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Lindblad approach to quantum dynamics of open systems
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Department of Applied Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

~Received 19 September 1997!

A Lindblad approach is presented to describe quantum dynamics of open systems. It is based on a construc-
tion of a Lindblad functional from the microscopic Caldeira-Leggett model for linear dissipation. It leads to a
master equation for the reduced density matrix, which preserves positive evolution on short times and asymp-
totically approaches equilibrium at high and low temperatures. This master equation is applied to study the
femtosecond dynamics of vibrational heating, relaxation, and bond breaking at a metal surface. Both a direct
solution of the density matrix and an indirect solution with stochastic wave functions are presented. The latter,
besides its statistical equivalence to the density matrix, provides a more physical picture about quantum jumps
of individual open systems.@S0163-1829~98!05507-6#
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I. INTRODUCTION

A variety of physical and chemical systems in nature
open or dissipative systems, whose dynamical variab
couple to an infinite number of degrees of freedom surrou
ing them. Interaction between an open system and its e
ronment often leads to dissipation, fluctuation, and an i
versible evolution of the system. The study of the dissipat
dynamics of open systems1–4 has been a central issue
many different areas such as quantum noise in tun
junctions,1 quantum-to-classical transition in the theory
measurement,4 and reaction rate theory in condensed phas5

Our particular interest in open system dynamics origina
from our earlier experience in ultrafast dynamics at a so
surface, particularly in atomic and molecular processes s
as femtosecond desorption,6,7 sticking, and photo- and
electron-induced surface reactions.8 In principle, description
of a molecule-surface process always involves a proper tr
ment of both the molecule under investigation and the s
face coordinates, with which the molecule comes into c
tact. There has been increasing experimental evide
indicating that many interesting surface processes are i
ated by the adiabatic and nonadiabatic interactions betw
the molecule and electronic/phononic excitations at surfa
One example is the photoinduced chemistry at surfa
where hot electrons generated by a laser pulse lead to de
tion and dissociation of adsorbed molecules within a sh
time scale.9 It has also been realized that the dynamics
such processes often finds itself in the quantum regime
to the quantization of vibrational motion6 and/or the finite
time of coherence and decoherence.7 It is thus essential to
describe these phenomena quantum mechanically in ord
gain deeper insight into the underlying mechanism and
croscopic dynamics.

Historically, description of open system dynamics h
largely been based on the reduced density ma
formalism,10,11 within which both intrinsic quantum-
mechanical fluctuation of the system and external noise o
environment can be conveniently incorporated in a unifi
manner. During the past few decades, efforts have b
made to devise various phenomenological models12 and
more recently to derive in a first-principles way the dissip
570163-1829/98/57~8!/4509~9!/$15.00
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tion functional from microscopic Hamiltonians.13–19 Perti-
nent to surface dynamics, there have been several effor
include the effect of surface degrees of freedom in
molecule-surface dynamics within the density mat
approach.20–22

In the density matrix formalism, one looks for an effectiv
Liouville/influence functional,LD@r#, governing the dissipa-
tive evolution of the reduced density matrixr of an open
system via the following equation of motion:

dr

dt
1

i

\
@H,r#5LD@r#; ~1!

hereH is the Hamiltonian of the system alone. Derivation
LD from microscopic Hamiltonians leads usually to a qua
tum master equation, in analogy with the classical Fokk
Planck equation, which uniquely determines the dynamics
the open system. One example of this type was given i
pioneering work13 by Caldeira and Leggett~CL! for an os-
cillator linearly coupled to an Ohmic environment~linear
dissipation!, where the master equation was obtained as

dr

dt
1

i

\
@H,r#52

g

\H 2mkT

\
@x,@x,r##1 i @x,@p,r#1#J ;

~2!

here g5h/(2m) is the characteristic damping rate of th
oscillator with massm, andh andT are the friction coeffi-
cient and bath temperature. Similar master equations h
been obtained along this line for a particle in more gene
environment14,15,17with linear and nonlinear coupling. Suc
an approach is quite appealing in comparison with ear
phenomenological models, for it represents a first-princip
approach to the reduced dynamics if the Hamiltonian of
whole system is known.

Master equation~2! is known to have a few drawbacks
First, it is only valid at high temperatures, or equivalent
the classical limit. This is a pity because quantu
mechanical behaviors are known to be important only in
low-temperature regime. A less obvious problem with th
equation is the nonpositivity inr on a time scale propor
tional to t;g21, as demonstrated in a number of rece
works.16–18For vibrational motion in condensed phase and
4509 © 1998 The American Physical Society
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4510 57SHIWU GAO
surfaces,g21.1 ps. This means that Eq.~2! is inapplicable
to ultrafast processes on femtosecond to picosecond
scales, a regime that most quantum coherent and decoh
phenomena might be of importance. We would also like
point out that such drawbacks are not specific to the
master equation. On the contrary, they are quite genera
we demonstrate further in Sec. II, and are often encounte
in a first-principles derivation of the reduced dynamics.

