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Multisite-interaction Ising model approach to the solid 3He system on a triangular lattice
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We consider the Ising model with multiple-spin interactions on a recursive lattice of special type~the Bethe
lattice of square plaquettes with additional inner link! as some approximation to the two-dimensional multiple-
spin exchange model with two-, three-, and four-spin exchanges. This statistical system can be regarded as an
approach to solid3He films which have the structure of a regular triangular two-dimensional lattice. The
corresponding recursion relations for the partition function and magnetization per site are obtained. Using the
dynamical method, we plot the diagrams of magnetization versus the external magnetic field for various values
of exchange parameters and finite temperatures. The system exhibits different magnetic behaviors, depending
on the values of the exchange parameters. The plots, corresponding to a purely ferromagnetic situation as well
as more complex plots containing magnetization plateaus atm50 andm/msat51/2, are obtained. We also
show that on some recursive lattices plateaus can appear with Ising pair interactions solely. A diagram with one
bifurcation loop is also obtained. As usual, the bifurcation points are identified with second-order phase
transitions. An attempt is made to elucidate the microscopic structure of the emerging novel ordered phases.
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I. INTRODUCTION

Solid helium, due to the physical conditions providing
existence—low temperatures and high pressures—and d
the light mass of helium atoms, is a unique example o
purely quantum crystal.1 Moreover, properties of solid3He
and solid 4He are steeply different from each other as,
contrast to4He nuclei, the nuclei of3He are fermions with
spin 1/2. Thus, solid3He can be regarded as a system
almost localized identical fermions. The microscopic theo
of magnetism for such systems is based on the concept o
permutation of particles.2,3

Recently, solid 3He films adsorbed on the surface
graphite4 have attracted extensive attention, since it is a ty
cal example of a two-dimensional frustrated quantum-s
system.5 Particularly, the magnetically active second lay
exhibits a large variety of interesting features, which are
still completely understood.

In these films the nuclei of3He form a system of quantum
one-half spins on a triangular lattice. Many experimental6–8

and theoretical9–11 studies suggest that the exchanges
more than two particles are dominant in this system. T
change from ferromagnetic behavior to antiferromagne
takes place when the coverage of3He atoms decreases. Th
phenomenon can be explained in terms of ‘‘multiple-sp
exchange’’~MSE!: in a fully packed system, three-spin e
change is dominant and, according to general principles3 is
ferromagnetic. In loosely packed systems four- and six-s
exchanges become important and lead to a frustrated an
romagnetic system. So multiple-spin exchanges prod
frustration by themselves and, moreover, strong competi
between odd- and even-particle exchanges is also respon
for frustration.12 Thus, solid3He films, described in terms o
the multiple-spin exchange model, exhibit very interest
0163-1829/2003/67~2!/024424~13!/$20.00 67 0244
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and complex magnetic behavior including the appearanc
various ordered phases13 and magnetization plateaus.

The magnetization plateau is quite a new member, wh
has joined a large family of nontrivial quantum phenome
in one- and two-dimensional spin systems. These kinds
plateaus are not associated with saturation phenomena.
tually, beginning at some intermediate value of the exter
magnetic fieldH1C

,HS ~saturation field! the system cease

to respond to the increase of the field and adsorbs en
without any change of magnetization. This takes place u
H reaches some other valueH2C

,HS when magnetization
recovers its normal behavior and begins to change its va
again. Thus, some horizontal region appears on the mag
zation versus external magnetic field curve between the
ues H1C

and H2C
. Typical examples of such systems a

different kinds ofS51/2 andS53/2 Heisenberg spin chain
with next-nearest-neighbor and alternating next-near
neighbor interactions, bond-alternating quantum-spin cha
and -spin ladders.14 The values of the magnetization at whic
plateaus occur are restricted to be rational numbers.
quantum-spin chains at zero temperature, general criteria
these restrictions have been established by Oshikawaet al.15

The appearance of magnetization plateaus in tw
dimensional systems has been established both theoreti
and experimentally. On the triangular lattice a magnetizat
plateau was observed atm/msat51/3 for compounds like
C6Eu ~Ref. 16!, and CsCuCl3 ~Ref. 17! where the plateau
originates from a three-sublattice ‘‘up-up-down’’~uud! or-
dered structure.

Theoretical studies of antiferromagnets~with two-spin ex-
changes! show that quantum corrections to the magnetizat
plateau atm/msat51/3 are also vanishing.18 A similar mag-
netization plateau was also discovered in a multiple-spin
©2003 The American Physical Society24-1
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T. A. ARAKELYAN et al. PHYSICAL REVIEW B 67, 024424 ~2003!
change model using exact diagonalizations of finite-s
clusters in a model with four-spin exchange on a squ
lattice19 and in a model with two-, three-, four-, five-, an
six-spin exchanges on the triangular lattice.20 Further inves-
tigation of this magnetization plateau was made in Ref. 21
originates from the appearance of a four-sublattice ‘‘up-
up-down’’ ~uuud! structure due to four-spin exchange. The
mal effects were considered using Monte Carlo simulatio
The appearance of a magnetization plateau in a spin la
with four-spin exchange was established in Ref. 22.

