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We present a methodology to determine critical dimensions for coherently strained coaxial nanowire
heterostructures based on a well-known formalism used to determine the critical thickness in planar
epitaxial growth. The unique geometry of the nanowire structure along with the volumetric
similarity of the core and shell regions give rise to a number of possible stable core-shell
configurations for a given choice of materials. We show that a unique critical core radius and critical
shell thickness, dependent on core radius, can quantify these configurations. Illustrative calculations
are presented for various nitride semiconductor-based core-shell structures. It is anticipated that this
model will serve as a guide to determine the feasibility of specific coherently strained nanowire
heterostructure designs. © 2006 American Institute of Physics. �DOI: 10.1063/1.2202697�

I. INTRODUCTION

Recent successes in the growth and fabrication of semi-
conductor nanowires1,2 have led to opportunities in device
design for a variety of applications, including chemical and
biological sensors,3 field effect transistors,4,5 laser diodes,6,7

and light emitting diodes.8,9 Many of these devices either
require or can benefit from the use of heterostructures in their
design, and nanowire heterostructures in both coaxial5 and
axial10 geometries have been proposed to optimize device
performance. In determining the feasibility of these designs
it is necessary to consider the strain that arises in heterostruc-
tures due to the lattice mismatch between materials. Such
strain not only affects the electronic and optical properties of
the device but also determines the device dimensions at
which coherence is lost and dislocations form, which will
significantly alter or degrade device performance.

Only a limited amount of work has been done previously
to model coherence and critical dimensions in nanowire
structures. A model was developed recently to describe strain
and coherence in axial nanowire heterostructures,11 while the
critical dimensions of isotropic coaxial structures12 have
been estimated by comparing the strain energy of two dis-
crete states of the system. In this paper we provide a meth-
odology for determining coherent geometries in coaxial
nanowire heterostructures based on the formalism commonly
used in thin film heteroepitaxy.13,14 Illustrative calculations
are presented for specific crystal structures and materials, but
with some care the basic methods can be extended to any
material system. This model is designed to provide a frame-
work from which to determine the structural feasibility of
various coherently strained core-shell nanowire structures.

II. ANALYTICAL FRAMEWORK

The geometry of the nanowire system considered is
shown in Fig. 1. The nanowire consists of a core of radius r
and shell of thickness h. Both regions possess the wurtzite
crystal structure with the �0001� direction along the axis of

the wire. The coherence requirement between the core and
shell will result in cross-sectional and longitudinal strain
components due to the mismatch in a-axis and c-axis lattice
parameters, respectively. Both the cross-sectional strain and
the longitudinal strain components must be considered when
determining stable geometries for the system.

In this analysis we are interested in determining the di-
mensions at which coherence is lost. In planar thin film
growth the typical limiting case is quantified using the “criti-
cal thickness,” the film thickness at which the film is no
longer coherent with the substrate due to strain relaxation via
the formation of dislocations. A commonly used methodol-
ogy to predict critical thickness examines the strain energy of
the system and determines the film thickness at which it
becomes energetically favorable to relieve lattice strain by
inserting a dislocation.13,14 In contrast to this case, the geom-
etry of the coaxial nanowire along with the comparable vol-
umes of the core and shell regions require that the dimen-
sions of both the core and the shell be considered. This gives
rise to the idea of critical dimensions: combinations of core
and shell dimensions that will lead to stable, coherently
strained structures.

In general it is found that the nanowire geometry is more
forgiving than its thin film counterpart in that a number of
dimensional choices exist to attain a stable coherent struc-
ture. For a given choice of materials there exists a critical
core radius, below which the structure is always coherent
regardless of shell thickness. Structures with a core radius
greater than this critical value can still be stable provided

a�Electronic mail: ety@ece.ucsd.edu
FIG. 1. Diagram of coaxial nanowire heterostructure and relevant geometric
parameters.
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that the shell thickness is below a critical shell thickness
value. The critical shell thickness is dependent on the core
radius, approaching the planar critical thickness as the core
radius increases. The critical dimensions are found to be de-
pendent only on core radius and shell thickness and have no
dependence on the length of the wire.

