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A model for electron relaxation in a quantum dot, including a nonradiative pathway through a point defect,
is presented, using time-dependent perturbation theory. The results obtained here extend previous work@Phys.
Rev. B51, 14 532~1995!# to the experimentally relevant low-temperature regime. It is found that relaxation
through defects may circumvent the phonon bottleneck predicted for ideal nanometer-scale quantum dot
structures even at low temperatures.@S0163-1829~96!06828-2#

For nanometer scale quantum dots, the separation be-
tween adjacent electron energy levels may exceed the LO
phonon energy. In this regime, single phonon emission can-
not account for electron relaxation between adjacent energy
levels. The alternatives, multiple phonon and radiative pro-
cesses, occur much more slowly, resulting in prolonged life-
times for electrons in excited states of the quantum dot.1,2

This effect is known as the ‘‘phonon bottleneck.’’ While this
effect appears to stand on firm theoretical ground, it has not
been observed in recent experiments on high-quality quan-
tum dots.3

Several models have been proposed to solve the ‘‘phonon
bottleneck’’ problem. Inoshita and Sakaki4 have shown that
processes involving one LO phonon and one LA phonon can
provide a pathway for rapid relaxation between electronic
states separated by\vLO 6 \vLA , however, this process is
inoperative for quantum dots where the intraband spacing is
substantially greater than the LO phonon energy. Other in-
vestigators have examined the role of Auger-like processes
in overcoming the phonon bottleneck.5,6 This type of mecha-
nism could allow for relaxation on picosecond time scales.

An alternate model wherein electrons thermalize by cou-
pling to nearby traps or interfacial defects has been proposed
by Sercel.7 In this model, relaxation occurs by the following
sequential process: an electron makes a transition from the
quantum dot to the defect, the defect relaxes by multiphonon
emission, and the electron makes a second transition to a
lower-lying energy level of the quantum dot. The defect
functions as a sort of ‘‘elevator’’ carrying the electron from
the upper level in the quantum dot to the lower level, pro-
viding a channel for nonradiative intraband carrier relax-
ation. Sercel’s analysis is based upon a semiclassical ap-
proximation for the lattice, strictly valid only when the
thermal energy in the system is greater than the height of the
activation barrier for a dot-defect transition. The conclusion
of Sercel’s study was that defect-assisted relaxation could
play a role in breaking the phonon bottleneck effect in
nanometer-scale quantum dots. However, the majority of ex-
periments performed on quantum dots are carried out at
cryogenic temperatures where the semiclassical approxima-
tion fails.

In the present paper the low-temperature rates are calcu-
lated fully quantum mechanically, and it is found that the
defect-assisted relaxation rates may remain large even at low
temperatures. The analysis shows that electron relaxation via
the defect-coupling channel circumvents the phonon-
bottleneck effect in qualitative agreement with experiments
reported in Ref. 3.

To conform with the analysis of Sercel,7 we consider a
model spherical In0.5Ga0.5As/GaAs quantum dot with a ra-
dius of 5 nm, and a point defect located within the GaAs
matrix. At this radius, the dot has only two bound conduction
states, the ground stateC0, and first excited stateC1. The
valence-band states are assumed to be thermalized owing to
the smallness of the level spacings relative to the conduction
band. We begin by examining the transition rates between
the trap stateT and the two quantum dot statesC0 and
C1.

For either of the quantum dot states (i5C0,C1) the total
energy is a sum of electronic and vibrational~thermal! en-
ergy:

Vi5Ei1
1
2mv2Q2, ~1!

where it is assumed that the configuration of the interaction
mode may be specified by a single coordinateQ. The total
wave function is a product of an electronic and a vibrational
wave function:c i(r ,Q)5w i(r )x i(Q). The electronic wave
function for these conduction states is calculated using a
single-band model in the effective-mass approximation.8 The
potential energyV representing the band offset between the
conduction bands of GaAs and In0.5Ga0.5As, has been calcu-
lated as 360 meV,9 for conditions of uniaxial strain. Solving
for the energy of these states using material parameters given
by Shur10 shows thatEC05170 meV andEC15332 meV, as
measured from the bottom of the In0.5Ga0.5As conduction
band.

