ~6!

Here a05a(t0) is the initial value att5t0, and f (t) is in-
troduced as follows:

f ~ t !5E
t0

t

$D1x@112ua~ t1!u2#%dt1 . ~7!

It is easy to estimate the modulus of the complex am
tude ua(t)u, taking into account thatf (t) is a real function.
For its maximum value in the time intervalamax
5maxtua(t)u we obtain

amax<
~ uV1u1uV2u!

g
. ~8!

This formula determines the border of a classical map
pending on the Rabi frequencies and decay rate, and exp
the above conclusion about the size of the strange attract
phase space. It is interesting that this border size for
anharmonic oscillator is independent of the parameter
nonlinearityx and the detuningsD and d. This should be
noted as a peculiarity of the system proposed regard
strange attractors. As can be seen from the numerical res
the attractors depicted in Fig. 1~a! and Fig. 1~c! for different
parameters have the same form in phase space and d
from each other only in scale. It is obvious that this prope
is the consequence of a scaling symmetry of the class
equation~5!. Indeed, it is easy to verify that Eq.~5! remains
invariable for the scaling transformation of the complex a
plitude a→a85la, wherel is a real positive dimension
less coefficient, if the parametersx, D, V1, and V2 are
correspondingly transformed asx→x85x/l2, D→D85D
1x(121/l2), andV1,2→V1,28 5lV1,2. We have illustrated
such symmetry in Figs. 1~a! and 1~c! where the attractors ar
presented for two sets of parameters coupled by the sca
transformations. We note that in the quantum treatment
diffusion term in the master equation~2! affects the scaling
symmetry roughly. In Sec. III, we will discuss this and oth
properties of strange attractors together with the Wig
function, in more detail.

III. QUANTUM SIGNATURES OF CHAOS: ENTROPY
AND WIGNER FUNCTION

In this section we examine the problem of quantum dis
pative chaos on the basis of the von Neumann entropy
the Wigner function. The peculiarities and advantages
such a consideration for interpreting quantum chaos in
ensemble theory are as follows.

n-
9-3
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The von Neumann entropy, which is defined through
reduced density operator as

S52Tr~r ln r!, ~9!

is a measure of dissipation and decoherence. The entrop
an isolated quantum system does not change under time
lution. If the time evolution of the system is perturbe
through interaction with the environment, the averaging o
the perturbation typically leads to an entropy increase. T
von Neumann entropy also is a sensitive operational mea
of entanglement, as well as a measure of the purity of qu
tum states@25#. If the system is in a pure state, the entropy
precisely zero. Thus, it is expected that study of the entr
~9! for a doubly driven oscillator will allow us to examin
chaos in terms of quantum entanglement.

For an extended time-evolution period the classically c
otic system at momentstn5t01(2p/d)n, n50,1,2, . . . ,
fills the Poincare´ section in phase space. There are a num
of methods to treat the Poincare´ section quantum mechan
cally. We note Ref.@26#, where a method of quantization o
classical dissipative maps was proposed. The Poincare´ sec-
tion of one quantum trajectory was considered in@19,20#.
For our dynamical model we adopt the method of the Wig
function and study the correspondence between the Wig
function, which is taken at one of the momentst5tn5t0
1(2p/d)n, and the Poincare´ section. The correspondenc
was obtained through a computer simulation of the Wig
function.

We analyze the problem of dissipation on the basis of
QSD method, which operates with stochastic statesuCj(t)&,
describing the evolution along a quantum trajectory. T
equation of motion is

udCj&52
i

\
~H01Hint!uCj&dt2

1

2 (
i

~Li
†Li22^Li

†&Li

1^Li&^Li
†&!uCj&dt1(

i
~Li2^Li&!uCj&dj i .

~10!