A. Coherent strain energy calculation

Elastic theory and the well-known relations between
stress and strain can be used to develop analytical expres-
sions for strain energy in coaxial nanowire heterostructures.
The nanowire structure is taken to be perfectly round with
smooth surfaces and interfaces, thus neglecting any effects of
faceting. This is done in order to apply a straightforward
analytical approach to the problem and is not expected to
significantly alter the calculation for sufficiently large struc-
tures. The derivation presented here is specific to wurtzite
nanowires with the �0001� direction along the length of the
wire. Analogous derivations can be carried out for other ma-
terial systems provided that the elastic stiffness tensor is iso-
tropic in the cross-sectional plane of the wire. If the cross
section of the wire was anisotropic, it is likely that the shape
of the wire would change to accommodate strain, thus vio-
lating assumptions used in this computation.

In planar thin film growth, the strain energy is calculated
by assuming a number of geometric boundary conditions and
using them to calculate the full strain field within the struc-
ture. The basic boundary conditions in planar thin film
growth define two perpendicular in-plane strain components
arising from lattice mismatch and a stress component normal
to the interface, as shown in Fig. 2�a�. In the coaxial nano-
wire geometry an analogous approach can be used, as illus-
trated in Fig. 2�b�. At a single point on the cylindrical het-
erointerface, it is possible to define two perpendicular strain
components due to lattice mismatch: one component along
the length of the wire ��longitudinal� and the other tangential to
the heterointerface ��tangential�. The stress normal to the het-
erointerface, �normal, at that particular point is analogous to
the stress in the growth direction in the planar case. Thus, by
defining a Cartesian coordinate system comprised of longi-
tudinal, tangential, and normal axes for a specific point on
the nanowire heterointerface, it is possible to apply the pla-
nar formalism to solve for the full strain field at that point.
By applying this approach to every point on the heterointer-
face, it is then possible to construct the full strain field within
the system and subsequently to calculate the strain energy.

To implement this approach, it is necessary to specify an
appropriately oriented Cartesian coordinate system for each
point on the interface. This is accomplished by rotating the
reference axes �denoted by x, y, and z� as shown in Fig. 3. If
we specify a point on the interface at an angle � relative to
the reference axis x, the specific Cartesian axes for that point
�denoted by x�, y�, and z�� can be obtained by rotating the
reference axes by an angle � about the z axis. Longitudinal
�z��, tangential �y��, and normal �x�� boundary conditions,
similar to those used in the planar formalism, can now be
applied at that point on the interface.

Figure 3�a� shows the orientation of the wurtzite crystal
structure relative to the coaxial wire geometry. From this
diagram it is clear that longitudinal strain components will be
imposed by the c-axis lattice mismatch between the core and
shell materials. The longitudinal strain component in the core
material is given by

fc
�i� =

c − c�i�

c�i� , �1�

where c represents the strained lattice constant of the system
and c�i� represents the unstrained lattice parameter of the core
material. The longitudinal strain component in the shell ma-
terial is given by

fc
�ii� =

c − c�ii�

c�ii� , �2�

where c�ii� represents the unstrained lattice parameter of the
shell material. In general, variables with superscripts �i� and
�ii� will denote parameters specific to the core and shell ma-
terials, respectively.

Figure 3�b� shows the orientation of the wurtzite crystal
structure relative to the cross section of the wire. The strain
within the cross section is governed by a tangential lattice

FIG. 2. Diagram of the orientation of stress ��� and strain ��� components
in �a� planar heterostructures and �b� coaxial heterostructures.

FIG. 3. �a� Cutaway and �b� cross-sectional diagrams of the coaxial nano-
wire structure and corresponding orientation of the wurtzite crystal geom-
etry. �x ,y ,z� denote the reference axes of the system while �x� ,y� ,z�� denote
the normal, tangential, and longitudinal axes for a specific point on the
circular interface corresponding to the angle �.
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mismatch strain component at each point on the heterointer-
face. In the core material, this strain component is given by

fa
�i� =

a − a�i�

a�i� , �3�

where a represents the strained lattice constant of the system
and a�i� represents the unstrained lattice parameter of the core
material. Similarly, the tangential strain component in the
shell material at a given point along the circular interface is
given by

fa
�ii� =

a − a�ii�

a�ii� , �4�

where a�ii� represents the unstrained lattice parameter of the
shell material.