For simplicity, we assume that the defect has only a single
bound state. The Diracd function potential satisfies this cri-
terion and we follow Sercel7 in using this potential to model
the defect. The wave function is again a product of electronic
and vibrational wave functions, with the electronic portion
given by
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where a[A2m*E0 /\
2 is the wave number andbW is the

distance from the center of the quantum dot to the defect.
The electron-phonon coupling of the defect state is taken to
be linear, so that the total energy of an electron in the trap
takes the form of a displaced parabola

VT5ET1 1
2mv2~Q2Q0!

2, ~3!

where ET[E02mv2Q0
2/2. It is helpful to introduce the

Huang-Rhys factorS,

S\v5 1
2mv2Q0

2 , ~4!

and the ‘‘number of phonons’’pl defined as the difference
between the minima of the two energy curves corresponding
to quantum dot stateCl and the defect state:

pl\v5ECl2ET . ~5!

For comparison with the semiclassical rates derived
previously,7 it is necessary to obtain an explicit formula for
the coordinate of the crossing point as well as the height of
the barrier between the two wells. These can be obtained
from Eqs.~1! and ~3!:

QCl5A~S2pl !
2\

2mvS
, EACl5

~S2pl !
2\v

4S
. ~6!

The energyEACl is measured from the bottom of the pa-
rabola which the electron occupies in its initial state. Figure
1 shows a configuration coordinate diagram depicting total-
energy curves for both of the quantum dot statesC0 and
C1, the trap stateT, as well as the quantities given in Eqs.
~4!–~6!.

Transitions between the dot and the defect fall into two
different categories, depending on temperature. In the first
case the thermal energy exceedsEACl , the crossing point
energy. This is the case that was treated by Sercel,7 and for
which the semiclassical approach is valid. The second case is
when the thermal energy in the system is less thanEACl . In
that case the electron must tunnel through the barrier in con-
figuration space in order to make a transition between the dot
and the defect. In both of these casesELECTRONIC tunneling
occurs, since the dot and the defect are separated spatially. It
is a second type of tunneling, through configuration space
~nuclear tunneling!, that is at issue in the low-temperature
case. In this section we treat this second kind of tunneling
using Fermi’s golden rule, which gives the transition rateat
a given energy Ein terms of a matrix elementM , and the
density of final statesNf :

W~E!5
2p

\
uM u2Nf . ~7!

The density of final states takes the form 1/\v,11 so that the
problem reduces to a calculation of the matrix elementM .

The matrix element is the integral over the initial state,
the Hamiltonian that causes the transition~the perturbation!,
and the final state:

M5E
2`

` E
2`

`

x i~Q!*w i~r !*H int~r ,Q!x j~Q!w j~r !drdQ.

~8!

Performing the integral overr gives the electronic matrix
elementV(Q). Since the overlap of the vibrational compo-
nents is sharply peaked at the crossing pointQc ,

11 the elec-
tronic matrix element can be pulled outside of the integral:

M5V~Qc!E
2`

`

x i~Q!* x j~Q!dQ. ~9!

The integral in Eq.~9! is the overlap of two harmonic oscil-
lator wave functions of arbitrary quantum numbersi and j ,
separated by a distanceQ0. This integral can be calculated
exactly, the result is

F E
2`

`

x i~Q!* x j~Q!dQG25 i !

j ! Sm2v2Q0
2

2\2 D j2 i

e2m2v2Q0
2/2\2H Lij2 i Sm2v2Q0

2

2\2 D J 2. ~10!

This gives us the rate for transitions out of a single state with energyE, W(E); to obtain the more pertinent quantity, the
total transition rate at a given temperature, we must perform a summation over all states, with each weighted by the appropriate

FIG. 1. Total-energy curves for the quantum dot statesC0,
C1, and the trap stateT as a function of the configuration coordi-
nateQ.
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Boltzmann factor. This sum can be calculated exactly, and gives an equation for the transition rate at low temperatures with
no approximations other than the ones latent in Fermi’s golden rule. The result is

W~T!5
2puV~Qc!u2

\2v
expF2ScothS \v

2kTD1p
\v

2kTG I pFScschS \v

2kTD G . ~11!

In this equation,p\v denotes the ground-state energy dif-
ference between the defect and the relevant quantum dot
state, defined in~5!, while the Huang-Rhys parameterS,
which characterizes the defect is defined in Eq.~4!. As it
stands this equation is extremely general. For example, the
same result turns up in the study of electron transfer in bio-
logical systems.12 It remains only to calculate the electronic
matrix elementV(Qc).

