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Coupled-mode approach to the nonlinear dynamics induced by an elliptically polarized laser field
in liquid crystals at normal incidence

A. Vella, B. Piccirillo, and E. Santamato
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A coupled-mode theory is presented to describe the dynamics of the molecular director induced by an
elliptically polarized light plane wave normally incident onto a homeotropic liquid crystal film. The model
provides a set of time ordinary differential equations for the lowest two modes of the system while the
influence of the higher-order twist modes is accounted for by means of the adiabatic approximation. The
resulting dynamics is complex above the reorientation threshold, according to the intensity and polarization of
the incident light, rotating, oscillating, or steady states may settle. The dynamical regimes have been studied as
functions of external parameters. The agreement with the experimental data was very good.
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I. INTRODUCTION

The optical-field-induced molecular reorientation in liqu
crystals~LCs! has been extensively studied in the last tw
decades and on this subject there are many reviews@1–4#
and some chapters of general textbooks@5–7# that the reader
can refer to. It was realized very soon, however, that
dynamics of the optical reorientation was much richer th
the case of the magnetic-field-induced reorientation, beca
of the possible occurrence of self-induced stimulated li
scattering@8# and angular momentum transfer from light
liquid crystals @9#. For instance, the optical Fre´edericksz
transition~OFT! induced by a linearly polarized laser bea
normally incident onto a homeotropically aligned LC fil
was proved to be second order@10,11# ~as the magnetic-
field-induced Fre´edericksz transition!, but it becomes first
order when circularly polarized light is used instead@9#. Also
the dynamics of the OFT is dramatically changed. In the c
of linear polarization of the incident beam, a monotonic a
proach to the final distorted state is observed@11#, while for
circular polarization a steady regime of uniform precess
of the molecular directorn around the beam axis is esta
lished@9#. In the case of elliptical polarization of the incide
beam, a complex dynamics ofn is induced, ranging from
steady states to persistent oscillations and nonuniform
cessions@12#. The main difference between the cases of l
ear and elliptical polarization is that in the first case the lig
polarization remains unchanged and the molecular distor
can be described by the polar angleu of n
5(sinu cosf,sinu sinf,cosu) only, while in the second cas
bothu andf angles come into play and the polarization st
of the light changes with both space and time. It can
expected, therefore, that in the last case the dynamics ma
very complex, as it is indeed observed. The basic equat
governing the optically induced molecular reorientation
well as the light polarization state were deduced for norm
incidence and arbitrary polarization of the incident beam
the plane-wave geometric optics approximation@13#. In the
case of linear polarization, these equations reduce to
well-known equations governing the standard OFT@14# and
in the case of circular polarization to the equations cons
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ered in Ref.@15#. A numerical brute force integration of th
partial differential equations given in Ref.@13# showed that
all dynamical regimes observed in the field of an elliptica
polarized laser beam could be reproduced@12#, but an ana-
lytical model has been lacking up to now.

In this paper we present a simple dynamical model able
describe the optical reorientation induced in a LC film by
laser beam at normal incidence with arbitrary polarizatio
Our model is based on the expansion of the polar ang
u(z,t) andf(z,t) of n along suitable complete sets of no
mal modes. Inserting the mode expansions into the star
equations, a set of coupled time ordinary differential eq
tions ~ODEs! was derived. The higher-order modes ha
been adiabatically eliminated by the Galerkin method so
to obtain a set of only two ODEs for the coefficientu0(t) of
the lowest-order mode in theu expansion and the coefficien
f0(t) of the lowest mode in thef expansion. The two ODEs
have been integrated numerically with respect to time a
the resulting dynamics have been studied as a function of
incident light intensity and polarization. The agreement w
the experimental data reported in Ref.@12# is remarkable: all
the observed dynamical regimes have been reproduced in
right sequence with respect to the control parameters.
worth noting that the first twist modef1 was retained, al-
though in its adiabatic approximationf1>f̄1(u0 ,f0), the
complete suppression off1 , in fact, would rule out the non-
linear oscillations. Sincef̄1 is related to the presence o
twist in the sample, we conclude that some amount of tw
must be present during oscillations.