Here j indicates the dependence on the stochastic proc
the complex Wiener variablesdj i satisfy the fundamenta
correlation properties

M ~dj i !50,M ~dj idj j !50,M ~dj idj j* !5d i j dt, ~11!

and the expectation value iŝLi&5^CjuLi uCj&. According
to this method the reduced density operator is calculate
the ensemble mean

r~ t !5M ~ uCj&^Cju!5 lim
m→`

1

m (
j

m

uCj~ t !&^Cj~ t !u

~12!

over the stochastic pure statesuCj(t)& describing the evolu-
tion along a quantum trajectory.

Let us first qualitatively describe the most importa
physical processes, which are responsible for the origin
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chaotic dynamics in our QSD numerical study. There are t
ways to realize the controlling transition from regular to ch
otic dynamics by changing one of the parameters of the s
tem. One of these ways is to vary the strengthV2 of the
second force in the range fromV2!V1 to V2@V1. In the
limit V2!V1 the system is reduced effectively to the mod
of a single driven anharmonic oscillator, which exhibits b
stability for a definite range of parametersx,D,V1, andg. In
this limit our analysis of the time-dependent stochastic t
jectories for expectation numbersnj(t)5^Cjua†auCj&
shows that the system in the bistability range spends mos
its time close to one of the semiclassical solutions of Eq.~5!,
with quantum interstate transitions occurring at random
tervals. On increasing the amplitudeV2 the stimulated pro-
cesses, i.e., dynamical interstate transitions, become s
cient for the other parameters chosen to lead to bistability
terms of the semiclassical solution. Their contribution
V2.V1 leads to the emergence of a chaotic regime in
quantum trajectories. In the limitV2@V1 the regular dy-
namics is restored. This limit is equivalent to the case
V1@V2, because we can choose an interaction picture s
that the time-dependent exponent in Eq.~3! will appear near
V1. In fact, using the transformationr→e2 iv2a†atreiv2a†at

of the reduced density operator, we arrive at the master e
tion ~2! with the Hamiltonian

H0
85\~D2d!a†a,

Hint
8 5\$@V21V1exp~ idt !#a†1~V2* 1V1* exp~2 idt !#a%

1\x~a†a!2. ~13!

This is obtained from Eq.~3! by the replacementsv1(2)
→v2(1) , V1(2)→V2(1) , D→D2d. Nevertheless, thes
marginal cases differ in detail, as explained below.

In another scenario of transition to chaos the modulat
frequencyd is varied, with the other parameters unchang
In the range of small frequenciesd!g the modulation of the
system is adiabatic. So, in the range of bistability the sys
oscillates between the two possible metastable states. W
increasing frequency, atd*g, a strong entanglement o
these states occurs, and the system comes to chaos. It s
be noted that, as we will show below, the transition fro
regular to chaotic dynamics in the classical system is mar
in the quantum system by an increase of the von Neum
entropy, as well as by a strong transformation of the Wig
functions. For the cased@g, the dynamics of the system
becomes regular again.

We give the results of QSD analysis in the regimes
strong anharmonicity, considering the parameters fromx/g
50.7 tox/g50.1. The former case is strongly quantum m
chanical, since the maximum mean number of oscillat
excitations is about 10, while the casex/g50.1 corresponds
to a quasiclassical regime, when the maximum oscillat
number in time is about 130. The truncated basis of Fo
number states of the harmonic oscillator is used for the
pansion of state vectorsuCj(t)&, and an initial vacuum state
is chosen.
9-4
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A. Time evolution of the mean oscillatory numbers

The mean excitation number of the double driven anh
monic oscillator versus time interval is of particular intere
in this paper. Figures 2~a! and 2~b! depict the ensemble av
eraged mean oscillatory numbersn̄5^a†a& for both cases of
regular and chaotic dynamics which are realized in the c
sical limit. The parameters for Fig. 2~b! are chosen the sam
as for Fig. 1~c!. The classical oscillatory numbern̄5uau2
derived from Eq.~5! for the same parameters as the abo
chaotic regime is illustrated in Fig. 2~c!. From these figures i
is evident that while the classical result@Fig. 2~c!# shows the
usual chaotic behavior, its quantum ensemble counter
@Fig. 2~b!# has clear regular behavior. Thus, the chaotic
havior in the classical model transforms into periodic d
namics in the quantum treatment that involves ensemble
eraging. These results indicate that quantum dissipa
chaotic dynamics is not evident in the mean oscillatory nu
e
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ber. Now we will show how quantum chaos emerges in b
the Wigner function and the von Neumann entropy.