The approach we have developed in the present pap
based on several approximations.23 The key point of our ap-
proach is the so-called Bethe approximation~recursive
lattice!,24 which is a very powerful tool in investigating
many theoretical problems in statistical mechanics, c
densed matter physics, gauge models, macromolecule p
ics, etc.25,26 Moreover, it has been argued recently27 that, in
some cases, Bethe lattice calculations are more reliable
mean-field calculations. Actually there are a few differe
ways of construction of recursive lattices. One of them
realized via connection through sites between succes
generations and the other by links. We assume that the l
case may be relevant in obtaining a variety of modula
phases, which are typical for spin systems with compet
interactions.28

However, the specificity of the calculations, which w
implement, strictly requires us to use Ising spin variab
instead of Heisenberg ones. Undoubtedly this approxima
is rather rough, since there are no reasonable condition
solid 3He under which we could neglect the nondiagon
part of the Heisenberg or four-spin interaction. Neverthele
there is now clear evidence of the colinear nature of
plateau phase in the MSE model on a triangular lattice.13,21If
the spins points preferentially along the direction of the m
netic field, we expect that a large magnetic field reduces
transverse fluctuations. In that case, an Ising model w
spins along the direction of the magnetic field should ca
the essence of the physical behavior.

The present approach allows us to obtain magnetiza
diagrams for arbitrary finite temperatures and any set of
change parameters, using the general advantages of recu
lattices or dynamical system method.

We propose a special type of recursive lattice, which
actually a Bethe-type lattice consisting of square plaque
with additional inner links, and obtain the corresponding
cursion relations for the partition function and magnetiz
tion. The dynamical method allows us, using the techniq
of simple iteration, to plot the magnetization diagrams
our model for arbitrary finite temperature and various valu
of exchange parameters.

The paper is organized in the following way. Section II
devoted to the main ideas of multiple-spin exchange mod
in relation to solid3He. In Sec. III we construct the recursiv
lattice and formulate the problem of multiple-spin exchan
models with two-, three-, and four-spin exchanges on it.
Sec. IV we derive the recursion relations for the partiti
function and magnetization per site. Some details about
numerical calculations and plots of magnetization cur
02442
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versus external magnetic field are presented in Sec. VI. S
VII contains the conclusion.

II. EXCHANGE HAMILTONIAN FOR SOLID 3He

It is known that the Hamiltonian describing solid3He can
be written as

H5HPh1Hex1HZ . ~1!

The first termHPh is the phonon contribution and is no
essential for our considerations because it is not couple
the exchangeHex and ZeemanHZ terms which are respon
sible for magnetism in solid3He.

The most general expression for the spin-excha
Hamiltonian is1–3

Hex52(
n,a

Jna~21!pPn . ~2!

Here the summation runs over all permutations of partic
Pn is the permutation operator ofn particles,Jna is the cor-
responding exchange energie~positive! (a distinguishes to-
pologically inequivalent cycles!, and p is the parity as de-
fined in permutation group theory, i.e., it is odd~even! if the
decomposition of the permutation into a product of p
transpositions involves an odd~even! number of transposi-
tions.

It is obvious from Eq.~2! that exchanges with odd an
even numbers of particles contribute with different signs.
our case there is no need for indexa in Eq. ~2!, since on the
regular two-dimensional lattice all three- and four-sp
cycles formed with nearest neighbors are equivalent.

Thus one can write down the exchange Hamiltonian
planar solid3He in the following way:

Hex5J2 (
pairs

~P21P2
21!2J3 (

tr iangles
~P31P3

21!

1J4 (
rectangles

~P41P4
21!1•••, ~3!

where the sum in the first term is going over all pairs
particles, in the second term over all triangles, and in
third term over all parallelograms consisting of two triangl
and so on~see Fig. 1!.

The expression of a pair transposition operatorPi j has
been given by Dirac,2

Pi j 5
1

2
~11si•sj !, ~4!

wheresi is the Pauli matrix, acting on the spin at thei th site.
It is easy to see thatP2

215P2 which is not valid forn.2.

FIG. 1. Two-, three-, and four-spin exchange operators acting
the triangular lattice.
4-2
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MULTISITE-INTERACTION ISING MODEL APPROACH . . . PHYSICAL REVIEW B67, 024424 ~2003!
Other Pn operators can be expressed in terms of pair tra
position operatorP2. For the three-spin permutation operat
we have

Pi jk5Pi j •Pik5
1

4
~11si•sj !~11si•sk!. ~5!

Using the identity

~si•sj !~si•sk!5sj•sk1si•@sj3sk#, ~6!

one can write the former expression as

Pi jk5
1

4
~11si•sj1sj•sk1sk•si1si•@sj3sk# !

~7!

and, hence,

Pi jk1~Pi jk !215
1

2
~11si•sj1sj•sk1sk•si !. ~8!

In the same way one can obtain an expression for the f
spin permutation operators:

Pi jkl 5Pi jk•Pil , ~9!

Pi jkl 1~Pi jkl !
215

1

4 S 11 (
m,n

~sm•sn!1Gi jkl D , ~10!

where the sum is taken over six distinct pairs (mn) among
the four particles~ijkl !, and

Gi jkl 5~si•sj !~sl•sk!1~si•sl !~sj•sk!

2~si•sk!~sj•sl !. ~11!

Thus the spin-exchange Hamiltonian for planar solid3He
up to four-spin exchange is, in terms of Pauli matrices,

Hex5
J2

2 (
^ i , j &

~11si•sj !2
J3

2 (
^ i , j ,k&

~11si•sj1sj•sk

1sk•si !1
J4

4 (
^ i , j ,k,l &

@11si•sj1si•sk1si•sl

1sj•sk1sj•sl1sk•sl1~si•sj !~sl•sk!

1~si•sl !~sj•sk!2~si•sk!~sj•sl !#. ~12!