II. THE TORQUE EQUATIONS

Let us consider a light plane wave normally incident on
a homeotropically aligned nematic film with thicknessL. The
anchoring forces at the walls located atz50 andz5L are
assumed to be very strong. The polarization of the incid
wave is arbitrary and its intensity~z component of the Poyn
ting vector! is denoted asI. The torque equations for th
polar anglesu(z,t) and f(z,t) of the molecular directorn
are ~cgs units are used!
©2002 The American Physical Society06-1



th

a
n

uid
or
ys

or
n

ry

o
s

n in

n

-

m

c
very
st-

A. VELLA, B. PICCIRILLO, AND E. SANTAMATO PHYSICAL REVIEW E 65 031706
u̇5~12p1 sin2u!u92p1 sinu cosuu822~122p2 sin2 u!

3sinu cosuf821~ Ĩ /2n0m!n̄1~u!~11V•s!,

sin2 uḟ5]/]u@~12p2 sin2 u!sin2 uf8#

1~ Ĩ /n0m!@ n̄~u!2n0#~V3s!z , ~1!

where the dot means the partial derivative with respect to
reduced timet̃ 5t/t with t5g1L2/p2k33, the prime means
the partial derivative with respect to the reduced coordin
u5pz/L(uP@0,pu) and the following quantities have bee
introduced:

m512
n0

2

ne
2 ~ne.n0!,

p1512
k11

k33
,

p2512
k22

k33
,

n̄~u!5
n0

A12m sin2 u
,

n̄1~u!5
dn̄

du
,

I th5
cp2k33

n0mL2 , ~2!

and V(u,t)5(cos 2f,sin 2f,0). In Eqs.~1! and ~2! n0 and
ne are the ordinary and extraordinary indexes of the liq
crystal and thekii ( i 51,2,3) are the elastic constants f
splay, twist, and bend, respectively. For a typical liquid cr
tal material such as E7 at room temperature,k11511.09
31027 dyne, k2255.8231027 dyne, k33515.9731027

dyne. For a sample with thicknessL'50mm, the character-
istic time t is typically t53 s. The reduced Stokes vect
s(u,t)5(s1 ,s2 ,s3) is used to describe the light polarizatio
inside the sample. The spatial evolution ofs is governed by

s85~2L/l!@ n̄~u!2n0#~V3s!, ~3!

wherel is the optical wavelength in vacuum. The bounda
conditions for Eqs.~1! and ~3! are

u~0,t !5u~p,t !50,

f8~0,t !5f8~p,t !50,

s~0,t !5s05~s10,s20,s30!, ~4!

wheres0 is the reduced Stokes vector of the polarization
the incident wave. Another useful quantity is the pha
changea(t) suffered by the optical wave at timet in travers-
ing the liquid crystal film,
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a~ t !5
2L

l E
0

p

@ n̄„u~u,t !…2n0#du. ~5!

We notice that Eqs.~1!–~5! are invariant under the change

f→f1p. ~6!

We assume a small splay-bend and a small twist distortio
the sample, so thatu(u,t)!1 andf8(u,t)!1 ~the anglef
itself may be large!. Retaining terms up to the third order i
u and to the first order inf8, the torque Eqs.~1! reduce to

u̇5~12p1u2!u92p1uu821 Ĩ Fu2S 2

3
2

3m

2 D u3G S 11V•s

2 D ,

~7!

ḟ5
1

u2

]

]u S u2
]f

]u D1~ Ĩ /2!~V3s!z . ~8!

In the same approximation, Eqs.~3! and ~5! yield

s85S mn0L

l D u2~V3s!, ~9!

a~ t !5S mn0L

l D E
0

p

u2~u,t !du. ~10!