In planar thin film growth the top surface of the structure
is unconstrained, allowing the film thickness to expand or
contract as needed to accommodate strain. This can be ex-
pressed as a boundary condition that states that there will be
no stress in the direction normal to the heterointerface.13,14 In
the coaxial nanowire geometry there is nothing constraining
the outer surface of the nanowire system; thus the radius of
the system is free to expand or contract in order to accom-
modate strain. For a particular point on the interface this
yields the boundary condition that there will be no stress in
the direction normal to the heterointerface at that point. The
wire is assumed to be of infinite length and thus the effects of
the circular faces at either end of the wire are not considered.

Using standard matrix notation15 it is possible to write
the elements of stress as a function of the strain and the
elastic stiffness matrix for a given material.15 These elements
of stress and strain can then be rewritten in their tensor
forms. Rotating these tensors about the z axis by an angle �
will yield expressions relating the normal, tangential, and
longitudinal components of stress and strain for a given point
on the interface, denoted by the angle �. The normal, tan-
gential, and longitudinal boundary conditions defined earlier
can then be applied to elements of the rotated tensors as
follows:

�1��cij,�1,�2,�3,�6,�� = 0, �5�

�2���1,�2,�6,�� = fa, �6�

�3� = �3 = fc, �7�

where �1� represents the rotated stress tensor element normal
to the interface at a point specified by the angle �, cij repre-
sents various elements of the elastic stiffness matrix of the
material being considered, �i represents strain matrix ele-
ments relative to the reference axis, and �2� and �3� represent
the rotated strain tensor elements tangential to the interface
at the specified point and along the length of the wire at the
specified point, respectively.

For planar growth it is also assumed that the strain com-
ponents are perfectly perpendicular and that there are no
shear strains that arise from lattice mismatch.13,14 As in the
planar case, for a single point on the heterointerface, there
will be no shear strain components relative to the normal,
tangential, and longitudinal directions. These conditions can
be expressed as follows:

�4���4,�5,�� = 0, �8�

�5���4,�5,�� = 0, �9�

�6���1,�2,�6,�� = 0, �10�

where �4�, �5�, and �6� represent the shear strain elements be-
tween the tangential and longitudinal axes, normal and lon-
gitudinal axes, and the normal and tangential axes, respec-
tively.

From Eqs. �5�–�10� a complete solution for the strain
field �

�
can be obtained as a function of angular position �.

The resulting expression for the strain field can then be used
to compute the strain energy density w= 1

2cij�i� j, which when
integrated over the volume of the material will yield an ex-
pression for the total strain energy.15 The resulting expres-
sions for strain energy U in the core and shell are then

U�i� =
�c11

�i�fa
�i��2 − �c12

�i�fa
�i� + c13

�i�fc
�i��2 + c11

�i�fc
�i��c13

�i�fa
�i� + c33

�i�fc
�i��2

2c11
�i� L��r2� , �11�

U�ii� =
�c11

�ii�fa
�ii��2 − �c12

�ii�fa
�ii� + c13

�ii�fc
�ii��2 + c11

�ii�fc
�ii��c13

�ii�fa
�ii� + c33

�ii�fc
�ii��2

2c11
�ii� L���r + h�2 − r2� . �12�

Equations �11� and �12� are valid for wurtzite wires along the
�0001� direction. A similar analysis utilizing the appropriate
elastic stiffness tensor and lattice mismatch boundary condi-
tions can be used to calculate the strain energy expressions
for other material systems.

For a given geometry and material composition the equi-
librium lattice constants of the strained system, a and c, will

assume values that minimize the total strain energy of the
system. We therefore seek to minimize Ustrain=U�i�+U�ii�

with respect to a and c by using the strain expressions given
in Eqs.�1�–�4�. This minimization cannot be performed si-
multaneously for both a and c using analytical methods. Fig-
ure 4 shows values for a and c obtained by numerical mini-
mization in a coaxial heterostructure with a 25 nm radius

114308-3 S. Raychaudhuri and E. T. Yu J. Appl. Phys. 99, 114308 �2006�



GaN core, as a function of thickness of an Al0.2Ga0.8N shell.
The lattice constants and elastic stiffness constants used in
the computation were taken from Ref. 16 and are all assumed
to vary linearly with alloy composition.

The numerical results in Fig. 4 show that the equilibrium
lattice constants will fall somewhere between the relaxed
core and shell values and will tend toward those of the region
with greater volume. This is expected given the direct rela-
tionship between strain energy and volume seen in Eqs. �11�
and �12�. These results show that for a given choice of ma-
terial, geometry will determine the distribution of lattice
strain between the core and shell materials. It is because of
this that the dimensions of both core and shell must be con-
sidered in determining stable coherent geometries.