The first sum is taken over all pairs of nearest-neighbor si
the second sum over all triangles, and the third sum ove
diamond plaquettes~see Fig. 1!. Omitting the constant term
for clarity in Eq. ~12! one can see that this is nothing el
than the generalized Heisenberg model with a multipart
~four-spin! interaction which is too complicated for furthe
analysis and thus it is the object of some approximations
simplifications. The first of them is the classical counterp
of Eq. ~12! when we have to replace the Pauli matrices
classical three-dimensional vectors (ui

x ,ui
y ,ui

z) of unit length
(uui

xu21uui
yu21uui

zu251) @it is the so calledO(3) model#.
Using this approach Kubo and Momoi13 have found a variety
of ground states of planar solid3He at T50: the perfect
02442
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ferromagnetic state, the tetrahedral state with four-sublat
structure and zero magnetization, the so-called 120° s
and theuuudstate. The two latter phases appear due to
four-spin exchange interaction.

We have made a further simplification based on the
servation that in a strong magnetic field—say, in thez
direction—the main contribution will be from thez compo-
nent of classical spin variables, which can effectively ta
the values61. Thus we actually have an Ising model wi
discrete spin variables instead of theO(3) model.

So our further considerations will concern the treatm
of the emergent multisite interaction Ising model~MII
model! which we propose as some approximation for plan
solid 3He. This approach is expected to become rather rob
in a strong external magnetic field.

III. SPECIAL-TYPE RECURSIVE LATTICE

Now let us consider instead of the periodic triangular l
tice a recursive one of special type. The lattice is construc
in the following way: at zeroth generation, spin variabl
are placed at the sites of a central square plaquette
an additional bond between two sites, so spinss0

(1) and
s0

(3) are regarded as neighbor ones ands0
(2) ands0

(4) are not
~see Fig. 2!.

Then we attach to each site of the central square plaqu
the new one so that the additional inner bond of each n
plaquette connects each site of the zeroth generation with
corresponding site of the first-generation plaquette. S
variables of the first generation are placed at the 12 site
the first shell consisting of four plaquettes. Carrying out t

FIG. 2. The recursive Bethe-type lattice of four-polygons w
an additional inner bound.S0

( i ) are the spin variables of the zerot
shell,S1 of the first shell.
4-3
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T. A. ARAKELYAN et al. PHYSICAL REVIEW B 67, 024424 ~2003!
procedure successively for each new shell we can obta
recursive lattice which actually is a Bethe-type lattice w
square plaquettes and additional inner links. It is evident
there are two sites of each plaquette with coordination nu
ber 6, the two others having coordination number 5. If fo
particle exchange is important, the use of such a lattice
relevant approach to the underlying triangular periodic
tice, taking into account that we restrict ourselves to the
changes of no more than four particles.

Now let us put the system described by Hamiltonian~12!
onto our recursive lattice and introduce an interaction w
the external magnetic field, which is given by the Zeem
Hamiltonian

HZ52(
i

g

2
\B•si , ~13!

whereg is the gyromagnetic ratio of the3He nucleus.
After some algebra, we have

2bH5(
h

$a1~Si•Sj1Sj•Sk1Sk•Sl1Sl•Si !1a2~Si•Sk!

1a3@Sj•Sl1~Si•Sj !~Sk•Sl !1~Sl•Si !~Sj•Sk!

2~Si•Sk!~Sl•Sj !#1h~Si
z1Sj

z1Sk
z1Sl

z!%. ~14!

Here the sum goes over all square plaquettes of our re
sive lattice, the external magnetic field is assumed to be
the z direction, and the parameters are

a15bS J3

2
2

J4

4
2

J2

2 D ,

a25bS J32
J4

4
2

J2

2 D ,

a352
bJ4

h
,

h5b
g\B

2
. ~15!

We have written down Eq.~14! in general terms; one ma
consider the variablesSi as classical vectors as well as Pa
matrices. Now, if we use the multisite interaction Isin
model, Eq.~14! takes the following form:

2bH5(
h

$a1~sisj1sjsk1sksl1slsi !1a2sisk

1a3~sjsl1sisjsksl !1h~si1sj1sk1sl !%.

~16!

Heresi takes the values61.
02442
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IV. RECURSION RELATION AND MAGNETIZATION
FUNCTION

Here we proceed to the derivation of the exact recurs
relations for our model. When the lattice is cut apart from t
central plaquette, it separates into four identical branches
we can first realize a summation over all spin configuratio
on each branch, getting the same result every time, and
to sum over spins of the central plaquette.

After this procedure, the partition function

Z5(
$S%

)
h

exp$a1~sisj1sjsk1sksl1slsi !1a2sisk

1a3~sjsl1sisjsksl !1h~si1sj1sk1sl !% ~17!

takes the form

Z5(
$S0%

exp$a1~s0
(1)s0

(2)1s0
(2)s0

(3)1s0
(3)s0

(4)1s0
(4)s0

(1)!

1a2s0
(1)s0

(3)1a3~s0
(2)s0

(4)1s0
(1)s0

(2)s0
(3)s0

(4)!1h~s0
(1)

1s0
(2)1s0

(3)1s0
(4)!%gN~s0

(1)!gN~s0
(2)!gN~s0

(3)!gN~s0
(4)!,

~18!

wheres0
(a) are spins of the central plaquette,gN(s0

(a)) denotes
the contribution of a branch at theath site of the central
plaquette, andN is the number of generations (N→` corre-
sponds to the thermodynamic limit, neglecting surfa
effects24–26!

In the same manner we can obtain the equation for
branch, cutting it along any site of the first generation wh
is nearest to the central plaquette. For instance,

gN~s0
(1)!5(

$s1%
exp$a1~s0

(1)s1
(4)1s1

(4)s1
(1)1s1

(1)s1
(2)1s1

(2)s0
(1)!