Recently, there are several attempts to derive ma
equations preserving positive density evolution from mic
scopic Hamiltonians. Such derivations are yet mainly limit
to the weak-coupling18,7 or high-temperature regime.17 For
example, Dio´si tried to go beyond the lowest-order Marko
ian approximation of the CL model, by including the ne
order term in the expansion of the noise kernel. A mas
equation valid at medium and high temperatures has b
obtained. This work was inspiring indeed, indicating o
way to remedy the nonpositivity by further course graini
in time. Technically, his derivation was problematic,18 since
other terms that were dropped out can be more impor
than the ones captured in the equation, especially in the
temperature regime. In addition, it introduced a fr
parameter17 to the master equation.

The problem of nonpositivity does not exist in an altern
tive approach of open quantum systems, namely, the th
of quantum dynamical semigroups by Lindblad23 and Kossa-
kowski and colleagues.24 In particular, Lindblad showed tha
the generator23 for a completely positive map should be
the following form:

LD5(
m

$@Vm ,rVm
† #1@Vmr,Vm

† #%, ~3!

where theVm’s are the Lindblad dissipation operators. How
ever, these operators are in general unknown, and the c
pact structure~3! does not generally assure equilibrium
the system with the bath. The Lindblad theory, in spite of
neat and concise layout, remains more like a formal struc
than an approach of practical applications, although a
constructions of such operators have been available in
literature.25,26

Here, we present a Lindblad approach to quantum dyn
ics of open systems with linear dissipation, taking advant
of the positivity of the Lindblad structure and the equilibriu
behavior of microscopic Hamiltonian models. We constr
a single Lindblad operator, the explicit form of which is s
determined as to reproduce the dissipation terms of
Caldeira-Leggett master equation at high temperatures
their generalizations to low temperatures. We arrive at a n
master equation that preserves positive density evolution
short times and leads to equilibrium at high and low te
peratures. This master equation closely connects two
mally well-developed theories of open quantum syste
namely, the Lindblad formalism and the first-principl
quantum master equations. In addition, it provides an e
cient scheme to study open-system quantum dynamics, f
can be solved by propagating either the density matrix i
double-space representationr(x,x8,t) or a set of stochastic
wave functions27 $uC(x,t)&% with the given Lindblad opera
tor. As an example of application, we apply the master eq
tion to study vibrational heating and damping at a me
e
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surface. Both a direct solution of the density matrix and
indirect solution with stochastic wave functions are given

At this point, we’d like to comment on the recent discu
sions in the literature regarding the positivity of the reduc
dynamics.28–30,19 It has been claimed that the reduced d
namics does not need to be completely positive and the
sipation functional, although it can be, need not be of
Lindblad form. This point has been elaborated particula
for a system with entangled initial density distribution wi
its environment.28–30What we would like to point out here is
the fact that nonpositive density distribution often leads
practice to unphysical results, that contradict our physi
intuition and observations in reality~one such example will
be given below for the desorption rate!. The necessity of
positive evolution of the reduced dynamics is often essen
to give a qualitatively correct account of many dynamic
phenomena. This viewpoint has been taken as the sta
basis of this work.

The rest of the manuscript is organized as follows: S
tion II briefly reviews the Caldeira-Leggett model~CLM! for
the convenience of later reference. Section III construct
Lindblad functional with a single dissipation operator. I
functional form is then determined based on the CLM and
generalization to low temperatures. It leads to a master eq
tion of Lindblad class. This equation is subsequently appl
to study vibrational heating and damping at a surface in S
IV, where both a direct and an indirect solution with stocha
tic wave functions will be given. Section V contains a sho
summary. A Brief Report of this work has been published
a previous paper;31 here the various details are given togeth
with further applications. Generalization of this approach
nonlinear coupling has also been worked out and will app
in a separate paper.

II. MODEL OF LINEAR DISSIPATION

This section briefly reviews the CLM for a particle~an
oscillator or an open system! coupled with a phononic bath
It highlights particularly the relationship between the diff
sion coefficients of Eq.~2! and the Markovian approximation
of the fluctuation and dissipation kernels. These relatio
will be referred later in Sec. III to determine the Lindbla
functional. Those who are familiar with such backgrou
materials can skip reading this part and go directly to
next section.

The model Hamiltonian of the CLM describes a line
coupling between a particle, with canonical variablesx and
p, and a bath of phonons, with variables$qk ,pk%,

H5
p2

2m
1U~x!1(

k
Ckxqk1(

k
S pk

2

2M
1

1

2
Mvk

2qk
2D .

~4!