The electronic matrix element is calculated in the tight-
binding approximation.8 This assumption is valid if the sepa-
ration between the dot and defect is large enough. The total
Hamiltonian may be written as

Ĥ5
p̂2

2m*
1VTRAP1V DOT, ~12!

where the first two terms together make upĤTRAP, the
Hamiltonian whose eigenstate is the defect wave function.
The electronic matrix element can be written as

V~Q!5^wDOTuHTRAPuwTRAP&1^wDOTuVDOTuwTRAP&

5E^wDOTuwTRAP&1^wDOTuVDOTuwTRAP&. ~13!

Since we are interested in the value of this matrix element at
the crossing pointV(Qc) where the energies of the two states
are equal, the energyE in Eq. ~13! can be taken to be the
electronic energy of the quantum dot state involved in the
transistion. Figure 2 shows the electronic matrix element be-
tween the first excited state of the quantum dot and the defect

state (C1-T), and between the quantum dot ground state and
the defect state (C0-T). These values, which are plotted as a
function of separation between the quantum dot and the de-
fect, were calculated numerically using the band-structure
parameters chosen above.

Using the results of Fig. 2, we are able to calculate the
total transition rate as a function of temperature. This is done
for a separation of 10 nm in Fig. 3~a! and for a separation of
20 nm in Fig. 3~b!. In order to perform this calculation a
number of parameters must be specified. The Huang-Rhys
factor S is chosen such thatS\v5100 meV when the fre-
quencyv is taken to be that of the TA phonon (\v510
meV!. The energy of the unoccupied trap is taken to be 275
meV. Therefore, for transitions fromC1 to T the number of
phononsp516, and for transitions fromT to C0 it is 1. In
order to obtain the transition rates for the opposite direction,
the sign ofp is reversed. These are values typical of the
electron trapM1 common to GaAs grown by molecular-
beam epitaxy.13,14

FIG. 2. Electronic matrix elementV(Q) for transitions between
the defect and the ground quantum dot state (C0-T), and for tran-
sitions between the defect and the first excited quantum dot state
(C1-T). Separation measures the distance between the defect and
the center of the quantum dot. Parameters used are an effective
electron massm*50.041me and a band offset ofV5360 meV,
giving rise to the bound-state energiesEC05170 meV and
EC15332 meV.

FIG. 3. Total transition rates between the quantum dot and the
defect at~a! a dot-defect separation of 10 nm and~b! a dot-defect
separation of 20 nm. Parameters used areS510, \v510 meV,
p051, andp1516.
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Figure 3~a! shows that for a dot-defect separation of 10
nm the rateC1→T is on the order of 1013 s 21, and the rate
T→C0 is on the order of 1010 s21, at 0 K. The reverse rates
are in fact ‘‘frozen out’’ at low temperatures, since such
transitions would require an influx of energy into the system.
If the distance between the dot and the defect is increased to
20 nm, a substantial reduction is seen in the transition rates
@Fig. 3~b!#. The fact that theT to C0 rate drops to approxi-
mately 105 s21 means that the defect-assisted tunneling
mechanism would not serve to overcome the ‘‘phonon
bottleneck’’ at such a large separation.

In this work we have modeled the effect of coupling to a
deep-level trap on electron relaxation in quantum dots in the
low-temperature limit. The main conclusion of the present
analysis is that the presence of point defects may serve to
enhancethe luminescence efficiency of quantum dot mate-
rial, even at low temperature, a regime in which defect-
related processes might have been expected to be frozen out.
The persistence of the defect relaxation process at low tem-

perature is due to tunneling through the defect activation
barrier for capture and emission. As discussed in Ref. 7, the
physical situation described in this paper could only arise if
the spatial distribution of defects is strongly correlated with
that of the quantum dot structures, e.g., through formation of
interface states or point defects as a consequence of the
growth process. That this situation commonly exists in
MBE-grown material is demonstrated, for example, by the
observation of resonant enhancement of nonradiative pro-
cesses involving point growth defects in MBE-grown
AlxGa12xAs/GaAs quantum wells.15 With this caveat, the
proposed mechanism may thus explain the failure to observe
a significant phonon bottleneck effect in recent work on
InxGa12xAs quantum dot structures.
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