1a2s1
(1)s0

(1)1a3~s1
(2)s1

(4)1s0
(1)s1

(1)s1
(2)s1

(4)!

1h~s1
(1)1s1

(2)1s1
(4)!%

3gN21~s1
(1)!gN21~s1

(2)!gN21~s1
(4)!. ~19!

The sum is taken overs1
(1) , s1

(2) , ands1
(3) variables. One

can easily calculate Eq.~19! for both values (61) of s0
(1) ,

gN~1 !5a4bc2d3gN21
3 ~1 !12bc22dgN21

2 ~1 !gN21~2 !

1b21dgN21
2 ~1 !gN21~2 !1a24bc2d21gN21

3~1 !gN21
2 ~2 !12b21d21gN21~1 !gN21

2 ~2 !

1b21d23gN21
3 ~2 !, ~20!

gN~2 !5b21d3gN21
3 ~1 !12b21dgN21

2 ~1 !gN21~2 !

1a24bc2dgN21
2 ~1 !gN21~2 !1b21d21gN21

3~1 !gN21
2 ~2 !12bc22d21gN21~1 !gN21

2 ~2 !

1a4bc2d23gN21
3 ~2 !, ~21!
4-4
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MULTISITE-INTERACTION ISING MODEL APPROACH . . . PHYSICAL REVIEW B67, 024424 ~2003!
where the following notation has been introduced:

a5expa1 , b5expa2 , c5expa3 , d5exph.
~22!

Taking Eq.~20! over Eq.~21! one can obtain the recursio
relation for the variablexN5gN(1)/gN(2):

xN5 f ~xN21!,

f ~x!5
Am3x31~2B11!m2x21~C12!mx11

m3x31~C12!m2x21~2B11!mx1A
. ~23!

Here

A5exp@b~4J322J423J2!#,

B5exp@b~2J32J2!#,

C5exp~bJ2!,

m5exp 2h5exp~bg\B!. ~24!

Such a recursion relation plays a crucial role in our furth
investigations, because one can obtain all thermodyna
data of the system, using the technique of dynamical sys
theory, applied to the one-dimensional~1D! map ~23!. Par-
ticularly, we will deal with the magnetization per site, whic
can be obtained in the same way as the recursion rela
~23!. For an homogeneous lattice the magnetization func
is given by the formula

m5

(
(s)

sie
2bH

(
(s)

e2bH
, ~25!
th
fo
th

02442
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wheresi is the spin on an arbitrary site. In our case, howev
the lattice is not homogeneous and actually there are
types of sites which have different coordination number
and 5, respectively. Thus, the full magnetization function
the model under consideration consists of two parts. The
onem1 can be obtained as the thermodynamical average
the spin at an arbitrary site of coordination number 6~say,
S0

(1) in Fig. 2!; the second partm2 can be obtained in the
same way for a site with coordination number 5 (S0

(2) in Fig.
2!. The total magnetization is

m5
1

2
~m11m2!, ~26!

m15^s1&5

(
s1 ,s2 ,s3 ,s4

s1V~s1 ,s2 ,s3 ,s4!)
i 51

4

gn~si !

(
s1 ,s2 ,s3 ,s4

V~s1 ,s2 ,s3 ,s4!)
i 51

4

gn~si !

,

~27!

m25^s2&5

(
s1 ,s2 ,s3 ,s4

s2V~s1 ,s2 ,s3 ,s4!)
i 51

4

gn~si !

(
s1 ,s2 ,s3 ,s4

V~s1 ,s2 ,s3 ,s4!)
i 51

4

gn~si !

,

~28!

where V(s1 ,s2 ,s3 ,s4)5exp$a1(s1s21s2s31s3s41s4s1)
1a2s1s31a3(s2s41s1s2s3s4)1h(s11s21s31s4)% is the statisti-
cal weight of the central plaquette. Carrying out calculatio
analogous to Eqs.~20!–~23! we obtain the following expres
sions form as a function ofx:
m15
Am4x412Bm3x322Bmx2A

Am4x412~B11!m3x312~C12!m2x212~B11!mx1A
, ~29!

m25
Am4x412m3x322mx2A

Am4x412~B11!m3x312~C12!m2x212~B11!mx1A
, ~30!

m5
Am4x41~B11!m3x32~B11!mx2A

Am4x412~B11!m3x312~C12!m2x212~B11!mx1A
. ~31!
the
se-
a

ag-
to a
The coefficientsA, B, andC are defined in Eqs.~24!.
Having these dynamical expressions one can draw

plots of magnetization versus external magnetic field
various temperatures. For this purpose one has to fix
value of the dimensionless magnetic fieldh ~for a given tem-
perature and exchange parameters! and implement the simple
iteration of Eq.~23!, beginning with some initialx0. The
e
r
e

amount of iterations must be large enough to achieve
thermodynamical limit. In the general case the recursion
quence$xn% either converges to a stable fixed point or to
stable two-cycle. Substituting the final result into Eq.~31!
one can obtain the magnetization versus the external m
netic field. The case of a stable two-cycle corresponds
structure with two sublattices.
4-5
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FIG. 3. The plots of magnetization processes for the case when onlyJ3 is nonzero:~a! a typical high-temperature behavior atT
56J3; ~b! T53J3, the curve still remains continuous;~c! the curve with jump and atT52J3; ~d! T5J3 ferromagnetic ground state at low
temperatures.
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V. MAIN RESULTS

This section is devoted to the analysis of the magn
behavior of our model in a strong magnetic field. For the
systems, recent experimental measurements8 as well as the-
oretical calculations11 predict the following relations be
tween the exchange energiesJn on the regular triangular lat
tice:

J3.J2.J4>J6>J5 . ~32!

