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We focus on a basic issue regarding optically uniaxial left-handed materials of lossless. We give the neces-
sary and sufficient conditions for the optically uniaxial generalized left-handed materials in a nondissipative
limit, based on the optic axis concept in crystal optics. The results show that the normal surface of optically
uniaxial generalized left-handed materials is quite different from that of uniaxial regular materials. We also find
some peculiar properties that never exist in the regular materials, for instance, quasiisotropy and planes of optic
axes. Finally, we explore some exotic propagation properties of electromagnetic waves in the optically uniaxial
generalized left-handed materials.
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As early as 1968, Veselago theoretically pioneered the
conceptual materials with simultaneously negative permittiv-
ity � and permeability �, called left-handed materials
�LHMs�.1 Since the recent leading works of Pendry et al.2

and Smith et al.,3,4 the related study has become a readily
growing field. Inasmuch as there are no naturally existing
materials with negative �, such a different category of arti-
ficial materials brings certainly many peculiar electromag-
netic phenomena, different physics, and promising
applications.5–7 It is well known that in regular right-handed
materials �RHMs� the behaviors of electromagnetic wave
propagation are completely governed by �, solely because �
is always unity. From the point of view of crystal optics,
RHMs are usually classified into only three distinct catego-
ries as optically isotropic, uniaxial and biaxial. In LHMs,
however, the propagation characteristics of electromagnetic
waves are governed by both � and �. The appearance of �
certainly makes the physical contents of the electromagnetic
wave propagations very abundant and changes the required
conditions for the above categories in LHMs.

In LHMs, the anisotropy has attracted much interest and
attention,8–17 in which the “uniaxial” LHMs are mainly con-
cerned. However, no precise definition of the uniaxial LHMs
has been given in those references. In the present paper, we
would like to fulfill this task and present the necessary and
sufficient conditions based on the concept of optic axis in
crystal optics. We find some remarkable differences between
optically uniaxial LHMs and optically uniaxial RHMs. We
also show that there are some exotic properties of anisotropic
LHMs, which never exist in anisotropic RHMs. As we know,
the loss is an issue of great concern in LHMs since it has
been inevitable in practical structures until now. However, it
is also important to know the basic behaviors in the lossless
limit.9,18–20 And in our discussion below, we neglect the dis-
sipation in order to simplify the problem and to more easily
find some interesting issues, just as Born and Wolf mentions
in Ref. 21.

First, let us review the classification of regular RHMs.
Because of the symmetry of �, we can always write � as the
diagonalization form in the system �x1 ,x2 ,x3� of principal
dielectric axes using �1 , �2 and �3 to represent the corre-

sponding principal dielectric constants. According to Ref. 21,
RHMs fall into only the following three distinct groups: �i�
optically isotropic materials ��1=�2=�3�, �ii� optically
uniaxial materials ��1=�2��3� having only one optic axis
coincident with the uniquely distinguished direction x3, and
�iii� optically biaxial materials ��1��2��3� having two dif-
ferent optic axes. The optic axis means in essence that if a
given wave vector is in this direction, the two “linearly po-
larized monochromatic plane wave eigenmodes” �eigen-
modes for short� will propagate at the same phase velocity. It
is noted that the terms of uniaxial and biaxial in the optical
classification refer to the number of optic axes.21

In dealing with the issues related to LHMs, we assume
that the substances are homogeneous, nonconducting, trans-
parent and lossless, but allowed to be anisotropic in both �
and �. For the sake of simplicity, here we deal with only the
situation in which the principal axes of the � and � tensors
are coincident,12 thus we have under the principal coordinate
system �x1 ,x2 ,x3�

���� = ��1��1� 0 0

0 �2��2� 0

0 0 �3��3�
� . �1�

Let us consider a monochromatic plane wave with angular
frequency � propagating in the direction of unit wave vector

k̂ in a substance that is electrically and magnetically aniso-
tropic. It is then a preference to use a system of Cartesian
coordinate axes coincident with the principal axes of � and
�, and then to explore the conditions for optically uniaxial
LHMs. From Maxwell’s equations, we may yield the homo-
geneous linear equation set of E1 , E2 and E3 in the system of
principal coordinate axes, as follows:

��1 − n2� k3
2

�2
+

k2
2

�3
��E1 + n2k1k2

�3
E2 + n2k1k3

�2
E3 = 0,
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where k1 , k2, and k3 are the components of k̂ in the x1 , x2,
and x3 directions, respectively, and n is the refractive index

for any given direction of unit wave vector k̂. To ensure that
the electric field E �E1 ,E2 ,E3� has nonzero solutions, the
determinant of coefficient matrix of Eq. �2� must vanish22

n4	
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3

ki
2�i	

i=1

3

ki
2�i − n2	

i=1

3

ki
2�i�i�� j�k + �k� j� + 


i=1

3

�i�i

= 0 �i, j,k = 1,2,3; j � k � i� . �3�

Evidently, n2 has, in general, two different possible values,
because Eq. �3� is a quadratic equation in n2. This implies
that anisotropic LHMs are permitted as the anisotropic
RHMs do to support two eigenmodes with different linear
polarizations and different refractive indices �or phase ve-

locities� to propagate in a given direction k̂. As already men-
tioned earlier, if the wave vector is in the direction of the
optic axis, the two allowed eigenmodes should have the
same refractive index �phase velocity�. Thus, the first re-
quirement of the optic axis is that the discriminant of Eq. �3�
must vanish

