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Abstract
It is shown that unitary depolarizers, which play an important role in quantum
information processing, can be constructed in terms of the Pegg–Barnett phase
operator. By using the result, the classical information capacity of quantum
dense coding with unitary encoding in a finite-dimensional Hilbert space is
derived. Furthermore, the relation between the capacity of quantum dense
coding and the coherent information of a noisy quantum channel is obtained.

PACS numbers: 03.68.−a, 03.65.Vf, 03.65.Ta

Quantum information attracts much attention in quantum physics and information science
[1–3]; it gives deeper insight into the principles of quantum mechanics and provides remarkable
information processing methods such as quantum computing and quantum communication.
In quantum information processing, a unitary operation is one of the most important of the
quantum operations which transform one quantum state into another. Quantum operations
include encoding some information into a quantum state and measurement performed on
a quantum state. In particular, unitary depolarizers play an important role in quantum
teleportation, quantum dense coding [4–6] and enciphering a quantum state [7–9]. In the past
decade, the quantum phase operator, which is very useful for investigating quantum optical
systems, has been considered in detail [10,11]. This letter shows that unitary depolarizers can
be constructed in terms of the Pegg–Barnett phase operator. The result may indicate that the
quantum phase operator is also useful for quantum information processing. In N -dimensional
Hilbert space HN , unitary depolarizers are elements of the set D(N) = {Ûµ|ÛµÛ

†
µ = Û †

µÛµ =
1̂, µ ∈ �} which satisfy the relation

1

N

∑
µ∈�

ÛµX̂Û †
µ = (Tr X̂)1̂ (1)

for any operator X̂ defined on the Hilbert space HN , where 1̂ is an identity operator.
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We briefly review the Pegg–Barnett phase operator [10, 11] in the way most convenient
for our purposes. We denote a complete orthonormal system of the Hilbert space HN as
{|φk〉|k = 0, 1, . . . , N − 1}, which satisfies 〈φj |φk〉 = δjk and

∑N−1
j=0 |φk〉〈φk| = 1̂. We

introduce a unitary operator Û as

Û =
N−2∑
k=0

|φk〉〈φk+1| + |φN−1〉〈φ0| =
N−1∑
k=0

|φk mod N 〉〈φk+1 mod N | (2)

which induces an index shift of the state vector |φk〉:
Û k|φl〉 = |φl−k mod N 〉 Û † k|φl〉 = |φl+k mod N 〉. (3)

The eigenstate |θj 〉 of the unitary operator Û , which satisfies Û |θj 〉 = e−iθj |θj 〉, is given by
the Fourier transformation of the vectors |φk〉:

|θj 〉 = 1√
N

N−1∑
k=0

e−iθj k|φk〉 |φk〉 = 1√
N

N−1∑
j=0

eiθj k|θj 〉 (4)

where the parameter θj is given by θj = 2πj/N . Since the Fourier transformation is unitary,
the eigenstate |θj 〉 satisfies 〈θj |θk〉 = δjk and

∑N−1
j=0 |θj 〉〈θj | = 1̂. Here we introduce two

Hermitian operators n̂ and θ̂ :

n̂ =
N−1∑
k=0

k|φk〉〈φk| θ̂ =
N−1∑
j=0

θj |θj 〉〈θj |. (5)

When |φk〉 is the Fock state |k〉 of the N -dimensional Hilbert space HN , n̂ is the number
operator and θ̂ is the Pegg–Barnett phase operator [10,11]. It is easy to see that these operators
satisfy the relations

e±ikθ̂ |φl〉 = |φl±k mod N 〉 e±iθj n̂|θk〉 = |θk∓j mod N 〉 (6)

and that e±ikθ̂ |θj 〉 = e±ikθj |θj 〉 and e±iθj n̂|φk〉 = e±iθj k|φk〉.
We can construct unitary depolarizers in terms of the number operator n̂ and the Pegg–

Barnett phase operator θ̂ . Let us introduce a unitary operator Ûjk:

Ûjk = eiθj n̂e−ikθ̂ (Û
†
jk = eikθ̂e−iθj n̂) (7)

with j, k = 0, 1, . . . , N − 1. This operator is equivalent to the generalized Pauli operator
which is used for encoding a qubit in quantum computation [12–14]. The unitary operator Ûjk

induces both the number shift k and the phase shift θj of a quantum state. From the definitions
of the number operator n̂ and the Pegg–Barnett phase operator θ̂ , the unitary operator Ûjk can
be expressed as