It is worth noticing that the values of pureJn are not
obtainable in the experimental measurements, because
n-spin exchange makes also a contribution to a f
(n21)-spin exchanges, and thus there are some effec
exchange parameters, which are certain combinations oJn
~such asJ5J222J3 and K5J422J5) and can be directly
obtained from experiments. So the multiple-spin excha
model with two-, three-, and four-spin exchanges is usu
described by two parameters

J5J222J3 and K5J4 ~33!

The calculations, based on the WKB approximation10

show that all exchange parameters vary in a rather w
range depending on the particle density. It is also obvi
that the values of the exchange parameters depend not
on the particle density but also on the type of lattice, parti
02442
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larly on its coordination number and dimensionality. So f
the 2D triangular lattice it was found that at high densitie
the exchangeJ is dominant, mainly due to the three-sp
exchange, but the ratiouK/Ju increase rapidly with the low-
ering of the particle density, and below some value of
particle density four-spin exchangeK becomes important
The magnetic properties of the system change from fe
magnetic to antiferromagnetic depending on whether thr
or four-spin exchange is dominant at the present value of
particle density.

From the arguments stated above one can conclude
there is a large freedom in the choice of concrete values
the exchange parametersJ2 , J3, andJ4. Moreover, it is quite
difficult to identify our model, having so many assumption
with some concrete value of the particle density.

Since the main features of the resulting magnetic beha
of the system under consideration are caused by the inter
between ferromagnetic (J3) and antiferromagnetic (J2 and
J4) interactions, it is of interest first to consider the thr
above-mentioned cases, each taken separately.

The simplest case of pure ferromagnetic behaviorJ3
51, J25J450) is presented in Fig. 3. At relatively hig
temperatures the magnetization curve has a smooth m
tone form of Langevin type@Fig. 3~a!# with a rather large
value of the saturation field. Decreasing the temperature,
curve becomes more steep and the value of the satura
field decreases@Fig. 3~b!#. Further decreasing the temper
4-6
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FIG. 4. Plots of magnetization for the case when onlyJ4 is nonzero:~a! T52J4, the curve is of Langevin type;~b! T50.3J4, the first
indication of a future plateau;~c! T50.1J4, the curve with magnetization plateau atm/msat51/2; ~d! the curve with a wide magnetizatio
plateau which appears already in very low external field at extremely low temperatureT50.03J4.
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ture leads to the magnetization diagram, presented in
3~c!. Here the jump of magnetization takes place at an a
trary low value of the applied magnetic field. And finall
when T5J3 the ground state of the model becomes the
dered ferromagnetic one. The magnetization in zero fiel
equal to its maximal value, which corresponds to the fer
magnetic phase with all spins pointed in the same direct
Under the effect of an arbitrary weak magnetic field the tw
fold degeneracy of this phase is removed by orienting
spins along the field. The corresponding diagram is prese
in Fig. 3~d!.

The plots, obtained for the pure antiferromagnetic fo
spin interaction (J25J350, J451), are presented in Fig. 4
As usual the high-temperature magnetization curve is
Langevin type@Fig. 4~a!#. And the susceptibility increases a
low field with decreasing the temperature. But meanwhil
slowing down in the course of the magnetization functi
occurs at some intermediate values of the external field@Fig.
4~b!#. With further decreasing of the temperature this reg
of the curve transforms to a horizontal line, the magneti
tion plateau at the half of the saturation magnetization@Fig.
4~c!#. The appearance of a magnetization plateau atm/msat
51/2 in the MSE model on a two-dimensional triangu
lattice21 is associated with theuuudordered phase. It is very
natural to suggest that in our case of the Ising model
situation is the same; i.e., for each plaquette one of the s
is oriented opposite to the field and the three others are a
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the field. This ordereduuud phase becomes stable at lo
temperatures. The length of the plateau increases with
creasing temperature. In Fig. 4~d! one can see the plot fo
T50.03J4 where the length of the plateau is more than 2J4.

The case corresponding to the common antiferromagn
Ising model, when only pair interactions are included (J2
51, J35J450), turns out to be highly nontrivial on ou
hierarchical lattice of square plaquettes with an additio
inner link represented in Fig. 2. The corresponding plots
presented in Fig. 5. The high-temperature behavior is an
gous to that of the previous cases; the curve has a mon
nous form similar to the Langevin function@Fig. 5~a!#. The
plot for T50.2J2 @Fig. 5~b!# shows that the susceptibility
begins to decrease in the regions at zero magnetization a
m/msat51/2. The appearance of plateaus in the correspo
ing regions is expected. In contrast to the case of a pu
four-spin interaction, here we have two plateaus form50
andm/msat51/2.

The plateau atm50 arises from the so-calleduuddphase.
But due to the nonuniform nature of the lattice, theuudd
configuration of spins on a single plaquette contributes w
different energies, depending on whether the spins, c
nected by the additional inner link, are in the same posit
or not. One can easily calculate that the lowest energyE
523/2J2 corresponds to the configuration depicted in F
6~a!, in which spins, connected by an inner link, are in t
same position, while the configuration in which the spin
4-7
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FIG. 5. The plots of magnetization processes for the case when only simple pair interactions are included:~a! standard high-temperatur
curve of Langevin type;~b! T50.2J2, susceptibility begins to increase in two different regions of the curve;~c! T50.11J2, magnetization
plateaus have formed atm50 andm/msat51/2; ~d! the magnetization diagram with one bifurcation loop atT50.03J2, the region between
two bifurcation points corresponds to a novel ordered phase with two sublattice structure.
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connected by an inner link, aligned in the opposite dir
tions, has energyE521/2J2 @Fig. 6~b!#. In what follows we
will use (uudd)2 and (uudd)1 notation in order to distin-
guish these two states anduudd for both of them. Thus the
zero-temperature ground state in this case is ordered in
uuddconfiguration with spins connected by an inner link
the same position@the (uudd)2 phase#.