III. THE MODE EXPANSION

We expand the fieldsu(u,t) andf(u,t) in terms of com-
plete sets of orthogonal functions

u~u,t !5 (
n50

`

un~ t !Vn~u!, ~11!

f~u,t !5 (
n50

`

fn~ t !Un~cosu!5f0~ t !1fd~u,t !, ~12!

whereUn(cosu)5sin@(n11)u#/sinu are the Chebyshev poly
nomials of the second kind@16# and Vn(u) are given by
Vn(u)5Un(cosu)sinu5sin@(n11)u#. These functions are
normalized according to

E
0

p

Vm~u!Vn~u!du5E
0

p

Um~cosu!Un~cosu!sin2 u du

5
p

2
dnm . ~13!

The anglesu(u,t) andf(u,t) defined in Eqs.~11! and ~12!
obey the boundary conditions given by Eqs.~4!. In Eq. ~12!
we split out the termfd(u,t)5(n51

` fn(t)Un(cosu), de-
scribing the twist distortion of the molecular director, fro
the zero-order termf0(t). The termf0(t) corresponds, in
fact, to a rigid rotation ofn and does not involve an elasti
distortion in the sample. We assumed, as said before, a
small elastic distortion. Then, we may retain only the lowe
order mode in Eq.~11!,
6-2
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COUPLED-MODE APPROACH TO THE NONLINEAR . . . PHYSICAL REVIEW E 65 031706
u~u,t !.u0~ t !sinu, ~14!

and assumeu0(t) and fd(u,t) to be very small quantities
We notice, however, thatf0(t) is allowed to be large at will.
Inserting Eq.~11! into Eq. ~7! and projecting the resulting
equation along the zero-order modeV0(u) yields a single
equation foru0(t),

u̇052u01
p1

2
u0

31~ Ĩ /2!Fu02S 429m

8 D u0
3G

1~ Ĩ /p!u0E
0

p

@~V01V1!•s#sin2 u du

2~ Ĩ /p!S 2

3
2

3m

2 D u0
3E

0

p

~V0•s!sin4 u du, ~15!

where we expandV(u,t) according to

V5V0~ t !1V1~u,t ! ~16!

with V0(t)5„cos 2f0(t),sin 2f0(t),0… and V1(u,t)
52fd(u,t)„2sin 2f0(t),cos 2f0(t),0…. Since fd(u,t) is
small, we neglected the term containingV1(u,t) in the last
term on the right of Eq.~15!, containing the already sma
quantity u0

3. In the same approximation, the optical pha
changea(t) reduces to

a~ t !5L̃u0
2~ t !, ~17!

whereL̃5(pmn0/2l)L. Inserting Eq.~17! into Eq. ~15! we
get the following differential equation for the optical pha
changea(t):

ȧ5~ Ĩ 22!a1F Ĩ S 9m24

8
D 1p1G a2

L̃
1 Ĩ aS 2

p
D

3E
0

p

@~V01V1!•s#sin2 u du2 Ĩ S 2

3
2

3m

2
D a2

L̃
S 2

p
D

3E
0

p

~V0•s!sin4 u du. ~18!

Inserting Eq.~14! into Eq. ~8! yields

ḟ5
1

sin2 u

]

]u
~sin2 uf8!1~ Ĩ /2!~V3s!z. ~19!

Projecting this equation along the modesUn yields

ḟn52n~n12!fn1~ Ĩ /p!E
0

p

@~V01V1!3s#z

3Un~cosz!sin2 u du ~n50,1, . . .!. ~20!

Equations~15! and~20! are coupled by means of the Stok
vectors. We must therefore solve the light polarization pro
lem first.
03170
-

IV. THE LIGHT POLARIZATION PROBLEM

In the small distortion approximation, Eq.~9! becomes

s85~2a/p!sin2 u@~V01V1!3s#, ~21!

wherea is given by Eq.~17!. These equations can be solve
perturbatively usingfd(u,t) as a small parameter. At th
first significant order, the solution is

s15s101sin 2f0@~s20cos 2f02s10sin 2f0!~12cosav !

1s30sinav#1e cos 2f0 ,

s25s202cos 2f0@~s20cos 2f02s10sin 2f0!~12cosav !

