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Lindblad approach to quantum dynamics of open systems
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A Lindblad approach is presented to describe quantum dynamics of open systems. It is based on a construc-
tion of a Lindblad functional from the microscopic Caldeira-Leggett model for linear dissipation. It leads to a
master equation for the reduced density matrix, which preserves positive evolution on short times and asymp-
totically approaches equilibrium at high and low temperatures. This master equation is applied to study the
femtosecond dynamics of vibrational heating, relaxation, and bond breaking at a metal surface. Both a direct
solution of the density matrix and an indirect solution with stochastic wave functions are presented. The latter,
besides its statistical equivalence to the density matrix, provides a more physical picture about quantum jumps
of individual open system$S0163-182@8)05507-6

. INTRODUCTION tion functional from microscopic Hamiltoniarid-° Perti-
nent to surface dynamics, there have been several efforts to

A variety of physical and chemical systems in nature arégnclude the effect of surface degrees of freedom into
open or dissipative systems, whose dynamical variablegiolecule-surface dynamics within the density matrix
couple to an infinite number of degrees of freedom surroundapproactf®-??
ing them. Interaction between an open system and its envi- N the density matrix formalism, one looks for an effective
ronment often leads to dissipation, fluctuation, and an irreLiouville/influence functionallp[ p], governing the dissipa-
versible evolution of the system. The study of the dissipativeive evolution of the reduced density matrixof an open
dynamics of open systeié has been a central issue in System via the following equation of motion:
many different areas such as quantum noise in tunnel .
junctions! quantum-to-classical transition in the theory of d_p+ I—[H pl=Lolpl; (1
measuremerftand reaction rate theory in condensed phase. dt A~ " prE

Our particular interest in open system dynamics Orlglnatei‘ereH is the Hamiltonian of the system alone. Derivation of

p from microscopic Hamiltonians leads usually to a quan-
um master equation, in analogy with the classical Fokker-

from our earlier experience in ultrafast dynamics at a soli
surface, particularly in atomic and molecular processes su

as femtosecond desorptibri, sticking, and photo- and Planck equation, which uniquely determines the dynamics of

e:cectronl-lndluced fsurface reactlcfnm pr_muplle, deSCHptIOI: he open system. One example of this type was given in a
of a molecule-surface process always involves a proper tre ioneering work® by Caldeira and LeggetCL) for an os-

ment of both the molecule under investigation and the SUTSijator linearly coupled to an Ohmic environmetiinear

face coordinates, with Wh.'Ch the_ molecule.comes Into Con'dissipatior), where the master equation was obtained as
tact. There has been increasing experimental evidence

indicating that many interesting surface processes are initi- g, | y(2mkT _

ated by the adiabatic and nonadiabatic interactions between -+ 7 H.pl=— o —— XX pll+ilx.[p.ple I}

the molecule and electronic/phononic excitations at surfaces. %)
One example is the photoinduced chemistry at surfaces,

where hot electrons generated by a laser pulse lead to desoffiere y= 7/(2m) is the characteristic damping rate of the
tion and dissociation of adsorbed molecules within a shorbscillator with massn, and » and T are the friction coeffi-
time scalé€ It has also been realized that the dynamics ofcient and bath temperature. Similar master equations have
such processes often finds itself in the quantum regime dulkeen obtained along this line for a particle in more general
to the quantization of vibrational motibrand/or the finite environment**>*’with linear and nonlinear coupling. Such
time of coherence and decoherefdé.is thus essential to an approach is quite appealing in comparison with earlier
describe these phenomena quantum mechanically in order ffhenomenological models, for it represents a first-principles
gain deeper insight into the underlying mechanism and miapproach to the reduced dynamics if the Hamiltonian of the
croscopic dynamics. whole system is known.