B. Chaos in Wigner functions and quantum interference effect

We apply the QSD to determine Wigner functions for t
quantum states of a double driven anharmonic oscillator d
ing time evolution. For this we use the well-known expre
sion for the Wigner function in terms of the matrix elemen
rnm5^nurum& of the density operator in the Fock state re
resentation

W~r ,u!5(
m,n

rnmWmn~r ,u!, ~14!

where (r ,u) are the polar coordinates in the complex pha
space planeX5r cosu, Y5r sinu, and the coefficients
Wmn(r ,u) are the Fourier transform of the matrix elemen
of the Wigner characterization function@27#
Wmn~r ,u!55
2

p
~21!nAn!

m!
ei (m2n)u~2r !m2ne22r 2

Ln
m2n~4r 2!, m>n

2

p
~21!mAm!

n!
ei (m2n)u~2r !n2me22r 2

Lm
n2m~4r 2!, n>m,

~15!
g
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whereLp
q are Laguerre polynomials. In our calculation w

assume that the oscillator is initially prepared in a vacu
state, and regimes of strong anharmonicityx/g5(0.7–0.1)
are realized.

In Fig. 3 we demonstrate the moving of our system fro
regular to chaotic dynamics by plotting the Wigner functi
for three values ofV2 : V2 /g51 ~a!, V2 /g5V1 /g510.2
~b!, andV2 /g520 ~c!, at a fixed moment of time. The va
ues ofD/g,x/g, andV1 /g are chosen to lead to bistabilit
in the model of a single driven oscillator (V250).

We can see that for the case of a weak second force@Fig.
3~a!# the Wigner function has two humps, corresponding
the lower and upper levels of the excitation of the anh
monic oscillator in the bistability region. The hump center
close to X5Y50 describes the approximately cohere
lower state, while the other hump shows that the upper s
is squeezed. The effect of squeezing is displayed as squ
ing of the Gaussian. This result represents the known p
erty of the Wigner function for the single driven anharmon
oscillator@28#. The graphs in Fig. 3 are given at an arbitra
time, exceeding the damping time. As the calculations sh
for the next time intervals during the period of modulati
t52p/d, the hump corresponding to the upper level rota
around the central peak. When we increase the strengt
the second force, the classical system reaches chaotic
namics. The Wigner function for the chaotic dynamics
depicted in Fig. 3~b!. On further increasingV2, the system
returns to regular dynamics. The corresponding Wig
function at an arbitrary time exceeding the transient time
o
-

t
te
ez-
p-

,

s
of
y-

r
s

presented in Fig. 3~c!. It contains only one hump, rotatin
around the center of the phase space within the period.
mentioned above, the limitV2@V1 is physically equivalent
to the opposite caseV1@V2, when the system at each mo
ment of time is close to the model of a single driven nonl
ear oscillator. The difference is that the Rabi frequencyV2
in this case@Fig. 3~c!# is taken outside the bistability range
where the system is in the upper level. So the Wigner fu
tion has approximately the same form as the Wigner funct
for a single driven anharmonic oscillator, in the monosta
regime of operation above threshold, when the system is
cited.

As we see, the Wigner function reflecting chaotic dyna
ics @Fig. 3~b!# has a complicated structure. Nevertheless, i
easy to observe that its contour plots in the (X,Y) plane are
generally similar to the corresponding classical Poincare´ sec-
tion. Now we will consider this problem in more detail, com
paring the results summarized in Fig. 1 with the numeri
calculations of the Wigner functions for the same sets
parameters as for the classical maps.