Similar model Hamiltonian has been studied as an exa
solvable model of quantum Brownian motion before.32 Cal-
deira and Leggett solved the reduced dynamics of the
ticle within the path-integral formalism developed by Fey
man and Vernon.11 One can also apply the standard fiel
theoretic technique to obtain the same solution, as purs
recently by Hu, Paz, and Zhang15 and Diósi.17



s-
e

gr

-

he

e

k

q
a-

on
t

h
r
m

tro

the

ns
ill
ing
-
the

-
as-
er
nc-

d
fol-

er

ic
rin-

ari-
s.

r-
e
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From the evolution of the total density matrix for the sy
tem and the bath, the time-development of the reduced d
sity matrix of the systemr can be written as

r~ t !5Ŝ~ t !r~0!, ~5!

where superoperatorŜ takes the following exact form

Ŝ~ t !5T̂expS 2
1

\E0

t

dtE
0

t

ds$ i @x1~t!2x2~t!#a I~t2s!

3@x1~s!1x2~s!#1@x1~t!2x2~t!#aR~t2s!

3@x1~s!2x2~s!#% D . ~6!

This equation has been derived with both the path-inte
approach13,15 and the field-theoretic method.15,17 OperatorT̂
prescribes time ordering for the superoperators with1 index
and anti-time-ordering for those with2 sign. These super
operators act by convention onr from the left/right side
when they are1/2 indexed.

In Eq. ~6!, the influence of the bath resides entirely on t
force-force autocorrelation function ~kernel!, a(t)
51/\^F̂(t)F̂(0)&T , whose real and imaginary parts read

aR~ t,T!5E
0

Vc
I ~v!cothS \v

2kTD cos~vt !dv, ~7!

a I~ t !52E
0

Vc
I ~v!sin~vt !dv, ~8!

where I (v)5(k(Ck
2/2Mvk)d(v2vk) is the spectral func-

tion of the phonon bath, andVc is the bandwidth~cutoff
frequency!. For an Ohmic bath,I (v) is phenomenologically
approximated byI (v)5hv/p, whereh is the friction coef-
ficient.

Caldeira and Leggett approximated Eqs.~7! and~8! by the
lowest-order expansion ofaR(t,T) in the high-temperature
limit ( \v/kT)!1, as such, the kernels become local in tim

aR~ t,T!5
2hkT

\
d~ t !, ~9!

a I~ t !5hd8~ t !. ~10!

Differentiating Eq.~5! with time and using Eqs.~9! and~10!,
they were able to obtain master equation~2!. The derivation
is, though tedious and long, straightforward.13,17

Before we move on, we would like to make a few remar
about the CLM:

~i! The two dissipation terms on the right hand side of E
~2! result from the Markovian approximation of the fluctu
tion kernel aR and its dissipation counterparta I , respec-
tively. These two terms are connected by the fluctuati
dissipation relation. The balance between them leads
system to thermal equilibrium with the bath.

~ii ! The superoperatorŜ in Eq. ~6! depends on the bat
only throughaR anda I . This is a quite general feature fo
linear as well as nonlinear coupling. For example, the sa
structure applies to a system linearly coupled to an elec
n-

al

,

s

.

-
he

e
n

bath, where the only modification needed is to replace
spectral functionI (v) with that of the electronic bath.

~iii ! As discussed in the introduction, master equatio
like Eq. ~2! obtained from microscopic models are often
behaved, particularly in the low-temperature regime, lead
to nonpositive evolution ofr. This is a quite general draw
back often encountered in a first-principles derivation of
reduced dynamics.16,18,19

III. A LINDBLAD APPROACH

In this section, a simple Lindblad functional is con
structed based on the microscopic CLM. The resultant m
ter equation is of the Lindblad form. It can be solved eith
in a double-space representation or by a set of wave fu
tions, which obey a stochastic differential equation~SDE!, or
equivalently, a nonlinear Schro¨dinger equation.

A. Construction of a Lindblad operator

We look for a single Lindblad operatorV, which is a
linear combination ofx andp,

V5mx1 inp,
~11!

V†5mx2 inp,

where m and n are arbitraryc numbers to be determine
below. This particular choice has been motivated by the
lowing physical observations:~i! The known form of the
dissipation operator for a damped harmonic oscillator24 V
}a5AmV/2\@x1( i /mV)p#, which is a linear combination
of x and p; ~ii ! The known dissipation terms of the mast
equation~2!, which involves bothx andp operators;~iii ! The
Dekker’s constraints33 for the diffusion coefficients of the
master equation for a damped oscillator, namely,

Dxx.0,

Dpp.0, ~12!

DxxDpp2DxpDpx>g2\2/4,

which also implies a symmetry betweenx andp. These con-
ditions must be fulfilled in order to preserve the intrins
quantum fluctuation, i.e., the Heisenberg uncertainty p
ciple.

A more general linear combination similar to Eq.~11! has
been discussed by A. Sandulescu and H. Scutaru,26 who ob-
tained a general master equation that could reproduce v
ous particular master equations available in the literature26

Our work aims, however, at looking for aparticular but
uniquelinear combination, the coefficient of which is dete
mined from a microscopic Hamiltonian model, like th
CLM.