Historically, description of open system dynamics has Master equatior(2) is known to have a few drawbacks.
largely been based on the reduced density matrixEirst, it is only valid at high temperatures, or equivalently,
formalism®!! within which both intrinsic quantum- the classical limit. This is a pity because quantum-
mechanical fluctuation of the system and external noise of itshechanical behaviors are known to be important only in the
environment can be conveniently incorporated in a unifiedow-temperature regime. A less obvious problem with this
manner. During the past few decades, efforts have beeequation is the nonpositivity ip on a time scale propor-
made to devise various phenomenological mddend tional to t~y~ !, as demonstrated in a number of recent
more recently to derive in a first-principles way the dissipa-works®~*8For vibrational motion in condensed phase and at
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surfaces;y =1 ps. This means that E¢R) is inapplicable surface. Both a direct solution of the density matrix and an
to ultrafast processes on femtosecond to picosecond timeadirect solution with stochastic wave functions are given.
scales, a regime that most quantum coherent and decoherentAt this point, we'd like to comment on the recent discus-
phenomena might be of importance. We would also like tosions in the literature regarding the positivity of the reduced
point out that such drawbacks are not specific to the Cldynamics®3%1°|t has been claimed that the reduced dy-
master equation. On the contrary, they are quite general, agmics does not need to be completely positive and the dis-
we demonstrate further in Sec. Il, and are often encounteresipation functional, although it can be, need not be of the
in a first-principles derivation of the reduced dynamics. Lindblad form. This point has been elaborated particularly
Recently, there are several attempts to derive mastdor a system with entangled initial density distribution with
equations preserving positive density evolution from micro-its environment®-2°What we would like to point out here is
scopic Hamiltonians. Such derivations are yet mainly limitedthe fact that nonpositive density distribution often leads in
to the weak-couplintf” or high-temperature reginté.For  practice to unphysical results, that contradict our physical
example, Diai tried to go beyond the lowest-order Markov- intuition and observations in realitypne such example will
ian approximation of the CL model, by including the next be given below for the desorption ratéThe necessity of
order term in the expansion of the noise kernel. A mastepositive evolution of the reduced dynamics is often essential
equation valid at medium and high temperatures has beew give a qualitatively correct account of many dynamical
obtained. This work was inspiring indeed, indicating onephenomena. This viewpoint has been taken as the starting
way to remedy the nonpositivity by further course grainingbasis of this work.
in time. Technically, his derivation was problemeﬂﬁ‘csince The rest of the manuscript is organized as follows: Sec-
other terms that were dropped out can be more importartion Il briefly reviews the Caldeira-Leggett mod€LM) for
than the ones captured in the equation, especially in the lowthe convenience of later reference. Section Il constructs a
temperature regime. In addition, it introduced a freeLindblad functional with a single dissipation operator. Its
parametéet’ to the master equation. functional form is then determined based on the CLM and its
The problem of nonpositivity does not exist in an alterna-generalization to low temperatures. It leads to a master equa-
tive approach of open quantum systems, namely, the theoyon of Lindblad class. This equation is subsequently applied
of quantum dynamical semigroups by Lindbfadnd Kossa-  to study vibrational heating and damping at a surface in Sec.
kowski and colleague¥. In particular, Lindblad showed that |V, where both a direct and an indirect solution with stochas-
the generatdf for a completely positive map should be of tic wave functions will be given. Section V contains a short
the following form: summary. A Brief Report of this work has been published in
a previous papet: here the various details are given together
. N with further applications. Generalization of this approach to
Lo=2 {[Vim.pVh]+[Vmo, VR, (3 nonlinear coupling has also been worked out and will appear
" in a separate paper.

where theV,,’s are the Lindblad dissipation operators. How-

ever, these operators are in general unknown, a_r_1d _the com- Il. MODEL OF LINEAR DISSIPATION

pact structurg3) does not generally assure equilibrium of

the system with the bath. The Lindblad theory, in spite of its  This section briefly reviews the CLM for a particlen

neat and concise layout, remains more like a formal structurescillator or an open systeéncoupled with a phononic bath.

than an approach of practical applications, although a fewt highlights particularly the relationship between the diffu-

constructions of such operators have been available in th&ion coefficients of Eq.2) and the Markovian approximation

literature?®>:2° of the fluctuation and dissipation kernels. These relations
Here, we present a Lindblad approach to quantum dynanwill be referred later in Sec. Ill to determine the Lindblad

ics of open systems with linear dissipation, taking advantagéunctional. Those who are familiar with such background

of the positivity of the Lindblad structure and the equilibrium materials can skip reading this part and go directly to the

behavior of microscopic Hamiltonian models. We constructnext section.

a single Lindblad operator, the explicit form of which is so  The model Hamiltonian of the CLM describes a linear

determined as to reproduce the dissipation terms of theoupling between a particle, with canonical varialbteand

Caldeira-Leggett master equation at high temperatures arp, and a bath of phonons, with variables,,p,},

their generalizations to low temperatures. We arrive at a new

master equation that preserves positive density evolution on p2 p2 1

short times and leads to equilibrium at high and low tem-  3y= 4+ U(x)+ >, Cxqe+ >, Ik —Mwﬁqﬁ).