In Fig. 5~c! one can see the plot of the magnetizati
process forT50.11J2 where the above-mentioned platea
are shown evidently. At low but still finite temperatures t
transitions (uudd)2↔(uudd)1 caused by thermal fluctua
tions are possible. So we cannot be sure that the origin o
plateau atm50 in Fig. 5~c! is static and due to the (uudd)2

phase. Apparently here we are dealing with the mixture
(uudd)2 and (uudd)1 plaquettes.

The width of the plateau is not so long because with
creasing of the external field the system gradually devel

FIG. 6. Relevant configurations of spins on single plaque
and their energies:~a! (uudd)2 , E523/2J2; ~b! (uudd)1 ,
E521/2J2; ~c! (uuud)2 , E521/2J21h; ~d! (uuud)2 ,
E51/2J21h.
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to another ordered state, which leads to the next platea
m/msat51/2. This state has also a four-sublattice struct
with three spins aligned ‘‘up’’ and one ‘‘down’’ on eac
plaquette. This state is completely analogous to that obse
in the case of a purely four-spin interaction. But in contra
to the previous case where the position of the spin alig
opposite to the other three did not affect the energy of st
here one has to distinguish, fully analogous to theuuddsitu-
ation, two cases: spins, connected by an inner link, are
allel @(uuud)2# and spins, connected by an inner link, a
antiparallel @(uuud)1#, with energies2J2/21h and J2/2
1h, respectively.

So if we restrict ourselves to rough calculations for o
plaquette andT50, the magnetization process will be th
following: a plateau atm50, corresponding to the (uudd)2

ground state, an abrupt jump atH51/2J2 to the plateau at
m/msat51/2, corresponding to the (uuud)2 state, which at
this value of the external field becomes more favorable, a
finally, the last jump to the saturation magnetization at so
large value ofH.

But our further calculation for low temperature (T
50.03J2) indicates that there is a novel complex order
phase betweenuuddanduuud. In the Fig. 5~d! one can see
the bifurcations which are, as usual, identified with seco
order phase transition points.23–26 The first bifurcation ap-
pears atH51/2J2 when the (uudd)2 phase becomes un

e
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stable and the system acquires a new phase with long-r
order. When the external magnetic field reaches a valuH
52J2 another second-order phase transition leaves the p
to the uuud phase. The nature of the novel ordered ph
which appears betweenuudd and uuud phases needs a de
tailed analysis.

First of all it is obvious from Fig. 5~d! that betweenH
51/2J2 andH52J2 we have an ordered structure with tw
sublattices of plaquettes with average magnetizationsm50
andm/msat51/2, respectively. The separation into these t
sublattice is shellwise; i.e., the shells, havingm50 and
m/msat51/2, are alternating. But nothing can be said ab
the arrangement of spins inside a certain shell. All we kn
from Fig. 5~d! is just that we have an ordered state whi
very roughly is the remote analog of the antiferromagne
state on Husimi tree.23 But taking into account the extremel
low value of the temperatureT50.03J2 we can neglect the
role of thermal fluctuations and use a simple argument of
minimum of energy in order to make an assumption ab
the microscopic structure of the intermediate phase betw
uuddanduuud. It is very natural to suggest that this phase
a certain ordered mixture of theuudd and uuud plaquettes
with the global properties presented in Fig. 5~d!. In order to
determine rigorously the disposition of spins we took the f
first generations of the recursive lattice and examined
possible combinations of ‘‘up’’ and ‘‘down’’ spins which lea
the picture, depicted in Fig. 5~d!, following the general prin-
ciples of energy minimization. As a result we conclude tha
possible structure of the intermediate mixed phase is the
lowing: for those shells which havem50 magnetization, 3/4
of the plaquettes are in theuudd state while the other 1/4
consist ofuuudplaquettes. On the contrary, for those she
which have magnetizationm/msat51/2 the ratio is inverse
3/4 of all plaquettes are in theuuudstate whereas the othe
1/4 are in theuuddstate. It is obvious that the situation insid
the shells is not the static one. Due to the presence
frustration,5,23 certain transformations are possible, which
not destroy the general symmetry and shellwise ordering
the mixed phase. And this is the reason why the mixed ph
survives in a rather large interval of the external magne
field from H51/2J2 until H52J2. Further increasing of the
magnetic field leads to theuuud @apparently (uuud)2]
phase.

The magnetization processes in the general case whe
kinds of interactions are included show no qualitatively d
ferent behavior from those obtained previously. Roug
speaking, the plots for certain values of the exchange par
etersJ2 ,J3 ,J4, depending on which one of them dominate
have exactly all those features, which are typical for the c
when only this kind of exchange is present. So the comb
tion of J2 andJ3 leads either to a picture with magnetizatio
plateaus atm50 andm/msat51/2 and one bifurcation loop
or to the plots analogous to Fig. 4. The effect of the interp
is absent in this case, because in the MSE model perm
tions of three spins reduce to the effective pair exchang
though in the case of our lattice the value of the effective p
exchange constant depends on the type of link. Each in
link is involved in two three-spin permutations, whereas
external link is just involved in one. But this circumstan
02442
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does not change the general picture. The effect of the in
play is also absent between two- and four-spin interacti
except the phenomenon of enlargement of the plateau
m/msat51/2.