B. Determination of the Lindblad functional from the CLM

To determine coefficientsm andn, let’s first write out the
Lindblad functional explicitly from Eqs.~3! and ~11!, notic-
ing that @x,p#5 i\,
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LD52VrV†2V†Vr2rV†V

5m2~2xrx2x2r2rx2!1n2~2prp2p2r2rp2!

12imn~prx2xrp2r@x,p# !

52m2@x,@x,r##2n2@p,@p,r##22imn~@x,@p,r#1#

2@xp,r#!

where @A,B#1 represents an anticommutation relation b
tween operatorA andB. The equation of motion forr takes
the following form:

dr

dt
1

i

\
@H8,r#52m2@x,@x,r##22imn@x,@p,r#1#

2n2@p,@p,r##, ~13!

H85H22mn\xp. ~14!

The three terms on the right-hand side of Eq.~13! and the
last one on the left are all traceless due to the cyclic prop
of trace, which guarantees (d/dt)Trr50, i.e., the norm con-
servation of the reduced density matrix. In fact, the gene
Lindblad form Eq.~3! is traceless and the Lindblad approa
is thus universally norm conserving.

One may easily realize that the first two terms on
right-hand side of Eq.~13! are essentially the same as tho
in the CL master equation~2!. This comparison suggests th
following conditions for choosingm andn:

m25g2kTm/\2,

2mn5g/\ as T→`, ~15!

n250,

which yields straightforwardlyn25g/(8mkT). This n2 is
vanishing in the high-temperature limit, but becomes sign
cant at low temperatures.

It is interesting to compare this naive choice with Dio´si’s
master equation,17 which contains, among several oth
terms, also a termDxx@p,@p,r## with a slightly different
coefficientDxx5g/(6mkT). The latter was derived from th
CLM by going beyond the lowest-order Markovian appro
mation of the noise kernel. This term, as it appeared in
~13!, stems naturally from the general Lindblad structure

Indeed, Eq.~13! together with Eq.~15! represents the sim
plest Lindblad master equation.17 It provides a remedy for
the nonpositivity problem of the CLM. This naive choice
however, only valid at temperatures higher than or com
rable with the vibrational quantum,kT>\V, for the original
CL master equation, on which Eq.~15! is based, become
invalid at low temperatures. Technically, this is due to t
fact thatm2 goes to zero asT→0, which violates Dekker’s
constraintDpp.0.

C. Extension to low temperatures

To extend the functional to low temperatures, we not
that the two dissipation terms of Eq.~2! have different physi-
cal origin. The second term, which results from the appro
mation of a I(t) by Eq. ~10!, describes the dissipation in
-

ty

al

e

-

q.

-

e

i-

duced by the bath and is temperature independent as sh
in Eq. ~8!. This suggests to us one simple generalization
Eq. ~15!,

2mn5g/\, ~16!

being valid at all temperatures. In contrast, the first term
Eq. ~2!, which resulted from the approximation ofaR(t,T)
by Eq. ~9!, describes environment-induced fluctuation a
depends onT as in Eq.~7!. The high-temperature approx
mation~9!, which was used in all previous derivations,13,15,17

is obviously inapplicable in the low-temperature regime.
We therefore adopt a different approximation of the no

kernel at low temperatures, by observing that, at lowT,
I (v)coth(\v/2kT) is a smooth function ofv, while cos(vt)
is fast oscillating. This observation leads us to the followi
approximation, noting thatI (v)5hv/p for the phenomeno-
logical representation of the Ohmic bath,

aR~ t,T!.
h

p
vccothS \vc

2kTD E
0

Vc
cos~vt !dv

5hvccothS \vc

2kTD d̃ ~ t !, ~17!

where d̃ (t)51/p*0
Vccos(vt)dv, and vc is a parameter fac-

torizing the noise kernel and has approximately the phys
meaning as the center of theI (v) band. The Markovian limit
is recovered ifVc→` and thus d̃ (t) approachesd(t). It
leads to a replacement of 2kT→\vccoth(\vc/2kT) in the
first diffusion term of Eq.~2! and thus in our choice ofm2,
i.e.,

m2~T!5gmvc /\cothS \vc

2kTD . ~18!

In fact this is a simple generalization of the fluctuatio
dissipation relation to the quantum regime.

Please note the order between the factorization of Eq.~17!
and the Markovian approximation. The former is physic
The narrower the bandwidth ofI (v) ~smaller Vc) is, the
better the approximation of Eq.~17! will be. The second step
Vc→` is mathematical, and is consistent with the Lindbl
formalism, which itself is based on the Markovian appro
mation.