peratures. This master equation closely connects two for- 2m k 2M 2

mally well-developed theories of open quantum systems, (4)

namely, the Lindblad formalism and the first-principles

guantum master equations. In addition, it provides an effiSimilar model Hamiltonian has been studied as an exactly

cient scheme to study open-system quantum dynamics, for #folvable model of quantum Brownian motion befdfeCal-

can be solved by propagating either the density matrix in aleira and Leggett solved the reduced dynamics of the par-

double-space representatip(ix,x’,t) or a set of stochastic ticle within the path-integral formalism developed by Feyn-

wave function&’ {|W(x,t))} with the given Lindblad opera- man and Vernod* One can also apply the standard field-

tor. As an example of application, we apply the master equatheoretic technique to obtain the same solution, as pursued

tion to study vibrational heating and damping at a metalrecently by Hu, Paz, and Zhahigand Digsi.!’
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bath, where the only modification needed is to replace the

tem and the bath, the time-development of the reduced derspectral functiorl (w) with that of the electronic bath.

sity matrix of the systenp can be written as

p(1)=S(t)p(0), (5)

where superoperat@® takes the following exact form
. . 1t T
S(t)=TeX[{ - gJ de ds{i[xy(7)—x_(7)]a(7—5)
0 0

X[X4(8) +X_(8) ]+ [X4(7) —X_(7)]ar(7—S)

X[x+(s)=x-(s)]} (6)

This equation has been derived with both the path-integr

approach®®and the field-theoretic methdd!” OperatorT
prescribes time ordering for the superoperators witmdex
and anti-time-ordering for those with sign. These super-
operators act by convention gm from the left/right side
when they aret-/— indexed.

In Eq. (6), the influence of the bath resides entirely on the
force-force  autocorrelation function (kerne), «a(t)

=1/#(F(t)F(0))r, whose real and imaginary parts read

Q¢ ﬁw
aR(t,T)ZfO I(w)cot%m_ cof wt)dw,

(@)

QC
a(t) _JO l(w)sin(wt)dw, (8)

wherel(w)=2k(C§/2M wy) d(w— w,) is the spectral func-
tion of the phonon bath, anf). is the bandwidth(cutoff
frequency. For an Ohmic bathl,(») is phenomenologically
approximated by (w) = nw/, wherex is the friction coef-
ficient.

Caldeira and Leggett approximated EB.and(8) by the
lowest-order expansion atg(t,T) in the high-temperature
limit (2w/kT)<<1, as such, the kernels become local in time,

27kT
aR(tiT): Ta(t)l (9)

a(t)=7nd'(1). (10

Differentiating Eq.(5) with time and using Eq€9) and(10),
they were able to obtain master equati@ The derivation
is, though tedious and long, straightforward’

Before we move on, we would like to make a few remarks
about the CLM:

(i) The two dissipation terms on the right hand side of Eq
(2) result from the Markovian approximation of the fluctua-
tion kernel ag and its dissipation counterpast,, respec-
tively. These two terms are connected by the fluctuation
dissipation relation. The balance between them leads th
system to thermal equilibrium with the bath.

(i) The superoperato% in Eq. (6) depends on the bath
only throughag and «,. This is a quite general feature for
linear as well as nonlinear coupling. For example, the sam
structure applies to a system linearly coupled to an electro

(i) As discussed in the introduction, master equations
like Eq. (2) obtained from microscopic models are often ill
behaved, particularly in the low-temperature regime, leading
to nonpositive evolution op. This is a quite general draw-
back often encountered in a first-principles derivation of the
reduced dynamic¥181°

Ill. A LINDBLAD APPROACH

In this section, a simple Lindblad functional is con-
structed based on the microscopic CLM. The resultant mas-
ter equation is of the Lindblad form. It can be solved either
in a double-space representation or by a set of wave func-

djons, which obey a stochastic differential equatisE), or

equivalently, a nonlinear Scfalimger equation.

A. Construction of a Lindblad operator

We look for a single Lindblad operatdy, which is a
linear combination ok andp,

V=pux+ivp, 11

V= pux—ivp,

where u and v are arbitraryc nhumbers to be determined
below. This particular choice has been motivated by the fol-
lowing physical observationsi) The known form of the
dissipation operator for a damped harmonic oscilf4tat
ca={mQ/2Aa[ x+ (i/mQ)p], which is a linear combination
of x andp; (ii) The known dissipation terms of the master
equation(2), which involves bothx andp operators(iii) The
Dekker's constrainfS for the diffusion coefficients of the
master equation for a damped oscillator, namely,

D,>0,

D,,>0

pp~ 0, (12

DyuxDpp— DxpDpx= v?12/4,

which also implies a symmetry betwegrandp. These con-
ditions must be fulfilled in order to preserve the intrinsic
quantum fluctuation, i.e., the Heisenberg uncertainty prin-
ciple.

