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Defect-assisted relaxation in quantum dots at low temperature
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A model for electron relaxation in a quantum dot, including a nonradiative pathway through a point defect,
is presented, using time-dependent perturbation theory. The results obtained here extend previfiebysork
Rev. B51, 14 532(1995] to the experimentally relevant low-temperature regime. It is found that relaxation
through defects may circumvent the phonon bottleneck predicted for ideal nanometer-scale quantum dot
structures even at low temperaturgS0163-182€06)06828-2

For nanometer scale quantum dots, the separation be- In the present paper the low-temperature rates are calcu-
tween adjacent electron energy levels may exceed the L@ted fully quantum mechanically, and it is found that the
phonon energy. In this regime, single phonon emission candefect-assisted relaxation rates may remain large even at low
not account for electron relaxation between adjacent energigmperatures. The analysis shows that electron relaxation via
levels. The alternatives, multiple phonon and radiative proihe defect-coupling channel circumvents the phonon-
cesses, occur much more slowly, resulting in prolonged lifebottleneck effect in qualitative agreement with experiments
times for electrons in excited states of the quantum'dot. reported in Ref. 3. _ _

This effect is known as the “phonon bottleneck.” While this 10 conform with the analysis of Sercklye consider a

effect appears to stand on firm theoretical ground, it has nd’0del spherical 19:Gay sAS/GaAs quantum dot with a ra-

been observed in recent experiments on high-quality quarfiuS ©f 5 nm, and a point defect located within the GaAs

tum dots® matrix. At this radius, the dot has only two bound conduction

Several models have been proposed to solve the “phonoﬁtates’ the ground sta0, and first excited stat@_l. The_
Y : . valence-band states are assumed to be thermalized owing to
bottleneck” problem. Inoshita and Sakkiave shown that

the smallness of the level spacings relative to the conduction
) . . Wand. We begin by examining the transition rates between
provide a pathway for rapid relaxation betw_een elec'[rc_ml(‘the trap stateT and the two quantum dot stat€@D and
states separated By, o = hw 5, however, this process is Cc1.
inoperatiye for quantum dots where the intraband spacing IS For either of the quantum dot statds=(C0, C1) the total
subs_tanually greater thgn the LO phonon energy. Other iNgnergy is a sum of electronic and vibratioriterma) en-
vestigators have examined the role of Auger-like processegygy:
in overcoming the phonon bottlene®R This type of mecha-
nism could allow for relaxatiqn on picosecond time scales. V,=E+ imw?Q?, 1)

An alternate model wherein electrons thermalize by cou-
pling to nearby traps or interfacial defects has been proposeghere it is assumed that the configuration of the interaction
by Sercel’ In this model, relaxation occurs by the following mode may be specified by a single coordin@eThe total
sequential process: an electron makes a transition from th@ave function is a product of an electronic and a vibrational
guantum dot to the defect, the defect relaxes by multiphonowave function:i;(r,Q)=¢;(r)xi(Q). The electronic wave
emission, and the electron makes a second transition to fanction for these conduction states is calculated using a
lower-lying energy level of the quantum dot. The defectsingle-band model in the effective-mass approximafidhe
functions as a sort of “elevator” carrying the electron from potential energy/ representing the band offset between the
the upper level in the quantum dot to the lower level, pro-conduction bands of GaAs andjgGag sAs, has been calcu-
viding a channel for nonradiative intraband carrier relax-lated as 360 meV for conditions of uniaxial strain. Solving
ation. Sercel's analysis is based upon a semiclassical affer the energy of these states using material parameters given
proximation for the lattice, strictly valid only when the by Shuf? shows thaEcq=170 meV andEc; =332 meV, as
thermal energy in the system is greater than the height of thmeasured from the bottom of the JeGagsAs conduction
activation barrier for a dot-defect transition. The conclusionband.
of Sercel's study was that defect-assisted relaxation could For simplicity, we assume that the defect has only a single
play a role in breaking the phonon bottleneck effect inbound state. The Diraé function potential satisfies this cri-
nanometer-scale quantum dots. However, the majority of exterion and we follow Sercéin using this potential to model
periments performed on quantum dots are carried out ahe defect. The wave function is again a product of electronic
cryogenic temperatures where the semiclassical approximand vibrational wave functions, with the electronic portion
tion fails. given by
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where a=\2m*E,/#? is the wave number anb is the
distance from the center of the quantum dot to the defect.
The electron-phonon coupling of the defect state is taken to
be linear, so that the total energy of an electron in the trap
takes the form of a displaced parabola