An analytical expression for the equilibrium lattice con-
stant can provide a more intuitive understanding of how the
core and shell dimensions affect the strain distribution be-
tween the two regions. From the numerical result it appears
that the equilibrium lattice constants a and c have the same
functional dependence on shell thickness when normalized to
their respective relaxed core and shell lattice values, i.e.,

fa
�i� = fc

�i� = f �i� =
p − p�i�

p�i� , �13�

fa
�ii� = fc

�ii� = f �ii� =
p − p�ii�

p�ii� , �14�

where p represents an equilibrium value for a generic lattice
constant variable, p�i� represents the relaxed value of the cor-
responding generic core lattice constant, and p�ii� represents
the relaxed value of a generic shell lattice constant. Substi-
tuting Eqs.�13� and �14� into Ustrain and minimizing with re-
spect to p yield

p =
p�ii�p�i��p�ii�r2��i� + p�i�h�h + 2r���ii��

p�ii�r2��i� + p�i�h�h + 2r���ii� , �15�

where ��i� and ��ii� are given by

� =
c11 − �c12 + c13�2 + c11�2c13 + c33�

2c11
. �16�

Equation �15� defines the behavior of the equilibrium lattice
constant relative to the relaxed core and shell lattice param-
eters. Figure 4 shows that the analytical functions are in good
agreement with the numerical results, confirming that Eq.
�15� is an appropriate approximation for the equilibrium lat-
tice constant.

B. Partial relaxation via dislocation formation

The insertion of an edge dislocation at the core-shell
interface can allow partial relaxation of lattice mismatch
strain but will also contribute a strain field associated with
the dislocation itself. In order to determine the energetics
associated with these phenomena, it is necessary to identify
the types of dislocations that are likely to form. This is done
by first considering dislocations that are known to be stable
in a given crystal structure and, from them, selecting those
dislocations that will relieve lattice mismatch strain in the
coaxial nanowire geometry. The two types of dislocations
considered for the wurtzite �0001� structure are shown in
Fig. 5.

A pure edge dislocation along the �0001� direction with

Burgers vector in the �112̄0�, as shown in Fig. 5�a�, is ex-
pected to be stable and relieve strain in the cross section of

FIG. 4. Plot of the cross-sectional equilibrium lattice constants �a� a and �b�
c as functions of shell thickness. The structure considered is comprised of a
25 nm GaN core and an Al0.2Ga0.8N shell. The maximum and minimum y
axis values on both plots are set to be the relaxed core and shell lattice
constants, respectively.

FIG. 5. �a� Orientation of an edge dislocation line along the �0001� direction

with Burgers vector bline in the �112̄0� direction, tangential to the circular
heterointerface. �b� Orientation of an edge dislocation loop in the cross-
sectional plane of the wire with Burgers vector bloop in the �0001� direction,
along the length of the wire.
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the nanowire. Such dislocations have been observed in pla-
nar nitride films.17 The strain energy associated with this type
of dislocation is 18

Uline = nline2�rL	 c11
�ii� − c12

�ii�

2c11
�ii� 
bline

2

4�
log� 4h

bline
� , �17�

where nline refers to the dislocation line density per unit
length about the circumference of the heterointerface and
bline refers to the magnitude of the Burgers vector for such a
dislocation. In this expression the dislocation is assumed to
be located at the heterointerface, as shown in Fig. 5�a�, and
the strain field is assumed to terminate at the free surface of
the nanowire system. Although the strain field generated by
the dislocation will exist in both the core and shell materials,
cij values are arbitrarily chosen to be those for the shell; this
is reasonable since in most viable heterojunction material
systems cij

�i� and cij
�ii� are sufficiently similar that the choice

between them will not significantly impact the final calcula-
tion. The magnitude of bline is expected to be that of the
equilibrium lattice constant a.19

Stable dislocations with Burgers vectors in the �0001�
direction can also form in the wurtzite crystal structure.18 If
an edge dislocation loop with such a Burgers vector should
form around the core, as shown in Fig. 5�b�, some longitu-
dinal strain in the wire would be relieved. Given that edge
dislocations with such a Burgers vector are not observed in
the planar case, we do not expect these dislocations to play a
major role in coaxial structures but include it for complete-
ness. The strain energy associated with such a dislocation
loop is 18