The parametervc can be uniquely determined by a ha
monic oscillator approximation atT50, where the system
should essentially occupy its ground state near its poten
minimum. The Lindblad operatorV should then degenerat
with the annihilation operator of the harmonic oscillator,a
5AmV/2\@x1( i /mV)p#, implying m/n5mV. On the
other hand, from Eqs.~16! and~18!, we havem/n52mvc at
T50. The harmonic approximation thus givesvc5V/2, i.e.,
half of the oscillator frequency. So the temperature dep
dence of the two coefficients reads,

m2~T!5
gmV

2\
cothS \V

4kTD , ~19!

n2~T!5
g

2\mV
tanhS \V

4kTD , ~20!
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with the accompanying relation 2mn5g/\. Both expres-
sions reduce to Eq.~15! in the high-temperature regime, an
have their physical bases on the fluctuation-dissipation r
tion. They therefore bring the equilibrium behavior into t
Lindblad formalism through their temperature dependenc
is straightforward to check that Eqs.~19! and ~20! fulfill all
the Dekker’s constraints at any temperature.

In coordinate space, the master equation~13! takes the
following form:

]r~x,x8,t !

]t
1

i

\
@H̃~x!2H̃!~x8!#r~x,x8,t !

52H m2~T!~x2x8!21g~x2x8!S ]

]x
2

]

]x8
D

2n2~T!\2S ]

]x
1

]

]x8
D 2J r~x,x8,t !, ~21!

H̃~x!5H~x!1 i\gx
]

]x
1 i

\g

2
. ~22!

The last two terms of Eq.~22! come from Eq.~14!, i.e.,

^xu@22mn\xp,r#ux8&522mn\^xuxpr2rpx2 i\rux8&

5 i\gS x
]

]x
1x8

]

]x8
11D r~x,x8,t !.

This master equation differs from all previous ones in t
aspects:~i! a renormalized Hamiltonian with a frictiona
force and an imaginary term; and~ii ! an additional diffusion
term ~the n2 term! with temperature-dependent diffusion c
efficient. As Eq.~21! is directly constructed from the Lind
blad functional, it therefore guarantees the positivity of t
density matrix even on short times.

One may question about the consistency between Eqs~2!
and ~21!, or equivalently, the essence of the additional te
in Eq. ~21!. In general, a Markovian master equation can
but need not be of the Lindblad form. It has been shown
several cases that a non-Lindblad master equation can b
to a Lindblad form by further course graining in time.17–19

Our simple Lindblad functional constructed from the micr
scopic CLM represents a similar physical spirit. The a
pearence of the additional term is not astonishing. It
equately guarantees the positive evolution of the redu
dynamics.

Before closing this section, let’s prove the norm cons
vation of Eq.~21!, though the imaginary terms in Eq.~22!
are non-Hermitian and seem to increase the total norm of
density matrix. From the diagonal part of Eq.~21!,

]

]t
r~x,x,t !2gS x

]

]x
1x8

]

]x8
11D r~x,x8,t !U

x85x

5n2\2S ]

]x
1

]

]x8
D 2

r~x,x8,t !x85x , ~23!

the evolution of the norm ofr can be calculated by integra
tion overx,
a-

It

e

,
n
put

-
-
d

-

e

d

dtE dxr~x,x,t !5gE dx
d

dx
@xr~x,x,t !#

1n2\2E dx
d2

dx2
r~x,x,t !

5Fgxr~x,x,t !1n2\2
d

dx
r~x,x,t !GU

x52`

x51`

50. ~24!

The last step vanishes due to the boundary condition of
density distribution. The norm is thus conserved. Physica
the effect of the norm-increasing term is exactly canceled
the frictional terms in the renormalized Hamiltonian.

D. Solution of the master equation
with stochastic wave functions

While the master equation~21! can be directly solved in a
double-space~two-dimensional! representation, as in a pre
vious paper,31 it can alternatively be solved using a set
stochastic wave functions. This can be a possible advan
of the Lindblad approach, when dimensionality is a proble
for a direct solution.

As shown by Gisin and Percival,27 a master equation o
Lindblad class can be equivalently solved by a set of wa
functions$uc&% via representing the density matrix by

r5M uc&^cu. ~25!

Eachuc& obeys the following stochastic differential equatio
~SDE!:

duc&52
i

\
Huc&dt1(

m
~2^Vm

† &Vm2Vm
† Vm!uc&dt

1(
m

~Vm2^Vm&!uc&djm . ~26!

Here $djm% are complex stochastic variables, the Wien
processes, with the following properties in the mean aver
M : M @djmdjn

!#52dt dmn , M @djm
! djn

!#50, and
M @djmdjn#50. Equation ~26! is nonlinear due to^V&
5^cuVuc& and norm nonconserving, since the stochas
noise induces quantum jumps between different eigensta

For our specific choice,V5mx1 inp, the corresponding
SDE takes the following form:

duc&52
i

\
Huc&dt2Fm2~x2 x̄ !21n2~p2 p̄ !2

1
ig

\
~ p̄x2 x̄ p!G uc&dt

1@m~x2 x̄ !1 in~p2 p̄ !#uc&dj. ~27!