1s30sinav#1e sin 2f0 ,

s35s301~s20cos 2f02s10sin 2f0!sinav

2s30~12cosav !, ~22!

where

v~u!5
u2sinu cosu

p
~vP@0,1# ! ~23!

and

e52aE
0

v
@s30cosaw1~s20cos 2f0

2s10sin 2f0!sinaw#fd~w,t !dw ~24!

is a small quantity proportional to the twist distortionfd .
Without loss of generality, we may choose thex axis along
the major axis of the polarization ellipse of the incomin
light, so thats105cos 2x, s2050, s305sin 2x with anglex
P@0,p/4#.

V. THE COUPLED-MODE EQUATIONS

Inserting Eq.~22! into Eqs.~18! and ~20! we obtain

ȧ5@ Ĩ ~11cos 2x cos 2f01F1!22#a

1F Ĩ S 9m24

8
D ~11cos 2x cos 2f0!1p1G a2

L̃
,

ḟ052~ Ĩ /2a!@sin2x~12cosa!1cos2xsin2f0sina#,

ḟn52n~n12!~fn2f̄n! ~n51,2, . . .!, ~25!

wheref̄n are given by

f̄n52
Ĩ

2n~n12!
sin 2xAn~a!1cos 2x sin 2f0Bn~a!]

~n51,2, . . .! ~26!
6-3
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A. VELLA, B. PICCIRILLO, AND E. SANTAMATO PHYSICAL REVIEW E 65 031706
andF1 is given by

F15 (
n51

`

f nfn ,

f n522 sin2x@An~a!2Cn~a!#1cos 2x

3sin 2f0@Bn~a!1Dn~a!#. ~27!

In Eqs.~26! and ~27!, we introduced the functions

An~a!5E
0

1

sinavUn„cosu~v !…dv,

Bn~a!5E
0

1

cosavUn„cosu~v !…dv,

Cn~a!5aE
0

1

~12u!cosauUn„cosz~u!…du,

Dn~a!5aE
0

1

~12u!sinauUn„cosz~u!…du. ~28!

Equations~25! form an infinite set of coupled ODEs fo
a(t), f0(t), andfn(t) (n51,2, . . . ). Asshown in the last
of Eqs.~25!, the modesfn are highly damped, with dampin
constants increasing withn as n(n12). We may assume
therefore, that the modesfn follow adiabatically their steady
state valuesf̄n given by Eq.~26!. When the modesfn are
adiabatically eliminated, by settingfn5f̄n ~Galerkin
method!, we are left with the first two of Eqs.~25! only and
the degrees of freedom of our system reduce toa and f0 .
Moreover, Eq.~26! shows that the valuesf̄n are rapidly
decreasing functions ofn, so that we may retain only a few
of them. If all the twist modes were neglected settingfn
50, the first two of Eqs.~25! would reduce to the set o
equations already studied in Ref.@17#. In this approximation,
however, there is no way to obtain the oscillations of t
directorn, which instead have been observed experiment
@12#. We conclude thatthe twist degrees of freedom are e
sential to induce the nonlinear oscillations. Moreover, just
adding the first torsional modef1 , even in its adiabatic ap
proximation f15f̄1 , is enough to produce the oscillatin
regime. Adding further adiabatic modesf̄n ~we tried up to
n564 modes! produces no appreciable change in the dyna
ics. Similarly, releasing the adiabatic approximation for t
dominant twist mode settingf15f1(t) adds no new feature
Then, in order to have a model as simple as possible, we
only the first two of Eqs.~25! with F1 given byF15 f 1f̄1 .
The results obtained in this way and their connection w
the experimental data will be discussed in the following s
tions. Here we notice that the integrals defining the functio
An(a),Bn(a),Cn(a),Dn(a) can be evaluated dynamicall
at each step of the numerical integration of our two OD
exploiting the numerical fast Fourier transform algorith
with no appreciable increase of the total integration time
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VI. THE MAP OF THE REGIMES