We present our results in Fig. 4. It can be seen in Fig. 4~a!
that for the deep quantum regime (x/g50.7,D/g
5215,d/g55) the contour plot of the Wigner function i
smooth and concentrated approximately around the attra
@Fig. 1~a!#. Nevertheless, the different branches of the attr
tor are hardly resolved in Fig. 4~a!. It can also be seen that i
this deep quantum regime an enlargement of the Wig
function occurs, in contrast to the Poincare´ section.

Taking a smallerx/g, the contour plot of the Wigner
function approaches the classical Poincare´ section. This can
9-5
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be seen in Figs. 4~b! and 4~c!. For the last case the corre
spondence is maximal, and some details of the attractor@Fig.
1~c!# are resolved much better in Fig. 4~c!. This analysis
allows us also to note that the scaling symmetry of stra
attractors shown in Figs. 1~a! and 1~c! disappears for the
corresponding contour plots of Wigner functions@Figs. 4~a!
and 4~c!# in the quantum treatment of dissipative chaos.

It should be specified that for all contour plots in Fig.
the corresponding Wigner functions have regions of nega
values. These results are related to chaotic regimes. O
ously, this fact reflects quantum interference in the cha

FIG. 2. ~a!,~b! Ensemble averaged~over 1000 trajectories! mean
oscillatory numberŝa†a& versus dimensionless scaled timegt for
both regular~a! and chaotic~b! dynamics for parameters~a! x/g
50.1, D/g5215, V1 /g5V2 /g527, d/g550; ~b! x/g50.1,
D/g5215, V1 /g5V2 /g527, d/g55. ~c! The classical oscilla-
tory mean numberuau2 for chaotic dynamics. The parameters a
the same as for~b!.
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state of the system considered. It follows that the range
negative values of the Wigner function increase with incre
ing parameterx/g, when the system moves to the deep qua
tum regime. Nevertheless, ranges of negative values of
Wigner function are also observed for a comparatively sm
parameterx/g, where an operation regime close to the sem
classical is realized. This is illustrated in Fig. 5 for the p
rameterx/g50.1, where the mean excitation number equ
130.

Since our model is dynamical, we can also consider
correspondence between the Wigner function and the P
carésection taken attn5t012pn/d for arbitraryt0. Despite

FIG. 3. Transition from regular to chaotic dynamics in th
Wigner functions for three values ofV2 /g: V2 /g51 ~a!; V2 /g
510.2 ~b!; V2 /g520 ~c!. The parameters arex/g50.7, D/g
5215, V1 /g5V2 /g510.2, d/g55. The averaging is over 2000
trajectories.
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the different forms that the Wigner function and the Poinc´
section have acquired, the correspondence features ar
same.

C. The emergence of chaos in the von Neumann entropy

As shown in Sec. III A, quantum chaotic dynamics is n
displayed clearly in the ensemble averaged oscillatory e
tation number. The purpose of this subsection is merely
demonstrate how chaos is seen in the von Neumann entr
which is one of the significant characteristics of a quant
ensemble. We also clarify other important questions in re
tion to quantum chaos and entanglement in the syst

FIG. 4. Contour plots of Wigner functions corresponding
chaos. The parameters for the cases of~a!, ~b!, and~c! are the same
as in Figs. 1~a!, 1~b!, and 1~c!, respectively. The averaging is ove
2000 trajectories.
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These analyses complete the above studies of quantum
sipative chaos in the Wigner function.

Two ways of producing chaos in a controlled manner w
be considered, by monitoring the system through vary
either the strength of the driving force or the difference f
quencyd. We calculate the evolution of the entropy by fo
mula ~9!, using the results for the reduced density mat
expressed through an ensemble of trajectories. The calc
tions are performed by diagonalization of the matrixrnm in
the truncated Fock state basis.