where x̄5^x&, p̄5^p&. This equation not only reduces th
dimension ofr from N2 to ;N, but also gives rise to quan
tum jumps, which exist in reality in open individual system
These quantum events are ‘‘smeared’’ out in the density m
trix formalism by ensemble average. In this perspective,
believe that the SDE provides, besides its statistical equ
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lence to the master equation, a physically more correct
scription of individual systems. This is important for the cu
rent study of quantum noise in mesoscopic systems
individual molecules, where discrete jump events have b
recorded in the time and space domain.35 One application of
the SDE will be given in the next section to study the vib
tional dynamics induced by electronic fluctuations at a s
face. Bond breaking is demonstrated as quantum jumps

IV. APPLICATIONS: DISSIPATIVE DYNAMICS OF O 2/PT

The Lindblad approach given in the proceeding sectio
generally applicable to open systems with linear dissipat
Here, it is applied to study a problem in surface physi
damping and heating of a molecular vibration on a so
surface induced by equilibrium and nonequilibrium hot ele
trons. This problem has its physical origin in the field
femtosecond surface photochemistry. In a typical exp
ment, a femtosecond laser pulse is sent onto a surface
generates, within a few femtoseconds, highly excited
electrons with temperature of several thousand K. Such
electrons interact nonthermally with the adsorbed atoms
molecules on the surface, leading to vibrational excitati
relaxation, and bond breaking at the surface. On the fem
second to picosecond time scale, the lattice is relatively c
and thermal-induced effect is negligible. This problem c
be described by a model of linear dissipation.7 The master
equation obtained from the CLM can be used if the damp
rateg is interpreted as that of electrons.

A. Vibrational damping: equilibrium and positivity

We study first the dynamics of vibrational relaxation of
Morse oscillator, mimic the O2-Pt bond, induced by equilib
rium electrons, via a direct solution of the master equat
~21!. For O2 on a Pt~111! surface, electronic excitation i
believed to be the dominant mechanism of dissipation w
g2153 ps.6 The Hamiltonian of the free oscillator takes th
following form,

H52
\2

2m

d2

dx2
1D@e22ax22e2ax#, ~28!

with parameters (\V50.049 eV, a52.545 a.u., andD
50.4 eV! chosen to represent those of the adsorbed O2 mol-
ecule on the Pt~111!.6 The relaxation dynamics is obtaine
by propagating an initial density matrix,r(x,x8,0)
5f1(x)f1(x8)†, corresponding to the first vibrationally ex
cited state of the oscillator. Equation~21! is numerically
solved using the splitting operator technique, together w
the fast Fourier transform~FFT!.37 The terms with onlyx or
p operators are propagated in the coordinate or momen
space, respectively. The cross terms ofx and p are propa-
gated by the two-step Wendroff-Lax scheme for the flu
conservative differential equations37. We used a time step
Dt510 a.u. andNx5512 grid points sampled in a regionx
P@20.5:2.5#. An imaginary potential8 has been used in th
asymptotic region to absorb the outgoing density flux. T
damping constantg2153 ps is chosen from an earlie
study.6
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Figure 1 shows the wave packet, the diagonal density
trix, as a function of time. Without dissipation, i.e.,g50, the
initial wave packet would remain in the excited pure state
infinitely long time. Due to coupling to electrons, any no
thermal distribution relaxes and approaches equilibrium w
its environment. Figure 1 shows this dynamical process d
ing the first 500 fs. The wave packet evolves from then
51 excited state to a thermalized Gaussian wave packe

Figure 2 shows the development of a vibrational tempe
ture, defined byTv5\V/@kln(P0 /P1)#, at longer times for
different electron temperatures,T5800, 600, 400, 200, and
80 K. Here Pi(t)5*dx*dx8f i(x)†r(x,x8,t)f i(x8) is the
time-dependent population of thei th eigenstate. The densit
distribution approaches the electron temperature within
lifetime g2153 ps, even in the low-temperature,kT!\V,
regime. We would like to point out that the equilibrium

FIG. 1. The relaxation of the diagonal densityr(x,x,t) of a
Morse oscillator as a function of time atT5200 K from an initial
distribution corresponding to the first excited state. The parame
are chosen to represent an O2-Pt~111! bond with a damping rate
g53.331011 s21 due to coupling to electrons at the surface.

FIG. 2. The development of the vibrational temperature for
same initial density distribution shown in Fig. 1 at different ba
temperatures (T). Initially the wave packet has a nonthermal dist
bution and the temperature is not well defined. Note that the vib
tional quantum of the oscillator corresponds to a temperature
\V/k5570 K. The wave packet approaches equilibrium with t
electron bath at both high and low temperatures.
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shown in Fig. 2 cannot be obtained by the CL master eq
tion in the low-temperature regime. Furthermore, the ther
equilibrium that the oscillator establishes does not depend
the initial distribution of the density matrix. In other word
one can obtain the same asymptotic distributions from
arbitrary initial wave packet.