In Fig. 1 we present a map of the dynamical regimes
the parameter plane (Ĩ ,x). The points are the experimenta
data taken from Ref.@12#. The different dynamical regime
are separated by critical curves. We can locate three reg
of ellipticity with different dynamical behavior: almost linea
polarization (0<x&p/10), only distorted and oscillating
states are present; intermediate ellipticity (p/10&x&p/6),
distorted, oscillating, and rotating states are present; alm
circular polarization (p/6&x&p/4), hysteresis between os
cillating and rotating regimes is present. As shown in Fig
the agreement between theory and experiment is very g
in spite of the fact that only two ODEs were used. Som
considerations are in order, however. First, the data h
been corrected for thermal heating of the sample, as in
cated in Ref.@12#. Heating in fact produces a lowering of th
liquid crystal order parameter and hence a lowering of
elastic constants with increasing optical power. Seco
when we changed the intensityĨ ~for fixed ellipticity angle
x!, we take as initial data to integrate the differential equ
tions the final data of the previous run. This procedure sim
lates an abrupt increase of the incident laser intensity, so
the system has no time to move. This yields the solid criti
curves drawn in Fig. 1. If, instead, we simulate a very lit
relaxation of the system by slightly changing the initial co
ditions during the change ofĨ ~only one part of 1024 is
enough!, the critical line separating the steady states from
oscillations is changed into the dotted one. The differen
between the two cases is particularly evident in the alm
linear polarization region: the presence of a small relaxat
quenches the transition to the oscillation regime and the
torted steady state remains stable, as observed in the ex
ments. This behavior may be explained considering that
attraction basin of the limit cycle corresponding to oscil
tions becomes negligibly small as the light polarization ten

FIG. 1. Map of the dynamical regimes in the (Ĩ ,x) plane. The
points refer to the experimental observations@12#. Undistorted
states~U!; j distorted states~D!; s oscillating states~O!; m rotat-
ing states~R!; , hysterical rotating states~HR!.
6-4
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COUPLED-MODE APPROACH TO THE NONLINEAR . . . PHYSICAL REVIEW E 65 031706
to be linear. So very particular initial data are needed to dr
the system into its oscillation state. Because of the prese
of relaxation and of unavoidable noise, during the intens
change, the oscillation regimes are not reached in prac
with almost linearly polarized light.

VII. BIFURCATION ANALYSIS

Solution diagrams in the three different regions of t
parameterx were obtained with a continuation algorithm
Figure 2 shows the stationary and periodic solutions fox
5p/12 ~first region!. For the sake of illustration, the directo
componentnx5sinu0 cos(f022f1), with u0 derived from
Eq. ~17!, is reported versus the normalized intensityĨ of the
optical wave. WhenĨ is below the threshold valueĨ 5I 1
52/(11cos 2x) for the OFT, the only stable state is the u
distorted onenx5ny50. At the threshold valueI 1 a pitch-
fork bifurcation is encountered~P!. Above the threshold, the
undistorted state becomes unstable and a new stable dist
state appears. Because of the symmetry of the system, a
ond branch is obtained from the first under the change~6! for
a fixed value ofĨ . Going on increasing the intensityĨ , the
distorted state remains stable, until the second critical va
I 2 is reached where a Hopf bifurcation~H! occurs and the
system evolves towards a limit cycle corresponding to n
linear oscillations ofn. The boundaries of the dashed regio
yield, for fixed Ĩ , the maximum and minimum value thatnx
reaches during the cycle.