A more general linear combination similar to Ed1) has
been discussed by A. Sandulescu and H. Scifantho ob-
tained a general master equation that could reproduce vari-
ous particular master equations available in the literattres.
Our work aims, however, at looking for particular but
uniquelinear combination, the coefficient of which is deter-
mined from a microscopic Hamiltonian model, like the

GLM.
B. Determination of the Lindblad functional from the CLM

To determine coefficienta andw, let’s first write out the
€indblad functional explicitly from Eqs(3) and(11), notic-
ing that[x,p]=i#,
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Lp=2VpV'—ViVp—pViv duced by the bath and is temperature independent as shown
) ) ) 5 5 ) in Eq. (8). This suggests to us one simple generalization of
= p(2xpX=X"p—pX°) +v(2ppp—p°p—pp°) Eq. (15),
+2i pv(ppx—xpp—p[X,p]) 2uv=ylh, (16)
==’ x.[x,p]]1=v*[p,[p.p]] = 2i wr([x,[P.p]4 ] being valid at all temperatures. In contrast, the first term of
—[xp.p]) Eq. (2), which resulted from the approximation efx(t, T)

by Eq. (9), describes environment-induced fluctuation and
where[A,B], represents an anticommutation relation be-depends ol as in Eq.(7). The high-temperature approxi-
tween operatoA andB. The equation of motion fop takes  mation(9), which was used in all previous derivatiofis;>1’
the following form: is obviously inapplicable in the low-temperature regime.
We therefore adopt a different approximation of the noise

dp i 5 . kernel at low temperatures, by observing that, at By
at T ptHLel= sk X eIl = 2 X[ p.p] ] | (w)coth@w/2kT) is a smooth function ofs, while cost)
) is fast oscillating. This observation leads us to the following
—vip.[p.pll, (13 approximation, noting that ) = 7w/ for the phenomeno-
logical representation of the Ohmic bath,
"=H-2uvhxp. (14
The three terms on the right-hand side of EtgB) and the aR(t,T):chCw( %) fﬂccos{wt)dw
last one on the left are all traceless due to the cyclic property ™ 2kT] Jo
of trace, which guaranteed/dt) Trp=0, i.e., the norm con- o
servation of the reduced density matrix. In fact, the general = nwccotl'<—c 3, (17)
Lindblad form Eq.(3) is traceless and the Lindblad approach 2kT

is thus universally norm conserving. ~n Q. .
One may easily realize that the first two terms on the"here o(t)=1/mf, “cosel)dw, andw, is a parameter fac-

right-hand side of Eq(13) are essentially the same as thosetorizin_g the noise kernel and has approximately the p.hy.sical
in the CL master equatiof2). This comparison suggests the Meaning as the center of théw) band. The Markovian limit

following conditions for choosinge and v: is recovered if(},—c and thusdé(t) approachesi(t). It
leads to a replacement okZ—# w.coth(rw/2kT) in the
w2=y2kTm/A?, first diffusion term of Eq.(2) and thus in our choice gf?,
ie.,
2uv=vylh as T—wo, (15
) hw
12=0. u(T)=ymw./hcot KT/ (19

which yields straightforwardlys?=y/(8mkT). This v* is  In fact this is a simple generalization of the fluctuation-
vanishing in the high-temperature limit, but becomes signifi-dissipation relation to the quantum regime.
cant at low temperatures. i Please note the order between the factorization of Eq.

It is interesting to compare this naive choice with §lie  and the Markovian approximation. The former is physical.
master equatioh! which contains, among several other The narrower the bandwidth dflw) (smallerQ.) is, the
terms, also a ternD,,[p,[p,p]] with a slightly different  better the approximation of E¢L7) will be. The second step
coefficientD,,= y/(6mkT). The latter was derived from the (). is mathematical, and is consistent with the Lindblad
CLM by going beyond the lowest-order Markovian approxi- formalism, which itself is based on the Markovian approxi-
mation of the noise kernel. This term, as it appeared in Egmation.