To illustrate the importance of positivity of the densi
matrix, we plot in Fig. 3 the desorption rate~current!, j (t)
52i\/2m@(]/]x)2(]/]x8)#r(x,x8,t)ux5x85xd

at a desorp-

tion boundaryxd52.3 a.u., as a function of time during th
vibrational relaxation. This provides a critical test of a mod
because the evolution from a pure state to equilibrium i
transient and extremely nonequilibrium process. The r
given by Eq.~2! does not have the correct sign in the sub
cosecond regime due to the unphysical negative density
tribution at the desorption boundary. In comparison, the n
master equation~21! correctly describes the desorption ra
as a function of time during relaxation.

B. Vibrational heating by hot electrons

Having shown the positivity and equilibrium properties
the present approach, we next apply the master equatio
study vibrational heating induced by hot electrons, which
loosely speaking, the inverse problem of the vibratio
damping.

We simulate a hot electron gas at a Pt~111! surface gen-
erated by a short femtosecond laser pulse with duration o
fs and a fluence of 1.0 mJ/cm2. The temperature profile o
the hot electrons,Te(t), was calculated in Ref. 6, and i
replotted in the lower panel of Fig. 4~the solid line!. The
vibrational response of the oscillator is obtained by solv
the master equation with the givenTe(t) as the bath tempera
ture. For simplicity, the initial density matrix is constructe
from the ground-state wave function,r(x,x8,0)
5f1(x)f1(x8)†, by which the small fraction of excitations
at an initial temperatureTe(0)580 K, has been neglected
The dashed line of the lower panel of Fig. 4 shows the
brational temperature as a function of time, while the up

FIG. 3. The calculated desorption rate as a function of ti
before absorption boundary atT5200 K. The rate given by the
CLM equation does not have the right sign in the subpicosec
regime due to the unphysical negative density distribution. T
problem does not exist in the rate given by the master equation~21!.
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panel shows the rate of desorption. The oscillator exhibit
delayed response to electronic heating and a smaller incr
in the vibrational temperature. The latter asymptotically a
proaches that of the electrons in the long time limit. All th
qualitative features shown in Fig. 4, including the delay b
tween electronic and vibrational heating, the time scale
desorption, are quite similar to those obtained earlier wit
truncated harmonic oscillator model.7 We found, however, a
few quantitative differences such as a higher peak vibratio
temperature of 800 K, and a higher yield of desorption in t
calculation. The present scheme represents an improvem
on the earlier model in the sense that~i! it goes beyond the
approximation of the truncated harmonic oscillator; and~ii !
it fully accounts for the quantum coherence of the dens
matrix, which was neglected in the previous solution us
the Pauli master equation.7

C. Solution with stochastic wave functions

As an example of application of the SDE, we solve t
vibrational heating problem shown in Fig. 4 with stochas
wave functions. Equation~27! is solved with the splitting

e

d
s

FIG. 4. Hot electron induced vibrational heating and desorpti
The electron temperature is taken from Refs. 6 and 7. See the
for further explanations.

FIG. 5. Vibrational response to electronic heating shown in F
4. The vibrational temperature is calculated by solving the stoch
tic differential equation. WithM52500 realizations, the resul
given by SDE is very close to that given by the density matrix.
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4516 57SHIWU GAO
operator method together with the fast Fourier transform,
same techniques as used in a nondissipative wave-pa
propagation. The only additional complication is the no
term, which is propagated by the simple Euler scheme.34 The
Wiener processdj(t) has been generated by two~the real
and imaginary part! discrete Gaussian random variables w
variance 2dt. To speed up simulation and convergence,
used a smaller grid pointsNx5256 and a smaller time ste
Dt52.5 a.u. in the following simulation. All quantities, suc
as the population on eigenstates and the desorption rate
calculated independently from each stochastic realizat
They are then summed up to give the averaged ones for
of realizations.

Figure 5 shows the vibrational temperature as a func
of time for two sets ofM , the number of stochastic realiza
tions. The temperature obtained from SDE conver
quickly to that given by the density matrix, the averaged o
With M52500, the two temperatures almost coincide
shown in Fig. 5.

Figures 6 and 7 show the desorption rate as a functio
time for M5500 and 10 000, respectively. The desorpti
rate converges much slower than the vibrational tempera
because of the quantum jump behavior of desorption.
shown by Fig. 7, the desorption rate does not fully conve
for M as large as 10 000. Much more realization is neede
get better converged rate and yield.

Apart from the slow convergence of the desorption ra
SDE provides a qualitatively different picture of desorpti
from that given by the density matrix. In a stochastic re
ization, one typically sees a series of discrete jumps in
desorption rate. In other words, bond breaking occurs as
crete jumping event in SDE instead of a smooth function
described by the density matrix, although they are equiva
in ensemble average. This picture of bond breaking is clo
to the experimental one if an ensemble of systems are m
sured individually one by one, which should record discr
jumps/spikes in an individual sysytem each time. This f
ture is important and interesting. Recent progress in exp
mental techniques has made it possible to probe the l
dynamics of individual quantum systems, like single m
ecules, and to directly observe quantum jumps in the t
domain.35,36 In this perspective, the wave-function approa
based on the Lindblad functional represents a promis
scheme to describe such individual systems.