Finally, we have tried to take those values of the excha
parameters (J2 ,J3 ,J4) which have been estimated from su
ceptibility and specific-heat data in the low-density region8

J5J222J3523.07 mK, K5J4>1.873 mK. ~34!

For one of the possible sets ofJn , which is in agreement
with Eqs.~32! and~34!, J252,J352.535,J451.873, we ob-
tained the plots presented in Fig. 7. The standard hi
temperature curve@Fig. 7~a!# is depicted here for compari
son. In the next plot, obtained forT50.5 mK, a steep
increase of the susceptibility in the vicinity ofh50 appears.
As one can see in Fig. 7~b! this increase soon is changed f
the less steep region of the curve. With the further decrea
of the temperature a jump of magnetization takes place
h50 @Fig. 7~c!# from m50 to them/msat51/2 value with
the formation of a small magnetization plateau. Thus, h
we have a first-order phase transition from the antiferrom
netic ground state to theuuudstate. It is worth noticing that
in Ref. 8 the effective constant of four-spin exchangeK
5J422J5 was estimated. For the antiferromagnetic region
has the valueK50.562 mK. If in the calculation presente
above one takesJ450.562 mK, the resulting plots will have
only quantitative differences with respect to the latter ca
Namely, in order to obtain the magnetization plateau
m/msat51/2 the value ofJ2 must be increased~see Fig. 8!;
the value of the saturation field as well as the length of
plateau and all temperatures will be less than in the c
presented in Fig. 7. The further increasing ofJ2 and, follow-
ing from J5J222J3523.07 mK, increasing ofJ3 at con-
stantJ4 lead to the disappearance of the jump of magneti
tion at h50. It changes to the plateau, the length of whi
increases with increasingJ2. In Fig. 9 we presented the plo
for J257. Thus, the model under consideration can exh
antiferromagnetic properties at the estimated values of
parametersJ andK only if J2 becomes sufficiently large~for
K50.562 mK, J2.4 mK is enough!. Further analysis has
shown that all cases presented above exhaust the varie
the magnetic behavior for the system under consideratio

VI. RELEVANCE OF OUR THEORETICAL MODEL
AS AN APPROXIMATION TO REAL SYSTEMS

A. Nearest-neighbor antiferromagnetic models

We have obtained an unexpectedly rich behavior of
magnetization in our nearest-neighbor antiferromagn
Ising model on the Bethe lattice of plaquettes with additio
inner links represented in Fig. 2, with two plateaus atm
50 andm51/2. We have also been able to interpret the
plateaus in terms of the occurrence of colinearuuud and
uuddphases. These phases are obviously related to the to
ogy of the four-site plaquettes. This peculiar Bethe lattice
plaquettes has been chosen as the most suitable hierarc
lattice approximation to a triangular lattice with preponde
ant four-spin interactions. When the Hamiltonian is restric
4-9
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to the nearest-neighbor pair interactions, this hierarchical
tice is certainly a better approximation to the square lat
than to the triangular lattice. ForJ35J2/2 and J450, we
obtaina25a350 and the only remaining interactions in E
~16! are two-spin Ising terms along the outer links of ea
plaquette. Exact diagonalisations on finite clusters have
put in evidence anm50 magnetization plateau~i.e., a spin
gap! for the Ising model on the square lattice. Thism50
plateau disappears in the isotropic Heisenberg model.30 Of
course, the arguments we have given in the Introduction
an approximation of the Heisenberg model by its Ising p
are only valid at high fields. At zero field we have a comple

FIG. 7. Magnetization processes for the values of exchange
stants estimated for the low-density region in Ref. 8,J252 mK,
J352.535 mK, J451.873 mK: ~a! the standard Langevin-typ
curve forT52 mK; ~b! T50.5 mK, indication of the forthcoming
plateau atm/msat51/2 and a steep increase of the susceptibility
the vicinity of h50; ~c! T50.05 mK, the jump of the magnetiza
tion from the nonmagnetic state withm50 to theuuudstate.
02442
t-
e

so

r
rt
e

invariance of the Heisenberg Hamiltonian with respect
spin rotations and there is no realistic way to map it on
Ising model.

It is interesting to compare those results to that obtain
with the same nearest-neighbor Ising model on a Bethe
tice of triangles@see Fig. 10~a!#. Applying the same method
we obtain atT50.2J the magnetization curve shown in Fig

n-

FIG. 8. Magnetization processes for case, analogous to Fig
but taking into account the effective constant of four-spin exchan
J45K50.562 mK, J253 mK, and J353.035 mK: ~a! T
50.2 mK, the plot is qualitatively similar to that of Fig. 7~b!, but
with a narrower plateau;~b! T50.025 mK, the jump of magnetiza
tion as in Fig. 7~c!.