Uloop = nloopL2�r�c13
�ii�

+ c11
�ii�c33

�ii�� c44
�ii��c11

�ii�c33
�ii� − c13

�ii��

c11
�ii��c13

�ii� + 2c44
�ii� + c11

�ii�c33
�ii��

bloop
2

4�

�log� 32r

bloop
− 1� , �18�

where nloop refers to the dislocation loop density per unit
length along the z axis of the wire and bloop refers to the
magnitude of the Burgers vector, which is assumed to be that
of the equilibrium lattice constant c.

In examining the energetics of a dislocation at the inter-
face, it is necessary to consider not only the strain field as-
sociated with the dislocation itself but also the lattice relax-
ation that is expected to occur with the inclusion of a
dislocation. For planar thin films grown on bulk substrates,
the one-dimensional lattice strain including relaxation due to
dislocation formation is given by 14

f film =
asubstrate − afilm

afilm
− nb , �19�

where asubstrate represents the strained lattice constant of the
film, afilm represents the relaxed lattice constant of the film, n
refers to the line dislocation density per unit length, and b
refers to the edge component of the dislocation Burgers vec-
tor. The lattice relaxation term nb accounts for the film re-
laxation due to the formation of dislocations at the heteroint-

erface. The system described by Eq. �19� assumes that all
strain will be in the film, and thus only relaxation in the film
is considered.

In the case of the coaxial nanowire structures, strain will
be distributed between the core and the shell. The formation
of an edge dislocation at the interface will result in the in-
sertion of an extra plane of atoms in the system. This will
change the strain constraint in both core and shell materials
since the two are interdependent. Because the system will
tend to minimize total strain energy, the more heavily
strained material will receive the bulk of the lattice relax-
ation that occurs. It is therefore necessary to distribute the
lattice relaxation term between the core and shell while in-
corporating it into the lattice strain expressions. The resulting
strain expressions are then

fa
�i� =

a − a�i�

a�i� − 	 a�i� − a

�a�i� − a�ii��
nlinebline, �20�

fa
�ii� =

a − a�ii�

a�ii� − 	 a − a�ii�

�a�i� − a�ii��
nlinebline, �21�

fc
�i� =

c − c�i�

c�i� − 	 c�i� − c

�c�i� − c�ii��
nloopbloop, �22�

fc
�ii� =

c − c�ii�

c�ii� − 	 c − c�ii�

�c�i� − c�ii��
nloopbloop. �23�

These expressions resemble Eq. �19� except that the lattice
relaxation term is now divided between the core and shell.
Equations �20�–�23� model the effect described earlier by
using the equilibrium lattice constant and the relaxed lattice
constant values to apportion the relaxation term according to
the relative amounts of strain present in the core and shell
materials. Numerical computations were carried out to mini-
mize the total energy in the system with respect to the divi-
sion of the strain relaxation term. The results of these calcu-
lations were found to be nearly identical to the functions
used in Eqs. �20�–�23� confirming that the equilibrium lattice
constant can be used to estimate the distribution of strain
relaxation between the core and shell.

C. Critical geometry calculation

The total strain energy in the system is the sum of the
lattice mismatch strain energy in the core and shell as well as
the strain energy resulting from the strain fields of the two
types of edge dislocations discussed above. The expression
for the total strain energy including dislocations is therefore

Utot = U�i� + U�ii� + Uline + Uloop, �24�

where U�i� and U�ii� are calculated using Eqs.�11�, �12�, and
�20�–�23�. To determine the dimensions at which coherence
is lost, it is necessary to determine the geometric limits at
which it will become energetically favorable to include a
dislocation. Mathematically this is done by evaluating
��Utot /�n�n=0 and determining the dimensions for which this

function changes from positive to negative.14 This critical
geometry analysis is carried out separately for line disloca-
tions and loop dislocations.

114308-5 S. Raychaudhuri and E. T. Yu J. Appl. Phys. 99, 114308 �2006�



Such an analysis will determine the dimensions at which
sufficient strain energy will be relieved by the insertion of a
single dislocation to make up for the energy cost of inserting
the dislocation. However, it does not take into account the
energetic effects of interactions between dislocations, which
are expected to be significant for nanoscale structures, and
thus is only valid at the critical dimensions at which the first
dislocation forms.