Ûjk =
N−1∑
l=0

exp(iθj l)|φl mod N 〉〈φl+k mod N |. (8)

We will show that the elements of the set D(N) = {Ûjk|j, k = 0, 1, . . . , N − 1} are unitary
depolarizers. For any operator X̂ = ∑N−1

l=0

∑N−1
m=0 Xlm|φl〉〈φm| defined on the N -dimensional

Hilbert space HN , we obtain
N−1∑
j=0

N−1∑
k=0

ÛjkX̂Û
†
jk =

N−1∑
l=0

N−1∑
m=0

N−1∑
j=0

N−1∑
k=0

XlmÛjk|φl〉〈φm|Û †
jk

=
N−1∑
l=0

N−1∑
m=0

N−1∑
j=0

N−1∑
k=0

Xlmeiθj (l−m)|φl−k mod N 〉〈φm−k mod N |
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= N

N−1∑
l=0

N−1∑
k=0

Xll|φl−k mod N 〉〈φl−k mod N |

= N

N−1∑
l=0

N−1∑
k=0

Xll|φk〉〈φk|

= N(Tr X̂)1̂. (9)

Thus the operator Ûjk defined by equation (7) is the unitary depolarizer, satisfying the relation

1

N

N−1∑
j=0

N−1∑
k=0

ÛjkX̂Û
†
jk = (Tr X̂)1̂ (10)

for any operator X̂ defined on the N -dimensional Hilbert space HN . The result shows that
the average over all possible number and phase shifts in the Hilbert space HN completely
randomizes any quantum state defined on the Hilbert space HN . This is the main result of this
letter.

We next consider completely entangled quantum states of the (N×N)-dimensional tensor
product Hilbert space HN ⊗ HN :

|�jk〉 = (Ûjk ⊗ 1̂)|�〉 = (eiθj n̂e−ikθ̂ ⊗ 1̂)|�〉 (11)

with |�〉 = (1/
√

N)
∑N−1

k=0 |φk〉 ⊗ |φk〉. It is easy to see from equation (10) that the set
{|�jk〉|j, k = 0, 1, . . . , N−1} is a complete orthonormal system of the Hilbert space HN⊗HN ,
which satisfies

〈�jk|�lm〉 = δjlδkm

N−1∑
j=0

N−1∑
k=0

|�jk〉〈�jk| = 1̂ ⊗ 1̂. (12)

This means that the phase and number shifts of the completely entangled state |�〉 generate
a complete orthonormal system of completely entangled states of the (N × N)-dimensional
Hilbert space. The set of projectors, {X̂jk = |�jk〉〈�jk| |j, k = 1, 2, . . . , N − 1}, describes
the generalized Bell measurement. Furthermore, the generalized depolarizing channel L̂ρ̂ =
(1 − p)ρ̂ + (p/N)1̂ can be expressed as

L̂ρ̂ =
N−1∑
j=0

N−1∑
k=0

Âjkρ̂Â
†
jk (13)

with Â00 =
√

1 − p + p/N2Û00 and Âjk = (
√

p/N)Ûjk (jk �= 0). The Bell measurement
and the depolarizing channel are important in quantum information processing. It is seen from
these results that the Pegg–Barnett phase operator is a useful tool for quantum information
processing as well as investigating quantum optical systems.

For a two-dimensional Hilbert space H2, we can set |φ0〉 = |0〉 and |φ1〉 = |1〉. Then
the unitary operator Û given by equation (2) becomes the Pauli matrix σ̂x , the eigenstates of
which are given by |θ0〉 = (|0〉 + |1〉)/√2 and |θ1〉 = (|0〉 − |1〉)/√2. The transformation of
the number eigenstates |φ0〉 and |φ1〉 to the phase eigenstates |θ0〉 and |θ1〉 is the Hadamard
transformation. The number and phase operators are n̂ = (1̂ − σ̂z)/2 and θ̂ = π(1̂ − σ̂x)/2.
The unitary depolarizers become Û00 = 1̂, Û01 = σ̂x , Û10 = σ̂z and Û11 = iσ̂y . The entangled
quantum states |�jk〉 (j, k = 0, 1) become the well-known Bell states.