First ~Fig. 6!, we demonstrate the transition of the syste
from regular dynamics to chaos by plotting the von Ne
mann entropy for three values of the strength of the driv
field: V2 /g51 ~a!, V2 /g5V1 /g510.2 ~b!, and V2 /g
520 ~c!. The same parameters are chosen as in Fig. 3 for
Wigner function. In Fig. 6~a! and Fig. 6~c! we plot the en-
tropy evolution for regions with classically regular behavio
while Fig. 6~b! shows entropy production for chaotic motio
The essential difference between the behavior of the entr
for regular and chaotic dynamics is clearly displayed in th
figures. The common feature is that, for times exceeding
time scale of transient dynamics, the entropy production
the chaotic regime dominates over the entropy production
regular dynamics. These results are in good qualita
agreement with the above results on the Wigner functi
and reflect the dependence of entropy production on both
quantum entanglement and the formation of states in the
tem. Naturally, entropy production is stipulated by the ent
gling interaction between the anharmonic oscillator and
environment on the one hand, and is determined by the st
ture of the mixed states of the nonlinear oscillator, on
other hand. As a result, the maximal value of the entro
@Fig. 6~b!# is realized for chaotic dynamics with a large num
ber of mixed states as depicted in Fig. 3~b!, while its mini-
mum occurs for regular dynamics with a one-hump Wign
function @Fig. 3~c!#. Also, we note that the oscillations of th
entropy evident in Fig. 5 have the frequencyd. The simula-
tions also show a definite difference between the trans
times of regular and chaotic dynamics. There is some am
guity in the definition of the transient time because of t
oscillatory nature of the curves. Nevertheless, it is clea
evident that the transient time of entropy evolution for t
regular case exceeds that for chaotic dynamics.

FIG. 5. Illustration of quantum interference effect on the Wign
function for the parametersx/g50.1, D/g5215, V1 /g5V2 /g
527, d/g55. The averaging is over 1000 trajectories.
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In addition to providing criteria to characterize chaos,
have also studied the behavior of the entropy versus the
trolling parametersV2 andd. The results of numerical cal
culations at a definite time moment exceeding the trans
time are presented in Fig. 7~a!, where minimum values of the
entropy for differentV2 are presented. Let us compare the
results with the emergence of chaos in the classical limit.
easy to check that for the classical case and for the par
eters shown in Fig. 6 chaos appears at the critical poin
V25Vcr.8.195, and disappears atV2.12.745. It is a well-
known property of classical chaos that it appears sudde
As is seen in Fig. 7~a!, quantum chaos appears smoothly: t
entropy increases as the value ofV2 approaches the critica
valueVcr . Another way to probe chaos is to vary the detu
ing d. In Fig. 7~b! the behavior of the entropy versus th
modulation frequencyd is displayed.

FIG. 6. Transtition to chaos in the von Neumann entropy:~a!
and ~c! regular dynamics,~b! chaotic dynamics. The averaging
over 2000 trajectories.
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IV. CONCLUSION

We have presented a type of time-dependent sys
showing chaotic dynamics and intrinsically quantum prop
ties. These systems are modeled by a dissipative anharm
oscillator driven by two forces of different frequencies. W
emphasize that this model is different from those using
single driven nonlinear oscillator, where a pulsed pump fi
could be used, and might be proposed as a possible ex
mental test of quantum chaos in the area of quantum op
with a continuous cw laser. The proposed model seems
perimentally feasible with state-of-the-art equipment and
be realized at least in two experimental schemes. So the
linear behavior of a single mode field in a medium with
third order nonlinearity may provide a simple realization
the dynamics of a driven anharmonic oscillator. In fact
single mode field is well described in terms of an anh
monic oscillator, and the nonlinear medium could be an
tical fiber or ax (3) crystal, placed in a cavity. In the latte
case the anharmonicity of mode dynamics comes from
self-phase modulation due to the photon-photon interac
in the x (3) medium, and dissipative effects arise from t
leakage of photons through the cavity mirrors. Such a sys
under two driving fields is described by the Hamiltonian~1!
with a,a† being the operators of a single cavity mode. C
clotron oscillations of a single electron in a Penning tr
with a magnetic field are another realization of the quant