��u + w�k1
2 + �v + w�k2

2 − w�2 − 4uvk1
2k2

2 = 0, �4a�

where u=�1�1��2�3−�3�2� , v=�2�2��3�1−�1�3�, and w
=�3�3��1�2−�2�1�. The second requirement is that the co-
efficients of n4 and n2 in Eq. �3� have the same sign
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3

ki
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Inasmuch as Eq. �4a� contains only the even power terms of
k1 and k2, the optic axes shall generally appear in pairs, un-
less the optic axes are among the three principal coordinate
axes, respectively. If the anisotropic LHM is optically
uniaxial, that is to say, its optic axis is in the x1 or x2 or x3
direction, there is no harm in choosing the x3 axis as the
optic axis. We then obtain easily from Eqs. �4a� and �4b� the
necessary conditions for the x3 axis being the optic axis

�1�2 = �2�1�w = 0� � �1�2 = �2�1 � 0. �5�

However, the sufficiency of Eq. �5� should be further con-
firmed. We explore carefully to find that in the following
special cases, although Eq. �5� is nevertheless satisfied, one
can never ensure that the x3 axis is the unique optic axis. In
the first case, if �2 /�2=�3 /�3�u=0� , �1 /�1=�3 /�3�v=0� is
also held due to �1 /�1=�2 /�2�w=0�, thus Eq. �4a� is always

valid for any k̂ �k1 ,k2 ,k3� direction. In the second case, u and
v take the same sign �i.e., uv�0 or �1�2�0�, Eq. �4a� is also

valid for all the possible k̂ �k1 ,k2 ,k3� directions satisfying
uk1

2=vk2
2. Excluding the two special cases, we obtain the nec-

essary and sufficient conditions of the optically uniaxial
LHMs �the unique optic axis is in the x3 direction�

�1

�1
=

�2

�2
�

�3

�3
� �1�2 � 0 � �1�2 � 0. �6�

The first part of Eq. �6� is the same as the pathological sim-
plification of biaxiality,23 while the others are additional
uniaxial requirements on the signs of the indefinite elements.
The corresponding refractive index of the two degenerate
eigenmodes propagating in the optic axis x3 is n2=�1�2
=�2�1. Similarly, we can easily give the corresponding con-
ditions for the optically uniaxial LHMs with the unique optic
axis in the x1 or x2 direction.

We now would like to investigate the normal surface of
the optically uniaxial LHMs. As mentioned above, here we
still choose the unique optic axis to be the x3 direction. Based
on the basic Eq. �3� and the optically uniaxial conditions of
Eq. �6�, we can derive the equation of the normal surface for
an optically uniaxial LHM through using Ki as a substitute
for ki, as follows:

� K1
2

�3�2
+

K2
2

�3�1
+

K3
2

�2�1
−

�2

c2 �� K1
2

�2�3
+

K2
2

�1�3
+

K3
2

�2�1
−

�2

c2 �
= 0, �7�

where Ki �i=1,2 ,3� stands for the ith component of the
wave vector K and Ki=n�� /c�ki, and c is the velocity of
light in free space. Equation �7� indicates that the normal
surface of an optically uniaxial LHM has the structure of two
shells, as a uniaxial RHM does. Since the normal surface is
determined only by the parameters of the material, for ex-
ample, we choose the case of �
�2
� 
�3
� 
�1
�� �
�2

� 
�3
� 
�1
�� �
�3 /�3
� 
�1 /�1
� to fix the forms of the
normal surface uniquely. The perspective of the three-
dimensional normal surface of the optically uniaxial LHM is
illuminated in Fig. 1. We can easily find some significant
differences between the optically uniaxial LHMs and the
uniaxial RHMs: �i� the normal surfaces are always a sphere
and an ellipsoid of revolution for a uniaxial RHMs,21 while
for an optically uniaxial LHM they are, in general, a combi-
nation of two ellipsoids or two hyperboloids or one ellipsoid
and one hyperboloid without revolution, which depend on
the signs and magnitudes of �i and �i �i=1,2 ,3�. It is evi-
dent that the concepts of ordinary wave and extraordinary
wave are invalid in the optically uniaxial LHMs. �ii� In the
direction of the optic axis the phase velocity may not be the
smallest or the largest. �iii� In some cases, one is or both of
the two eigenmodes in certain directions are forbidden.8,12