(13), stems naturally from the general Lindblad structure. The parametew, can be uniquely determined by a har-
Indeed, Eq(13) together with Eq(15) represents the sim- monic oscillator approximation &f=0, where the system
plest Lindblad master equatidh.it provides a remedy for should essentially occupy its ground state near its potential

the nonpositivity problem of the CLM. This naive choice is, minimum. The Lindblad operatdv should then degenerate
however, only valid at temperatures higher than or compawith the annihilation operator of the harmonic oscillatar,
rable with the vibrational quanturkT=%), for the original — JMQR2A[x+ (i/mQ)p], implying w/v=mQ. On the

CL master equation, on which E@L5) is based, becomes gther hand, from Eqg16) and(18), we haveu/v=2muw, at
invalid at low temperatures. Technically, this is due to theT=q. The harmonic approximation thus gives=Q/2, i.e.,
fact thatu® goes to zero a§— 0, which violates Dekker's half of the oscillator frequency. So the temperature depen-
constraintD ,,>0. dence of the two coefficients reads,

C. Extension to low temperatures mQ Q)

wA(T)= y—cotl—( —) : (19
To extend the functional to low temperatures, we notice 2h 4kT
that the two dissipation terms of E@) have different physi-
cal origin. The second term, which results from the approxi- V2(T) = Y tanl‘(—Q) (20)
mation of ¢,(t) by Eq. (10), describes the dissipation in- 2EmQ 4KT)’
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with the accompanying relation 2= y/f. Both expres- d d

sions reduce to Eq15) in the high-temperature regime, and ﬁf dxp(x,xt)= YJ dxpy [xp(x,x,0)]
have their physical bases on the fluctuation-dissipation rela-

tion. They therefore bring the equilibrium behavior into the g2
Lindblad formalism through their temperature dependence. It + Vzﬁzf dX—Zp(X,X,t)
is straightforward to check that EqEL9) and (20) fulfill all dx

the Dekker’s constraints at any temperature. d X= -+
In coordinate space, the master equati@B) takes the =| yxp(X,X,t) + v?h2— p(X,X,t)
following form: dx N——
ap(x,x" 1) i - , =0. (24)
ot + %[H(X)_H (x)]p(x.x",1) The last step vanishes due to the boundary condition of the
density distribution. The norm is thus conserved. Physically
o o2 N i the effect of the norm-increasing term is exactly canceled by
=~ # (DX T+ y(X=X)| X’ the frictional terms in the renormalized Hamiltonian.
9 J 2 D. Solution of the master equation
—vA(T)h? v v p(X,x",1), (21 with stochastic wave functions
While the master equatioi21) can be directly solved in a
_ a  hy double-spacdtwo-dimensiongl representation, as in a pre-
H(X)=H(X)+ifiyx—+i—-. (22 vious paper! it can alternatively be solved using a set of
X 2 . . ) .
stochastic wave functions. This can be a possible advantage
The last two terms of Eq22) come from Eq(14), i.e., of the Lindblad approach, when dimensionality is a problem
for a direct solution.
(X|[=2pvhixp,p]|x') = —2uvh(X|xpp—ppx—ifip|x") As shown by Gisin and Percivél,a master equation of

Lindblad class can be equivalently solved by a set of wave
functions{| )} via representing the density matrix by

p=Mly)(yl. (25)
This mgs_ter equation o_Ilffers ”O”? aII_preV|c_>us ones in MOEachl:/;} obeys the following stochastic differential equation
aspects:(i) a renormalized Hamiltonian with a frictional (SDBE):
force and an imaginary term; arid) an additional diffusion '
term (the v term) with temperature-dependent diffusion co- i
efficient. As Eq.(21) is directly constructed from the Lind- dlgy=— %H|¢>dt+2 (2(VIWm= VIV #)dt
blad functional, it therefore guarantees the positivity of the m
density matrix even on short times.

One may question about the consistency between 2§s. + ) (V= (V) | ) d . (26)
and(21), or equivalently, the essence of the additional term m
in Eg. (21). In general, a Markovian master equation can beHere {d¢,,} are complex stochastic variables, the Wiener
but need not be of the Lindblad form. It has been shown irprocesses, with the following properties in the mean average
several cases that a non-Lindblad master equation can be pyt: M[d&ndér]=2dt S, M[d&rder]=0, and
to a Lindblad form by further course graining in tih&"®  \[d¢ dé,]=0. Equation (26) is nonlinear due to(V)
Our simple Lindblad functional constructed from the micro- =<¢|\r}1| w)” and norm nonconserving, since the stochastic
scopic CLM represents a similar physical spirit. The ap-ngjse induces quantum jumps between different eigenstates.

pearence of the additional term is not astonishing. It ad- Eqr our specific choicey'= ux+ivp, the corresponding
equately guarantees the positive evolution of the reducedpg tgkes the following form:

=ity

! 1 p ! t
X aX, ( ' ' )

dynamics.
Before closing this section, let's prove the norm conser- i ) — —,
vation of Eq.(21), though the imaginary terms in E¢R2) dly)y=-— gHWf)dt_ HA(X=X)*+ v (p—p)

are non-Hermitian and seem to increase the total norm of the

density matrix. From the diagonal part of EQJ1), iy — —
+ 2= (px=xp)||p)dt
J g4 , _ _
g POXD =y X X T 1 e +[(x=X)+iv(p= Pl p)dé. 27)
X' =x _ _
) wherex=(x), p={p). This equation not only reduces the
_ 22 i+ 7 - 23 dimension ofp from N2 to ~N, but also gives rise to quan-
TV o T o POGXT Dy —x @3 um jumps, which exist in reality in open individual systems.

These quantum events are “smeared” out in the density ma-
the evolution of the norm op can be calculated by integra- trix formalism by ensemble average. In this perspective, we
tion overx, believe that the SDE provides, besides its statistical equiva-
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lence to the master equation, a physically more correct de- ¢
scription of individual systems. This is important for the cur-
rent study of quantum noise in mesoscopic systems an¢g 4
individual molecules, where discrete jump events have beer:
recorded in the time and space dom#iDne application of
the SDE will be given in the next section to study the vibra-
tional dynamics induced by electronic fluctuations at a sur-o
face. Bond breaking is demonstrated as quantum jumps.

tion

istri

ensity D

IV. APPLICATIONS: DISSIPATIVE DYNAMICS OF O ,/PT

The Lindblad approach given in the proceeding section is t(fs) 200

generally applicable to open systems with linear dissipation.
Here, it is applied to study a problem in surface physics: 0 0.2
damping and heating of a molecular vibration on a solid o x(@.u)
surface induced by equilibrium and nonequilibrium hot elec- FIG. 1. The relaxation of the diagonal densjiyx,x,t) of a
trons. This problem has its physical origin in the field of Morse oscillator as a function of time @=200 K from an initial
femtosecond surface photochemistry. In a typical experidistribution corresponding to the first excited state. The parameters
ment, a femtosecond laser pulse is sent onto a surface thate chosen to represent an-8t1111) bond with a damping rate
generates, within a few femtoseconds, highly excited hoty=3.3x10" s™* due to coupling to electrons at the surface.
electrons with temperature of several thousand K. Such hot
electrons interact nonthermally with the adsorbed atoms and Figure 1 shows the wave packet, the diagonal density ma-
molecules on the surface, leading to vibrational excitationtrix, as a function of time. Without dissipation, i.e:=0, the
relaxation, and bond breaking at the surface. On the femtdnitial wave packet would remain in the excited pure state for
second to picosecond time scale, the lattice is relatively codhfinitely long time. Due to coupling to electrons, any non-
and thermal-induced effect is negligible. This problem canthermal distribution relaxes and approaches equilibrium with
be described by a model of linear dissipatiofihe master its environment. Figure 1 shows this dynamical process dur-
equation obtained from the CLM can be used if the dampindng the first 500 fs. The wave packet evolves from the
rate vy is interpreted as that of electrons. =1 excited state to a thermalized Gaussian wave packet.
Figure 2 shows the development of a vibrational tempera-
ture, defined byT,=#2Q/[kIn(Py/P,)], at longer times for
different electron temperature$=800, 600, 400, 200, and
We study first the dynamics of vibrational relaxation of agg K. Here P;(t) = fdx[dx’ &(x) p(x,x",t)#(x') is the
Morse oscillator, mimic the Pt bond, induced by equilib-  time-dependent population of thth eigenstate. The density
rium electrons, via a direct solution of the master equationjjstribution approaches the electron temperature within the
(21). For O, on a P(111) surface, electronic excitation is |ifetime y~1=3 ps, even in the low-temperatuieT<# (),

believed to be the dominant meChanism Of diSSipation W|thfeg|me We Wou|d ||ke to point out that the equi”brium
y~1=3 ps® The Hamiltonian of the free oscillator takes the

following form, 1200

A. Vibrational damping: equilibrium and positivity

#2 d? ) 1000
_-— —Zax__ —ax
H o d)(2+D[e 2e” ¥, (28)

800 -

with parameters #1=0.049 eV, a=2.545 a.u., andD
=0.4 eV) chosen to represent those of the adsorbgdrol-
ecule on the P111).% The relaxation dynamics is obtained
by propagating an initial density matrix,p(x,x’,0)