FIG. 9. Magnetization plateau atm50 for J257 mK, J3

55.035 mK, andJ450.562 mK.
4-10
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MULTISITE-INTERACTION ISING MODEL APPROACH . . . PHYSICAL REVIEW B67, 024424 ~2003!
11. This curve presents a magnetization plateau atm51/3
which is due to the occurrence of a colinearuud phase. The
two-dimensional Bravais lattice having the closest topolo
to this hierarchical lattice is certainly the kagome´ lattice@Fig.
10~b!#. A magnetization plateau atm51/3 has been recentl
put in evidence through exact diagonalizations on finite cl
ters with up toN533 spins in the nearest-neighbor antife
romagnetic Heisenberg model on the kagome´ lattice.31 Simi-
lar diagonalizations on a finite-size clusters have also pro
the occurrence of a magnetization plateau atm51/3 in both
Ising and Heisenberg antiferromagnets on a triangu
lattice.29,30

B. Four-spin interaction Hamiltonian

Our exact four-spin Ising model on the hierarchical Be
lattice of square plaquettes~Fig. 2! has put in evidence the
occurrence of a magnetization plateau atm51/2. To deduce
that this result has some relevance to the four-spin excha
Hamiltonian on a triangular lattice which describes the ph
ics of solid 3He, the following drastic approximations hav
to be made.

~i! The rotationally invariant four-spin exchange Ham
tonian has to be mapped on to its Ising counterpart. T
magnetic field at which them51/2 plateau appears is rela
tively high. Since the corresponding magnetic state can
described as a colinear state, we expect spins to orient a
the ẑ direction of the magnetic field, reducing the transve
( x̂,ŷ) fluctuation. The robustness of them51/3 plateau ob-
served in earlier exact-diagonalization studies for the Ising

FIG. 10. A hierarchical-lattice approximation~a! to the kagome´
lattice ~b!.

FIG. 11. Magnetization plateau atm51/3 for the nearest-
neighbor antiferromagnetic Ising model on the hierarchical lat
represented in Fig. 10~a! (T50.2J).
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well as for the Heisenberg model on the triangular latt
gives us some confidence in such an approximation.

~ii ! The triangular lattice has to be mapped on the hier
chical Bethe lattice of square plaquettes~Fig. 2!. Once again,
the robustness of them51/3 plateau obtained in the kagom´
lattice as well as in his hierarchical-lattice approximati
gives us some confidence in the fact that the hierarchi
lattice approximation catch the main features of the phys
behavior.

We conclude that our hierarchical-lattice approximati
confirms through a completely different approach the pre
ous results on the existence of am51/2 plateau in the pres
ence of large four-spin exchange.

VII. CONCLUSIONS

In the present paper we have made an attempt to apply
general ideas of the Bethe approximation with the use
recurrent lattice calculations to solid3He films, described by
a multiple-spin exchange model with two-, three-, and fo
spin exchanges. For this purpose we have proposed a re
sive lattice, which reflects the coordination properties of
underlying periodic triangular lattice in a more proper w
but in contrast to the latter is inhomogeneous. In order
realize this program some assumptions were made. Ins
of a model based on the Heisenberg Hamiltonian we h
considered the multispin-interaction Ising model with fou
site interactions.

The developed dynamical approach has allowed us to
tain plots of the magnetization per site versus external m
netic field for arbitrary finite temperatures. In spite of som
roughness of our approximations, the results, at least on
qualitative level, are rather impressive. With large four-sp
interactions, we have obtained magnetization curves wit
plateau atm51/2, which confirm earlier predictions for th
two-dimensional MSE model through differen
approximations.21 We gave some simple arguments conce
ing the structure of the ordered phases which correspond
these magnetization plateaus. Fully analogous to the cas
the MSE model studied in Ref. 21, magnetization plateau
our case appear to be due to the stability ofuuddanduuud
spin configurations.

With dominant nearest-neighbor pair interactions, our
erarchical Bethe lattice of square plaquettes shows two
teaus atm50 andm51/2. The plateau atm50, which cor-
responds to a spin-gapped ground state, is a feature o
Ising model and will probably disappear with a Heisenbe
Hamiltonian. Our approach allowed us not only to point o
the appearance of magnetization plateaus in rather sim
models with an Ising interaction, but also to show that th
are systems in which nearest-neighbor interactions can
to the formation of complex ordered structures. We supp
that in our case a crucial role is played by additional inn
links into the plaquettes which make the lattice inhomog
neous. Moreover, the appearance of magnetization plat
in the Ising models is very important by itself. This circum
stance could serve for the finding of other more simple
planations for the phenomenon of magnetization plateau
lattice systems.

e
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Surely on a quantitative level our model is still far fro
being in admissible correspondence with real solid3He
films, especially in a weak external field, but taking in
account the specificity of our approach~recursive lattice ap-
proximation, reduction to the Ising model! the qualitative
picture is reflected rather well. The intermediate mixed
dered phase which was found to exist betweenuudd and
uuudphases is also a novel phenomenon and it requires
ther detailed investigations.

In conclusion, we hope that the confirmation by our co
pletely different approach of the theoretical prediction
Ref. 21 of a plateau atm51/2 in the magnetization of solid
3He films adsorbed on graphite will encourage further
perimental investigations at high fields. We also point out
direction of further calculations which can lead to a mo
reliable approach to the solid3He films at finite temperature
using the general idea of a recursive lattice approximat
One can consider a recursive lattice constructed of plaque
connected by bonds. This kind of recursive lattice can p
ys

er
d

e

ev

-

p

.
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vide a stronger competition between ferromagnetic and a
ferromagnetic interactions and, as a consequence, a stro
frustration. Another feature of a bond-connected lattice is
possibility of more than one recursive relations appeari
The latter case is a way to obtain complex eigenvalues of
Jacobian which indicate the appearance of commensu
and incommensurate modulated phases28 ~in particularuudd
and uuud configurations!. A more relevant approach to th
underlying MSE Hamiltonian can be provided by the d
crete counterpart of the classical Heisenberg model@O(3)
model#: the so-called face-cubic models,32 in which a system
of two recursion relations appears.33
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