Vr=Er+ 3me?(Q-Qo)? ®

where ETEEO—meQS/Z. It is helpful to introduce the
Huang-Rhys factos,

Shw=3imw?Q3, 4

and the “number of phonons’, defined as the difference
between the minima of the two energy curves corresponding
to quantum dot stat€l and the defect state:

phio=Ec—Es. 5)

i . . . . Qcy 0 Qcop Qp  Configuration Coordinate Q
For comparison with the semiclassical rates derived

. 7 . . . . .
previously, it is necessary to obtain an explicit formula for 1~ 4 Total-energy curves for the quantum dot sta@s

the coorfjinate of the crossing point as well as the height 0&1, and the trap stat€ as a function of the configuration coordi-
the barrier between the two wells. These can be obtainefateq.

from Eqgs.(1) and (3):

(S—p)’h (S—p)*ho

21T
S —— 2
=V Zmes + FAe=— 35 - © WE= T M "

The energyEA, is measured from the bottom of the pa- 1€ density of final states takes the forni &/, ** so that the

rabola which the electron occupies in its initial state. FigureProblem reduces to a calculation of the matrix elemtdnt
1 shows a configuration coordinate diagram depicting total- € matrix element is the integral over the initial state,
energy curves for both of the quantum dot staB8 and the Hamiltonian that causes the transitigime perturbatio)

C1, the trap statd, as well as the quantities given in Eqgs. 2nd the final state:
(4)—(6).

Transitions between the dot and the defect fall into two pq_ [~ [~ % %
different categories, depending on temperature. In the first M fﬁwﬁle(Q) @i Hin(1Q)x;(Q) (1) drdQ.
case the thermal energy excedflf.|, the crossing point (8
energy. This is the case that was treated by Séraal for ) ) ) ] ]
which the semiclassical approach is valid. The second case 2erforming the integral over gives the electronic matrix
when the thermal energy in the system is less &g, . In eIementV(Q). Since the overlap of t'he wbratitl)nal compo-
that case the electron must tunnel through the barrier in cor2ents is sharply peaked at the crossing pQgt™ the elec-
figuration space in order to make a transition between the ddfonic matrix element can be pulled outside of the integral:
and the defect. In both of these case&CTRONIC tunneling
occurs, since the dot and the defect are separated spatially. It _ * *
is a second type of tunneling, through configuration space M=V(Qc) f,wX‘(Q) X;(Q)dQ. ©)
(nuclear tunneling that is at issue in the low-temperature
case. In this section we treat this second kind of tunneling’he integral in Eq(9) is the overlap of two harmonic oscil-
using Fermi’s golden rule, which gives the transition rate lator wave functions of arbitrary quantum numberand j,
a given energy En terms of a matrix elemerl, and the separated by a distan€®,. This integral can be calculated
density of final stated\; : exactly, the result is

= 2 i (P’ QN T o e[ [ MP0?QG| )2
wam)*x,-(Q)dQ} ='—(%) g Ry {LJ(%)] . 10

j!

This gives us the rate for transitions out of a single state with engérdf/(E); to obtain the more pertinent quantity, the
total transition rate at a given temperature, we must perform a summation over all states, with each weighted by the appropriate
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Boltzmann factor. This sum can be calculated exactly, and gives an equation for the transition rate at low temperatures with
no approximations other than the ones latent in Fermi's golden rule. The result is

_271'|V(Qc)|2 fow Lo
W(T)—TEX — Scot KT Scsc kT |- (11

Lo |
TP

In this equationp% o denotes the ground-state energy dif- state C1-T), and between the quantum dot ground state and
ference between the defect and the relevant quantum dthe defect stateGO0-T). These values, which are plotted as a
state, defined in5), while the Huang-Rhys paramet&; function of separation between the quantum dot and the de-
which characterizes the defect is defined in E4). As it  fect, were calculated numerically using the band-structure
stands this equation is extremely general. For example, thearameters chosen above.
same result turns up in the study of electron transfer in bio- Using the results of Fig. 2, we are able to calculate the
logical systemd? It remains only to calculate the electronic total transition rate as a functhn of temperature. Th|§ is done
matrix elementV(Q,). for a separation of 10 nm in Fig(& and for a separation of
The electronic matrix element is calculated in the tight-20 NM in Fig. 3b). In order to perform this calculation a
binding approximatiof.This assumption is valid if the sepa- number of parameters must be specified. The Huang-Rhys