= ¢1(x) p1(x’)", corresponding to the first vibrationally ex-
cited state of the oscillator. Equatidi21) is numerically 200 -
solved using the splitting operator technique, together with
the fast Fourier transfortFFT).3” The terms with onlyx or

p operators are propagated in the coordinate or momentum 0 0.5 1 1.5 2 2.5 3

space, respectively. The cross termsxoénd p are propa- t(ps)

gated by _the tWO'SteP Wendrgff—Lax scheme fo,f the flux- £ 2. The development of the vibrational temperature for the
conservative differential eguatltfﬁs We used a time step same initial density distribution shown in Fig. 1 at different bath
At=10 a.u. andN,=512 grid points sampled in a region  temperaturesT). Initially the wave packet has a nonthermal distri-
e[—0.5:2.5. An imaginary potentiflhas been used in the pution and the temperature is not well defined. Note that the vibra-
asymptotic region to absorb the outgoing density flux. Theaional quantum of the oscillator corresponds to a temperature of
damping constanty =3 ps is chosen from an earlier #Q/k=570 K. The wave packet approaches equilibrium with the
studyfS electron bath at both high and low temperatures.

600

400

Vibrational Temperature (K)
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FIG. 3. The calculated desorption rate as a function of time

before absorption boundary d=200 K. The rate given by the FIG. 4. Hot electron induced vibrational heating and desorption.
CLM equation does not have the right sign in the subpicosecond he electron temperature is taken from Refs. 6 and 7. See the text
regime due to the unphysical negative density distribution. Thigfor further explanations.

problem does not exist in the rate given by the master equé2ihn

shown in Fig. 2 cannot be obtained by the CL master equapanel shows the rate of desorption. The oscillator exhibits a
tion in the low-temperature regime. Furthermore, the thermatielayed response to electronic heating and a smaller increase
equilibrium that the oscillator establishes does not depend oim the vibrational temperature. The latter asymptotically ap-
the initial distribution of the density matrix. In other words, proaches that of the electrons in the long time limit. All the
one can obtain the same asymptotic distributions from amualitative features shown in Fig. 4, including the delay be-
arbitrary initial wave packet. tween electronic and vibrational heating, the time scale of
To illustrate the importance of positivity of the density desorption, are quite similar to those obtained earlier with a
matrix, we plot in Fig. 3 the desorption rateurreny, j(t)  truncated harmonic oscillator modeWe found, however, a
=—ik/2m[ (9/x) — (al Ix") 1 p(x,x’ ’t)|><:><':xd at a desorp- few quantitative differences such as a higher peak vibrational

tion boundaryx,=2.3 a.u., as a function of time during the temperature of 800 K, and a higher yield of desorption in this
vibrational relaxation. This provides a critical test of a mode|c@lculation. The present scheme represents an improvement
because the evolution from a pure state to equilibrium is £N the earlier model in the sense tligtit goes beyond the
transient and extremely nonequilibrium process. The rat@PProximation of the truncated harmonic oscillator; aingl
given by Eq.(2) does not have the correct sign in the subpi-it fully accounts for the quantum coherence of the density
cosecond regime due to the unphysical negative density dighatrix, which was neglected in the previous solution using
tribution at the desorption boundary. In comparison, the neW® Pauli master equatidn.

master equatiori21) correctly describes the desorption rate

as a function of time during relaxation. C. Solution with stochastic wave functions

As an example of application of the SDE, we solve the
vibrational heating problem shown in Fig. 4 with stochastic
Having shown the positivity and equilibrium properties of wave functions. Equatiofi27) is solved with the splitting

the present approach, we next apply the master equation to

study vibrational heating induced by hot electrons, which is, 1000 . . . . .

loosely speaking, the inverse problem of the vibrational - ‘xl‘ SDE: Mﬁgggg — 1

damping. o Density Matrix 7
We simulate a hot electron gas at 41Rfl) surface gen-

erated by a short femtosecond laser pulse with duration of 80

fs and a fluence of 1.0 mJ/émThe temperature profile of

the hot electronsT4(t), was calculated in Ref. 6, and is

replotted in the lower panel of Fig. éhe solid ling. The

B. Vibrational heating by hot electrons

800

600

400

Vibrational Temperature (K)

200
vibrational response of the oscillator is obtained by solving

the master equation with the givai(t) as the bath tempera- 0

ture. For simplicity, the initial density matrix is constructed o 05 1 15 2 25 3

from the ground-state wave function,p(x,x’,0) tes)