In the above construction, we have obtained N2 unitary depolarizers defined on the N -
dimensional Hilbert space HN . Using the results obtained in [7, 8], we need at least N2

unitary depolarizers to satisfy the relation (1). Since there are N2 unitary depolarizers in
the N -dimensional Hilbert space HN , perfect quantum teleportation and perfect quantum
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dense coding are possible [5]. Furthermore, the encryption of quantum states can be done
by applying the unitary depolarizers with equal probabilities [7, 8]. When we apply one of
the N2 unitary depolarizers, at random, to any quantum state ρ̂ defined on the Hilbert space
HN , for an eavesdropper who does not know which one is used, the encrypted quantum state
becomes completely random, that is, (1/N2)

∑N
j=1

∑N
k=1 Ûjkρ̂Û

†
jk = (1/N)1̂. It was shown

that N2 unitary depolarizers are necessary and sufficient to encrypt a quantum state defined
on the Hilbert space HN . This result, information theoretically, means that 2n bits of classical
information are necessary and sufficient to encipher n qubits of quantum information [7, 8].
Therefore we can describe the quantum teleportation, the quantum dense coding and the
encryption of quantum states in terms of the Pegg–Barnett phase operator [10, 11].

We now derive the classical information capacity C of quantum dense coding with unitary
encoding. Suppose that Alice sends classical information to Bob via the quantum dense
coding. To do this, Alice and Bob share a quantum state ρ̂AB defined on a tensor product space
HA ⊗ HB of two Hilbert spaces HA and HB (NA = dim HA and NB = dim HB), where the
system A is assigned to Alice and the system B to Bob. When Alice encodes the classical
information by applying unitary operators to the system A, Bowen has derived the upper bound
on the classical information capacity C of the quantum dense coding [6], which is given by
C � log NA + S(ρ̂B) − S(ρ̂AB), where ρ̂B = TrB ρ̂AB is the reduced quantum state of the
system B held by Bob and S(ρ̂) = − Tr[ρ̂ log ρ̂] is the von Neumann entropy. It has been
shown that the equality can be achieved in two- and three-dimensional Hilbert spaces. It has
been conjectured that the classical information capacity C with unitary encoding is given by
C = log NA + S(ρ̂B) − S(ρ̂AB) [6].

We will demonstrate the equality C = log NA + S(ρ̂B) − S(ρ̂AB). Suppose that
Alice encodes classical information by applying one of the unitary depolarizers ÛA

jk (j, k =
0, 1, . . . , NA −1), which are given by equation (7), with equal probabilities to the system A in
the quantum state ρ̂AB and sends the encoded system to Bob. Then Bob obtains the quantum
state ρ̂AB

jk with probability πjk = 1/N2
A (j, k = 0, 1, . . . , NA − 1):

ρ̂AB
jk = (ÛA

jk ⊗ Î B)ρ̂AB(Û
A †
jk ⊗ Î B). (14)

The classical information capacity C of the quantum dense coding is given by the Holevo
entropic function [15, 16]

C = S

(
1

N2
A

NA−1∑
j=1

NA−1∑
k=1

ρ̂AB
jk

)
− 1

N2
A

NA−1∑
j=1

NA−1∑
k=1

S(ρ̂AB
jk ). (15)

Since the operator ÛA
jk is unitary and the von Neumann entropy is invariant under a

unitary transformation, we have the equality (1/N2
A)

∑NA−1
j=1

∑NA−1
k=1 S(ρ̂AB

jk ) = S(ρ̂AB).

Furthermore, using the fact that the unitary depolarizer ÛA
jk satisfies equation (10), we obtain

(1/N2
A)

∑NA−1
j=1

∑NA−1
k=1 ρ̂AB

jk = (1/NA)Î
A ⊗ ρ̂B , where ρ̂B = TrA ρAB is the reduced quantum

state of Bob. Thus we obtain the classical information capacity C of the quantum dense coding
with unitary encoding:

C = log NA + S(ρ̂B) − S(ρ̂AB). (16)

This has proved the conjecture given by Bowen [6]. When the quantum state ρ̂AB is pure, the
capacity becomes C = log NA + S(ρ̂B).

The degree of entanglement of the quantum state ρ̂AB is measured by the relative entropy of
entanglement ER(ρ̂

AB) [17], which is defined by ER(ρ̂
AB) = minσAB∈D S(ρ̂AB |σ̂ AB), where

S(ρ̂|σ̂ ) = Tr[ρ̂(log ρ̂ − log σ̂ )] is the quantum relative entropy and the minimum is taken over
the set D of all separable states defined on the Hilbert space HA ⊗ HB . Recently, Hiroshima
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has shown that if NA = NB = N , the classical information capacity C of the quantum dense
coding with unitary encoding satisfies the inequality ER(ρ̂

AB) � C � log N + ER(ρ̂
AB) [4].