: : ctor S is chosen such th&#% o =100 meV when the fre-
rHa:r?]ri]Itgﬁit;vrf i:]a;hﬁeda}riztitr;% i(;fect 's large enough. The tm%ﬁjencyw is taken to be that of the TA phonork =10

meV). The energy of the unoccupied trap is taken to be 275
. P2 meV. Therefore, for transitions fro@1 to T the number of
H=— +VirarT Voor: (12 phononsp=16, and for transitions fronf to CO itis 1. In
2m ; . ita directi
order to obtain the transition rates for the opposite direction,
where the first two terms together make GHRAP, the the sign ofp is reversed. These are values typical of the
Hamiltonian whose eigenstate is the defect wave function€/€ctron trapM1 common to GaAs grown by molecular-

: : 3,14
The electronic matrix element can be written as beam epitaxy:
V(Q)=(eporlHrrarl ¢1rAR + {®D0T| VDOT| PTRAR) @@ 101
= E< ‘PDOTl ‘PTRAP> + <<PDOT| VDOT| <PTRAP>- (13 10" "] -t

Since we are interested in the value of this matrix element at
the crossing poin(Q.) where the energies of the two states
are equal, the energy in Eqg. (13) can be taken to be the
electronic energy of the quantum dot state involved in the
transistion. Figure 2 shows the electronic matrix element be-
tween the first excited state of the quantum dot and the defect

)
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FIG. 2. Electronic matrix elemei(Q) for transitions between 10t : ~ | =a |
the defect and the ground quantum dot st&2@T), and for tran- 0 50 100 150 200 250 300
sitions between the defect and the first excited quantum dot state Temperature (K)

(C1-T). Separation measures the distance between the defect and

the center of the quantum dot. Parameters used are an effective FIG. 3. Total transition rates between the quantum dot and the
electron massn* =0.04Im, and a band offset o¥=360 meV, defect at(a) a dot-defect separation of 10 nm aflg) a dot-defect
giving rise to the bound-state energids;=170 meV and separation of 20 nm. Parameters used &rel0, Zw=10 meV,
Ec1=332 meV. po=1, andp,=16.
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Figure 3a) shows that for a dot-defect separation of 10perature is due to tunneling through the defect activation
nm the rateC1—T is on the order of 1¥s ~1, and the rate barrier for capture and emission. As discussed in Ref. 7, the
T—CO is on the order of 1§ s™%, at 0 K. The reverse rates physical situation described in this paper could only arise if
are in fact “frozen out” at low temperatures, since suchthe spatial distribution of defects is strongly correlated with
transitions would require an influx of energy into the systemthat of the quantum dot structures, e.g., through formation of
If the distance between the dot and the defect is increased tgterface states or point defects as a consequence of the
20 nm, a substantial reduction is seen in the transition rategrowth process. That this situation commonly exists in
[Fig. 3(b)]. The fact that thel to CO rate drops to approxi- MBE-grown material is demonstrated, for example, by the
mately 16 s~ means that the defect-assisted tunnelingopservation of resonant enhancement of nonradiative pro-
mechanism would not serve to overcome the “phonOncesses involving point growth defects in MBE-grown
bottleneck” at such a large separation. Al,Ga,_,As/GaAs quantum well® With this caveat, the

q In tlh's \;v?rk we h?vet modelled ';_he gffect oftcough?g.totﬁ roposed mechanism may thus explain the failure to observe
eep-ievel trap on electron refaxation in guantum dots in significant phonon bottleneck effect in recent work on

low-temperature limit. The main conclusion of the present

analysispis that the presence of point defects may pserve tl(g] xGa,AS quantum dot structures.
enhancethe luminescence efficiency of quantum dot mate-  This material is based upon work supported by the Na-
rial, even at low temperature, a regime in which defect-tional Science Foundation under Grant No. DMR 9304537.
related processes might have been expected to be frozen o&tupport by the Oregon Joint Centers for Graduate Schools in
The persistence of the defect relaxation process at low tenEngineering is gratefully acknowledged.
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