= $1(X) $1(x")", by which the small fraction of excitations,  FiG. 5. Vibrational response to electronic heating shown in Fig.
at an initial temperatur@((0)=80 K, has been neglected. 4. The vibrational temperature is calculated by solving the stochas-
The dashed line of the lower panel of Fig. 4 shows the vi+ic differential equation. WithM=2500 realizations, the result
brational temperature as a function of time, while the uppegiven by SDE is very close to that given by the density matrix.
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FIG. 6. The desorption rate calculated by SDE with=500. FIG. 7. The same as Fig. 6 fo = 10 000. The desorption rate,
The desorption occurs as discrete quantum jumps instead of @ough closer, does not fully converge to that given by the density
smooth function of time as given by the density matrix. matrix.
operator method together with the fast Fourier transform, the V. CONCLUDING REMARKS

same techniques as used in a nondissipative wave-packet e have presented a Lindblad approach to describe quan-
propagation. The only additional complication is the noisetym open systems by constructing a single Lindblad operator
term, which is propagated by the simple Euler schéféhe  from the microscopic Caldeira-Leggett model for linear dis-
Wiener processlé(t) has been generated by twihe real  sipation. Its functional form has been uniquely determined
and imaginary pajtdiscrete Gaussian random variables withbased on the high-temperature master equation and its gen-
variance 2it. To speed up simulation and convergence, weeralization to low temperatures. This has led to a new master
used a smaller grid pointd, =256 and a smaller time step equation, which preserves positive density evolution on short
At=2.5 a.u. in the following simulation. All quantities, such times and asymptotically approaches equilibrium within a
as the population on eigenstates and the desorption rate, akéde range of temperatures. This master equation has been
calculated independently from each stochastic realizatior2Pplied to a model problem in surface physics, vibrational
They are then summed up to give the averaged ones for a segating and relaxation of a Morse oscillator induced by elec-
of realizations. trons. The equilibrium and positivity shown by the numerical
Figure 5 shows the vibrational temperature as a functiofesults demonst_rates that it provides_a promising scheme for
of time for two sets oM, the number of stochastic realiza- ultrafast dynamics of open systems in the framework of the

tions. The temperature obtained from SDE convergeger\}\s/"tyhmamxl' h that the Lindblad ; i
quickly to that given by the density matrix, the averaged one. € have aiso shown that the Lindblad master equation,
when solved with stochastic wave functions, provides a more

With M =2500, the two temperatures almost coincide as . - . Do i
shown in Fig. 5. physical description of quantum jumps of individual sys

Fi 6 and 7 sh he d _ ¢ . ms. Such jumps cannot be described by the density matrix
_ rigures - and 7 show the esorptpn rate as a unct|o.n X pproach, but do exist in reality in individual open systems.
time for M=500 and 10 000, respectively. The desorptionTs is particularly encouraging indeed, since recent experi-

rate converges much slower than the vibrational temperatuigents with ultrasmall spatial and time resolution tend to re-
because of the quantum jump behavior of desorption. Ageal the underlying properties of indvidual systems, like
shown by Fig. 7, the desorption rate does not fully converggingle adsorbed moleculdsand their jump events directly
for M as large as 10 000. Much more realization is needed t¢h the time domain. In this perspective, our Lindblad ap-
get better converged rate and yield. proach constructed from the microscopic model represents a
Apart from the slow convergence of the desorption ratepromising scheme to describe such systems and properties. It
SDE provides a qualitatively different picture of desorption may bring completely new insight into the dynamics of in-
from that given by the denSity matrix. In a stochastic real'dividua| process, which may be different from those mea-
ization, one typically sees a series of discrete jumps in thgured on an ensemble of systems.
desorption rate. In other words, bond breaking occurs as dis- while the approach presented here has been restricted to
crete jumping event in SDE instead of a smooth function ashe case of linear coupling, it is possible to extend it to non-
described by the density matrix, although they are equivalentnear coupling. We have recently worked out a model with a
in ensemble average. This picture of bond breaking is closeignlinear coupling between a system and an Ohmic bath,
to the experimental one if an ensemble of systems are megyhich will be given elsewhere. It is also highly desirable to
sured |nd|V|dua“y one by one, which should record discret%xtend this scheme to the Zero_temperature limit by going

jumps/spikes in an individual sysytem each time. This feaheyond the harmonic oscillator approximation used at0.
ture is important and interesting. Recent progress in experi-

mental_ techm_qu_es_ has made it possible to prob_e the local ACKNOWLEDGMENTS

dynamics of individual quantum systems, like single mol-
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