Next we turn back to discuss the two special and interest-
ing categories mentioned above, which never exist in the
RHM. For the first special category, the parameters of the
LHMs satisfy

�1/�1 = �2/�2 = �3/�3 = C �8�

where C is a constant. Equation �8� was also stated as a
particular case of a doubly refracting regular magnetic crys-
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tal in Ref. 24. Here we also found it in the process of deduc-
ing the exact definition of uniaxial LHMs and shall discuss
the peculiarity of this case in the field of left-handed materi-
als. The constraint condition of Eq. �8� makes the two-shells
normal surface described by Eq. �7� degenerate into a single-
shell surface structure as follows:

K1
2

�3�2
+

K2
2

�3�1
+

K3
2

�2�1
=

�2

c2 . �9�

If all the �i and �i have the same sign, the normal surface
must be an ellipsoid �Fig. 2�a��; if C�0 and only two of �i
have the same sign �for instance, �1�2�0�, the normal sur-
face is a single-sheeted hyperboloid �Fig. 2�b��; if C�0 and
only two of �i have the same sign �for example, �1�2�0�,
the normal surface becomes a two-sheeted hyperboloid �Fig.
2�c��. Because the LHM satisfying Eq. �8� has similar char-
acters to the isotropic RHM, here we prefer to name it as a
quasiisotropic LHM. The quasiisotropic LHM and the isotro-
pic RHM have three identical characters: �a� in any allowed
propagation directions, the two eigenmodes propagate with
the same phase velocity or refractive index, �b� their normal
surfaces have both single-shell structure, and �c� the Poyn-
ting vectors of the two eigenmodes are indistinguishable and

coincide in direction. The differences that they exhibit are:
�a� in the quasiisotropic LHM, the refractive index depends

on the direction of propagation �n2�k̂�=�2�3�1�k1
2�1+k2

2�2

+k3
2�3�−1�, and a fixed nonzero angle is formed between the

wave vector and the Poynting vector for the two eigenmodes,
and �b� in the isotropic RHM, the refractive index is inde-
pendent of the direction of propagation, and the wave vector
and the Poynting vector are also coincident. Those are the
reasons why we use the term quasiisotropic to define this
kind of LHMs.

For the second special category, w=0 �i.e., �1�2=�2�1

�0� and uv�0 �i.e., �1�2�0� and uk1
2=vk2

2 �or �1k1
2+�2k2

2

=0�, its normal surface is a combination of two single-
sheeted hyperbolic surfaces, as illuminated in Fig. 3. In gen-
eral, the two surfaces intersect in a curve. In this special case,
the two surfaces have four straight lines in common. All the
possible directions satisfying �1k1

2+�2k2
2=0 could be consid-

ered as the optic axes, because the two allowed eigenmodes
propagate at the same velocity. In other words, there are
infinite optic axes lying in the two planes of �1x1

2+�2x2
2=0.

Therefore, we define the two planes as the planes of optic
axes.

Finally, we like to argue the understanding of the so-
called uniaxial LHM in literature,8–11 in which the Veselago
material has the following forms of � and �

FIG. 1. �Color online� Normal
surface of a uniaxial LHM. �a�
�3�3�0 and �1�3�0, �b� �3�3

�0, �c� �3�3�0 and �1�3�0.

FIG. 2. �Color online� Normal
surface of a quasiisotropic LHM.
�a� All of �i and �i �i=1,2,3� have
the same sign, �b� �i /�i�0
�i=1,2,3� and two of �i have the
same sign, �c� �i /�i�0 �i=1,2,3�
and two of �i have the same sign.
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���� = ��t��t� 0 0

0 �t��t� 0

0 0 �3��3�
� . �10�

Because � has the same symmetry as �, this kind of LHMs
is imaginarily considered to be the optically uniaxial without

any examination, and its optic axis is in the x3 direction. It is
obvious that the conditions of �1�2=�2�1=�t�t �or �1 /�1
=�2 /�2=�t /�t� cannot ensure that the x3 axis is the unique
optic axis in the two special cases of �t�t�0 and �3 /�3
=�t /�t mentioned above. In particular, it is of paramount
importance that Eq. �10� cannot contain the general case of
the optically uniaxial LHMs according to Eq. �6�. An ex-
ample is the case for �1 /�1��t /�t�=�2 /�2�m�t /m�t�
��3 /�3��1�2�0��1�2�0, where m�1. Therefore, the
definition or understanding used frequently in literature is
impertinent.

In conclusion, we give the exact necessary and sufficient
conditions of the optically uniaxial generalized left-handed
materials without dissipation and find some oversights in the
relevant understanding in the previous literature. When com-
paring the generalized left-handed materials with the regular
right-handed materials, we suggest two new concepts, which
have never been used in the regular right-handed materials,
the quasiisotropy and the planes of optic axes. Our present
results expand the common understanding regarding the op-
tically uniaxial generalized left-handed materials in lossless
limit, and excite the deeper understanding of the nature of
the left-handed materials.
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