Substituting equation (16) into this inequality, we obtain S(ρ̂B) � ER(ρ̂
AB) + S(ρ̂AB). In

the same way, we can derive the inequality S(ρ̂A) � ER(ρ̂
AB) + S(ρ̂AB). Thus the relative

entropy of entanglement ER(ρ̂
AB) satisfies the inequality

max[S(ρ̂A), S(ρ̂B)] � ER(ρ̂
AB) + S(ρ̂AB) (17)

where the equality holds for a pure quantum state ρ̂AB = |�AB〉〈�AB |.
To perform the quantum dense coding, Alice and Bob must share an entangled quantum

state ρ̂AB . A method for doing this is as follows: Alice first prepares an entangled quantum
state |�AB〉 locally and then sends the system B to Bob through a noisy quantum channel. In
this case, the quantum state ρ̂AB shared by Alice and Bob becomes

ρ̂AB = (ÎA ⊗ L̂B)|�AB〉〈�AB | (18)

where ÎA is an identity map of the system A and L̂B is a trace-preserving completely positive
map of the system B, describing the noisy quantum channel [18–20]. In this case, the classical
information capacity C of the quantum dense coding is given by

C = log NA + S(L̂Bρ̂B) − S((ÎA ⊗ L̂B)|�AB〉〈�AB |) (19)

where ρ̂B = TrA |�AB〉〈�AB | is the reduced quantum state before the transmission through
the noisy quantum channel. The quantum state L̂Bρ̂B is the output state of the noisy quantum
channel, and the von Neumann entropy S((ÎA ⊗ L̂B)|�AB〉〈�AB |) is the entropy exchange
Se(ρ̂

B, L̂B) of the noisy quantum channel [21]. How much quantum entanglement can be
transmitted by the noisy quantum channel is estimated by the coherent information IC(ρ̂

B, L̂B)

of the quantum channel [22]:

IC(ρ̂
B, L̂B) = S(L̂Bρ̂B) − S((ÎA ⊗ L̂B)|�AB〉〈�AB |). (20)

Thus the classical information capacity C of the quantum dense coding is expressed in terms
of the coherent information IC(ρ̂

B, L̂B) of the noisy quantum channel which is used to share
the quantum state between Alice and Bob:

C = log NA + IC(ρ̂
B, L̂B). (21)

Furthermore, we obtain the relation between the coherent information and the relative entropy
of entanglement IC(ρ̂B, L̂B) � ER((ÎA ⊗ L̂B)|�AB〉〈�AB |). When Alice shares a quantum
state with Bob by preparing a pure quantum state |�AB〉 and sending the system B through
a noisy quantum channel L̂B , she should prepare a quantum state such that the coherent
information IC(ρ̂

B, L̂B) is maximized. Then the classical information capacity C of the
quantum dense coding is given by C = log NA + max|�AB 〉 IC(ρ̂B, L̂B). For a disentangled
state |�AB〉 = |ψA〉⊗|ψB〉, the coherent information vanishes and the inequality C � log NA

is obtained.
Finally, we consider the case of an infinite-dimensional Hilbert space. If we take a

limit N → ∞ in equations (7) or (8), the operator Ûjk becomes Ûk(θ) = eiθn̂Êk , where
Ê = ∑∞

n=0 |φn〉〈φn+1| is the Susskind–Glogower non-unitary phase operator [23, 24]. In this
limit, θk → θ and θk+1 − θk = 2π/N → dθ and the phase variable θ takes a continuous
value in a range of −π � θ < π . It is easy to see that (1/2π)

∫ π

−π
dθ

∑∞
j=0 Ûk(θ)X̂Û

†
k (θ)

�= (Tr X̂)1̂. Thus we have found that if we take the limit N → ∞, the unitary depolarizer
Ûjk becomes a non-unitary non-depolarizer. When we have to treat an infinite-dimensional
Hilbert space, according to the scenario of the Pegg–Barnett phase operator formalism [10,11],
all calculations are performed in a finite-dimensional Hilbert space and we take the limit



L198 Letter to the Editor

N → ∞ after the calculations are completed. It should be noted that the displacement
operator D̂(α) is a unitary depolarizer in an infinite-dimensional Hilbert space, where the
equality (1/π)

∫
d2α D̂(α)X̂D̂†(α) = (Tr X̂)1̂ holds.

In summary, we have shown that the Pegg–Barnett phase operator is useful for quantum
information processing as well as investigating quantum optical systems. In particular, the
unitary depolarizers, the completely entangled orthonormal system, the generalized Bell
measurement and the generalized depolarizing channel are described by the Pegg–Barnett
phase operator.
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