FIG. 6. The desorption rate calculated by SDE withM5500.
The desorption occurs as discrete quantum jumps instead
smooth function of time as given by the density matrix.
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V. CONCLUDING REMARKS

We have presented a Lindblad approach to describe q
tum open systems by constructing a single Lindblad oper
from the microscopic Caldeira-Leggett model for linear d
sipation. Its functional form has been uniquely determin
based on the high-temperature master equation and its
eralization to low temperatures. This has led to a new ma
equation, which preserves positive density evolution on sh
times and asymptotically approaches equilibrium within
wide range of temperatures. This master equation has b
applied to a model problem in surface physics, vibratio
heating and relaxation of a Morse oscillator induced by el
trons. The equilibrium and positivity shown by the numeric
results demonstrates that it provides a promising scheme
ultrafast dynamics of open systems in the framework of
density matrix.

We have also shown that the Lindblad master equat
when solved with stochastic wave functions, provides a m
physical description of quantum jumps of individual sy
tems. Such jumps cannot be described by the density ma
approach, but do exist in reality in individual open system
This is particularly encouraging indeed, since recent exp
ments with ultrasmall spatial and time resolution tend to
veal the underlying properties of indvidual systems, li
single adsorbed molecules,36 and their jump events directly
in the time domain. In this perspective, our Lindblad a
proach constructed from the microscopic model represen
promising scheme to describe such systems and propertie
may bring completely new insight into the dynamics of i
dividual process, which may be different from those me
sured on an ensemble of systems.

While the approach presented here has been restricte
the case of linear coupling, it is possible to extend it to no
linear coupling. We have recently worked out a model with
nonlinear coupling between a system and an Ohmic b
which will be given elsewhere. It is also highly desirable
extend this scheme to the zero-temperature limit by go
beyond the harmonic oscillator approximation used atT50.
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a
FIG. 7. The same as Fig. 6 forM510 000. The desorption rate

though closer, does not fully converge to that given by the den
matrix.
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17L. Diósi, Europhys. Lett.22, 1 ~1993!; Physica A 199, 517

~1993!.
18A. Tameshtit and J. E. Sipe, Phys. Rev. Lett.77, 2600~1996!.
19R. Karrlein and H. Grabert, Phys. Rev. E55, 153 ~1997!.
20M. Berman and R. Kosloff, Comput. Phys. Commun.63, 1

~1991!; M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A25,
1283 ~1992!.
r

21P. Saalfrank, R. Baer, and R. Kosloff, Chem. Phys. Lett.230, 463
~1994!; P. Saalfrank and R. Kosloff, J. Chem. Phys.105, 2441
~1996!.

22B. Jackson, Chem. Phys. Lett.270, 484 ~1997!.
23G. Lindblad, Commun. Math. Phys.48, 119 ~1976!.
24A. Kossakowski, Rep. Math. Phys.3, 247 ~1972!; V. Gorini, A.

Kossakowski, and E. C. G. Sudarshan, J. Math. Phys.17, 821
~1976!.

25R. Alicki and K. Lendy, inQuanum Dynamical Semigroups an
Applications, Lecture Notes in Physics, Vol. 286~Springer-
Verlag, Berlin, 1987!.

26A. Sandulescu and H. Scutaru, Ann. Phys.~N.Y.! 173, 277
~1987!; A. Isar, A. Sandulescu, and W. Scheid, J. Math. Ph
34, 3887 ~1993!; 32, 2128 ~1991!; M. R. Gallis, Phys. Rev. A
48, 1028~1993!; 53, 655 ~1996!.

27N. Gisin and I. C. Percival, J. Phys. A25, 5677~1992!.
28P. Pechukas, Phys. Rev. Lett.73, 1060~1994!.
29A. Royer, Phys. Rev. Lett.77, 3272~1996!.
30S. Gnutzmann and F. Haake, Z. Phys. B101, 263 ~1996!.
31S. Gao, Phys. Rev. Lett.79, 3101~1997!.
32P. Ullersma, Physica~Utrecht! 32, 27 ~1966!, and references

therein. See also G. W. Ford, M. Kac, and P. Mazur, J. Ma
Phys.6, 504 ~1965!; N. G. Van Kampen, Dan. Mat. Fys. Medd
26, No. 15 ~1951!.

33H. Dekker and M. C. Valsakumar, Phys. Lett.104A, 67 ~1984!.
34K. Sobczyk, Stochastic Differential Equations~Kluwer Aca-

demic, Dordrecht, 1991!.
35D. A. Vanden Boutet al., Science277, 1074~1997!.
36B. C. Stipe, R. A. Rezaei, W. Ho, S. Gao, M. Persson, and B

Lundqvist, Phys. Rev. Lett.78, 4410~1997!.
37W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Fla

nery, Numerical Recipes~Cambridge University Press, Cam
bridge, 1992!.