The solution diagram forx5p/8 ~second region! is re-
ported in Fig. 3. This diagram shows the same behavior
bifurcations as the previous one forĨ ,I 3 . For this intensity
value a gluing bifurcation is found (G), where the cycle is
gluing with the symmetric one obtained under the transf
mation ~6!. After the two cycles have been glued togeth
the director motion develops along a large limit cycle encl

FIG. 2. The solution diagram forx5p/12 ~solid line, stable
stationary solutions; dashed lines, unstable stationary solutio!.
The dashed regions represent the amplitude of thex projection of
the oscillating cycles. The two symmetrical regions remain alw
separated.
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ing the origin, which corresponds to the rotation ofn. An
example of trajectories in the (nx ,ny) plane is shown in Fig.
4 for different intensity values near the gluing point. Th
transition point~G! between the oscillation and rotation is
homoclinic bifurcation, where the motion suffers a mark
slowing down in time. This is shown in Fig. 5 where th
period of the motion is plotted as a function ofĨ : a search for
a critical slowing down exponent yieldedT/t}( Ĩ 2I 3)2g

with g50.11860.005. The exponentg was found to be the
same on both sides of the critical pointI 3 . Unfortunately, we
found no measurements on the slowing down effect in
literature. ForĨ . Ĩ 3 , the rotation cycle remains stable.

For x50.6 ~third region! the solution diagram shows
further branch of periodic solutions forI 5, Ĩ ,I 4 as shown

s

s

FIG. 3. The solution diagram forx5p/8 ~solid line, stationary
solutions; dashed lines, unstable stationary solutions!. The vertically
dashed regions represent the amplitude of thex projection of the
oscillating cycles that over the gluing pointI 3 merge into rotating
cycles, represented by the obliquely dashed regions.

FIG. 4. The trajectories in the phase space forx50.6. The

cycles correspond to the following intensity values:~a! Ĩ 51.808,

~b! Ĩ 51.828,~c! Ĩ 51.832, and~d! Ĩ 51.920.
6-5
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in Fig. 6. This branch corresponds to a hysteretical regim
experimentally observed. IncreasingĨ above the gluing value
I 3 a new bifurcation point~saddle-node, SN1! is encountered
at I 5 Ĩ 4 , where the system jumps to cycles with larger a
larger diameters. For the intensity valuesI 5, Ĩ ,I 4 three
branches of periodical regimes are possible, two stable
one unstable. The transition point~SN2! at Ĩ 5I 5 corresponds
to a point of saddle-node bifurcation where the unsta
branch disappears. WhenĨ is decreased down to SN2, th
system jumps to either a distorted steady state~as in the case
shown in Fig. 6! or directly to the undistorted state, depen
ing on the value ofx.

VIII. CONCLUSIONS

We presented a coupled-mode approach to the optica
orientation induced in a liquid crystal film by a light plan
wave at normal incidence. Depending on the light polari
tion and intensity, different dynamical regimes of the m
lecular director are induced: rotations, oscillations, and d
torted steady states. In spite of the simplicity of the mo
~only two ODEs!, all experimental findings are well repro

FIG. 5. The periodT of the motion near the transition pointI 3 as

a function of Ĩ . The solid line is the best fit for the scaling la

T/t}( Ĩ 2I 3)2g with g50.11860.005.
.

r

f
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duced, including the hysteresis between rotations and o
lations at large ellipticityx. The transition from the distorted
steady states to the oscillation regime was found to be a H
bifurcation, while the transition from oscillations to rotation
turned out to be associated to the gluing of two limit cyc
through the homoclinic bifurcation point. An interesting a
pect of our model is that the addition of small noise to t
initial conditions, when the intensity is changed, tends
maintain the system in a distorted steady state, avoiding
occurrence of nonlinear oscillations. This behavior is parti
larly evident when the light polarization is almost linear a
it explains why the multistability foreseen in the case of
linearly polarized light beam@17# has never been observed
practice.

ACKNOWLEDGMENT

We thank INFM ~Istituto Nazionale per la Fisica dell
Materia! for financial support.

FIG. 6. The solution diagram forx50.6 showing the hysteresi
of the rotation regime. BranchPH ~solid line!: stationary distorted
states. BranchHG ~filled circles!: peak value ofnx in the oscillating
states; the oscillation center is on the dashed line starting formH.
Upper branch~filled squares!: peak value ofnx in the rotating
states; the center of rotation is the dashed line atnx50. The states
indicated by empty squares are unstable. The vertical arrows m
transitions between different regimes.
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