FIG. 7. Behavior of the minimal~during the period! values of
von Neumann entropies versus controlling parameters.~a! Depen-
dence of entropy onV2 /g for the parametersx/g50.7, D/g
5215, V1 /g510.2, andd/g55. ~b! Dependence of entropy on
d/g for the parametersx/g50.7, D/g5215, andV1 /g5V2 /g
510.2. The averaging is over 2000 trajectories.
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anharmonic oscillator. Its anharmonicity comes from t
nonlinear relativistic correction to the electron motion, wh
dissipative effects arise from the spontaneous emission
synchrotron radiation@12#. The trapped electron driven by
single coherent field has been experimentally realized
studied in Refs.@13#. The model we present here correspon
to the one-electron cyclotron oscillator in two coherent fie
at different frequencies. The corresponding Hamiltonian
given by Eq.~1!, where the operatorsa,a† describe the cy-
clotron quantized motion at the cyclotron frequency. T
values of the parameterx/g used in our calculations hav
been achieved experimentally for both the above mentio
physical systems.

The dynamics of the double driven anharmonic oscilla
exhibits a rich phase-space structure, including regimes
regular and chaotic motion, with the two Rabi frequenc
V1 andV2 and the differenced between the driving frequen
cies being the control parameters. We suppose that an
equate way of investigating quantum chaos is not only
investigation of the behavior of an individual realization
trajectories, as suggested by several authors, but also a
of the dynamics of the statistical ensemble of quantum
jectories, which is naturally realized in experiments. For
alization of this program of studies the quantum state dif
sion simulation method based on a master equation
Lindblad form is used. We also conclude that the distinct
between regular and chaotic dynamics can be most ea
understood by studying the dynamics of essentially quan
properties; the von Neumann entropy and the Wigner fu
tion are only two examples. In fact, our numerical analy
has shown that the quantum dynamical manifestation of c
otic behavior does not appear in ensemble averaged os
tory excitation numbers, but is clearly seen in the entro
and probability distributions. The connection between qu
tum and classical treatments of chaos was realized by m
of a comparison between strange attractors on the clas
Poincare´ section and the contour plots of the Wigner fun
tions. We have demonstrated that for small values of
s

.

i
e,

e
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ep
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ratio x/g the contour plots of Wigner functions are relative
close to the strange attractors. Indeed, as we have show
Fig. 1~c! and Fig. 4~c!, some details of the attractor are r
solved on the contour plots. This similarity of quantum a
classical distributions vanishes in the deep quantum reg
@see Fig. 1~a! and Fig. 4~b! for x/g50.7#. An important
point to emphasize is that the scaling symmetry of stra
attractors in the model studied here is violated in the qu
tum treatment of chaos. The drastic difference between
time-dependent behavior of the von Neumann entropy
the regular and chaotic regimes is clearly displayed in Fig
The von Neumann entropy indicates the connection betw
chaos and entanglement, and has also been used to
characteristic time scales of the emergence of chaos.
short time intervalst,0.4g21 the entropy is a linearly in-
creasing function of time for both the regular and chao
regimes. For times exceeding the time scale of transient
namics this behavior transforms to the periodic one; ho
ever, the entropy for the chaotic regime dominates over
entropy for the regular dynamics. It has also been shown
the transient time for the chaotic regime is smaller than in
regular regime.

In our analysis we have not investigated all possible qu
tum effects of chaotic dynamics. In particular, we ha
specified that the Wigner function for the chaotic regime h
regions of negative values even for relatively high values
x/g (x/g50.1 in Fig. 5, where the mean oscillatory numb
n5130). This fact reflects the quantum interference effec
chaotic dissipative dynamics. However, we have not a
lyzed the correlation between the emergence of chaos
quantum interference, which is an interesting albeit com
cated option for the future.
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