III. RESULTS AND DISCUSSION

Figure 6 shows the complete results of a critical geom-
etry calculation for a structure comprised of a GaN core and
an Al0.5Ga0.5N shell. The solid and dashed curves show the
calculated limiting dimensions for the formation of line dis-
locations and loop dislocations. The shaded portion of the
plot shows the combination of core-shell dimensions that
will yield coherently strained structures.

The solid curve in Fig 6 shows the limiting geometry for
line dislocation formation. There is a critical core radius of
8.2 nm, below which a coaxial nanowire will be coherent
regardless of shell thickness. Such a critical core radius ex-
ists because of the coaxial nanowire structure’s ability to
distribute strain between the core and shell. As the shell
thickness increases, eventually all of the strain is passed to
the core. Since the core volume is constant, the strain energy
of the system will no longer change with shell thickness. If
the core volume is sufficiently small, then the strain energy
stored in the core will never be great enough to warrant the
formation of a dislocation.

For structures with a core radius larger than the critical
core radius, the solid curve in Fig. 6 will define a critical
shell thickness for which it becomes energetically favorable
to insert a line dislocation at the heterointerface. The posi-
tively sloped region of this curve �to the right of hcrit in Fig.
6� is a function of the assumption, used to calculate the dis-
location strain energy Uline, that no other dislocations are
present to terminate the dislocation strain field. Because a
dislocation must have already formed in order to arrive at
this region on the plot, the features of the curve in this region
are not applicable in determining coherence.

The dashed curve in Fig. 6 shows the limiting geometry
for loop dislocation formation. The position of this curve
with respect to the line dislocation curve shows that coher-

ence will always be lost through the formation of a line dis-
location. Because the line dislocation has already formed in
this region of the plot and the energetic interaction between
dislocations is not taken into account, no other information
can be extracted from the loop dislocation curve.

Hence, from Fig. 6 we are able to determine that the
critical dimensions are defined by a critical core radius below
which dislocations will never form and a critical shell thick-
ness that is dependent on core radius. From the analysis we
are also able to predict that coherence will likely be lost due
to formation of a line dislocation oriented along the length of
the wire.

Numerical calculations were also carried out for a num-
ber of other nitride structures as a function of alloy compo-
sition. Figure 7 shows critical core radii for structures com-
prised of GaN cores with AlxGa1−xN shells, InxGa1−xN cores
with GaN shells, and GaN cores with InxGa1−xN shells. Fig-
ures 8�a�–8�c� show the critical dimensions for these struc-
tures, respectively. These curves show the shell thickness at
which the first line dislocation is expected to form for a
given core radius. Figures 7 and 8 suggest that there are a
variety of compositional and geometric choices that will
yield coherent structures, giving device designers a flexibil-
ity that is typically not observed in planar thin film devices.

Few structures such as these have been fabricated and
accurately characterized, and as a result limited data exist in
the literature to directly determine the validity of this model.
For increasing core radius, this model approaches the well-
known theoretical calculation for planar thin films,20–22 con-
firming that this model is consistent with accepted methods
to determine critical thickness in thin film structures.

IV. CONCLUSION

In summary, we have developed a methodology to deter-
mine coherent geometries for coaxial nanowire heterostruc-
tures based on the well-known formalism used to determine
the critical thickness in planar epitaxial growth. The unique
geometry of the nanowire structure along with the volumet-
ric similarity of the materials involved give rise to a number
possible coherent structures for a given choice of materials,

FIG. 6. Plot of the critical dimensions calculated for a coaxial nanowire
structure comprised of a GaN core and Al0.5Ga0.5N shell. The shaded region
of the plot shows all possible strained coherent geometries, which are quan-
tified by a critical core radius rcrit and the critical shell thickness curve hcrit.

FIG. 7. Plot of the critical core radius for nitride nanowire heterostructures.
The structures considered are comprised of a GaN core with AlxGa1−xN
shell ���, InxGa1−xN core with GaN shell ���, and GaN core with
InxGa1−xN shell ���.
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which are quantified by a unique critical core radius and a
critical shell thickness that is a function of the core radius.
This flexibility is unique to nanowire structures and provides
material and device engineers with increased flexibility in
design not available in planar thin film heterostructures.
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