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Coupled-mode approach to the nonlinear dynamics induced by an elliptically polarized laser field
in liquid crystals at normal incidence
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A coupled-mode theory is presented to describe the dynamics of the molecular director induced by an
elliptically polarized light plane wave normally incident onto a homeotropic liquid crystal film. The model
provides a set of time ordinary differential equations for the lowest two modes of the system while the
influence of the higher-order twist modes is accounted for by means of the adiabatic approximation. The
resulting dynamics is complex above the reorientation threshold, according to the intensity and polarization of
the incident light, rotating, oscillating, or steady states may settle. The dynamical regimes have been studied as
functions of external parameters. The agreement with the experimental data was very good.
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[. INTRODUCTION ered in Ref[15]. A numerical brute force integration of the
partial differential equations given in R4fL3] showed that
The optical-field-induced molecular reorientation in liquid all dynamical regimes observed in the field of an elliptically
crystals(LCs) has been extensively studied in the last twopolarized laser beam could be reprodu¢#d], but an ana-
decades and on this subject there are many revjé@wd] lytical model has been lacking up to now.
and some chapters of general textbofiks7] that the reader In this paper we present a simple dynamical model able to
can refer to. It was realized very soon, however, that thalescribe the optical reorientation induced in a LC film by a
dynamics of the optical reorientation was much richer thadaser beam at normal incidence with arbitrary polarization.
the case of the magnetic-field-induced reorientation, becaus@ur model is based on the expansion of the polar angles
of the possible occurrence of self-induced stimulated lightd(z,t) and ¢(z,t) of n along suitable complete sets of nor-
scattering[8] and angular momentum transfer from light to mal modes. Inserting the mode expansions into the starting
liquid crystals[9]. For instance, the optical Federicksz equations, a set of coupled time ordinary differential equa-
transition(OFT) induced by a linearly polarized laser beam tions (ODES was derived. The higher-order modes have
normally incident onto a homeotropically aligned LC film been adiabatically eliminated by the Galerkin method so as
was proved to be second ordgt0,11] (as the magnetic- to obtain a set of only two ODEs for the coefficiemj(t) of
field-induced Fredericksz transition but it becomes first the lowest-order mode in thexpansion and the coefficient
order when circularly polarized light is used inst¢8#l Also  ¢(t) of the lowest mode in theb expansion. The two ODEs
the dynamics of the OFT is dramatically changed. In the casbave been integrated numerically with respect to time and
of linear polarization of the incident beam, a monotonic ap-the resulting dynamics have been studied as a function of the
proach to the final distorted state is obser{&tl], while for  incident light intensity and polarization. The agreement with
circular polarization a steady regime of uniform precessiorthe experimental data reported in Riif2] is remarkable: all
of the molecular directon around the beam axis is estab- the observed dynamical regimes have been reproduced in the
lished[9]. In the case of elliptical polarization of the incident fight sequence with respect to the control parameters. It is
beam, a Comp|ex dynamics of is induced, ranging from worth nOting that the first twist m0d¢1 W_aS retained, al-
steady states to persistent oscillations and nonuniform prehough in its adiabatic approximatio$,;= ¢1(6q,dg), the
cessiong12]. The main difference between the cases of lin-complete suppression &f;, in fact, would rule out the non-
ear and e”|pt|Ca| polarization iS that in the ﬁrSt case the Iight"near osci"ations_ Since?l iS re'ated to the presence Of
polarization remains unchanged and the molecular distortiogyist in the sample, we conclude that some amount of twist

can be described by the polar angl@ of n  must be present during oscillations.
=(sin #cose¢,sin dsin ¢,cosd) only, while in the second case

both # and ¢ angles come into play and the polarization state

of the light changes with both space and time. I_t can be Il. THE TORQUE EQUATIONS

expected, therefore, that in the last case the dynamics may be

very complex, as it is indeed observed. The basic equations Let us consider a light plane wave normally incident onto
governing the optically induced molecular reorientation asa homeotropically aligned nematic film with thickndssrhe
well as the light polarization state were deduced for normahnchoring forces at the walls locatedzt0 andz=L are
incidence and arbitrary polarization of the incident beam inassumed to be very strong. The polarization of the incident
the plane-wave geometric optics approximatidB]. In the  wave is arbitrary and its intensifg component of the Poyn-
case of linear polarization, these equations reduce to thiéng vecto) is denoted ad. The torque equations for the
well-known equations governing the standard Q&%] and  polar anglesf(z,t) and ¢(z,t) of the molecular directon

in the case of circular polarization to the equations considare (cgs units are used
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6=(1—p, Sirf6) 8" — p, sin 6 coshs’>— (1—2p, Sir? 6) a(t)=£fw[ﬁ(6(u 1) nqldu 5
N Jo ’ '

X sin 6 cosfe’ 2+ (T/2nom)ny(6)(1+Q-s),
We notice that Eqs(1)—(5) are invariant under the change

d— P+ . (6)

We assume a small splay-bend and a small twist distortion in
where the dot means the partial derivative with respect to théhe sample, so thad(u,t)<1 and¢’(u,t)<1 (the angle¢
reduced time =t/ 7 with 7= y;L2/72ks3, the prime means itself may be large Retaining terms up to the third order in
the partial derivative with respect to the reduced coordinaté and to the first order ip’, the torque Eqs(1) reduce to
u=rz/L(ue[0,7|) and the following quantities have been

sir? 6¢p= a9/ Ju[ (1— p, sir? )sir? 66’ ]

+(nou)[N(6) —nol(2Xs),, )

; . . ~ 2 3 1+Q-s
introduced: b=(1—p 020"~ p,00'2+] 0_(5_ 7“) P 5 )
2
No
M=1— ? (ne> nO)!
) A S T12)(Q 8
» ¢=g2 75\ Oy | T (112(L2Xs),. (8)
p =1- L !
' Kss In the same approximation, Eg®) and (5) yield
K2z mngl
pz=1—k—33, s’=( )\O )02(Q><s), 9
0)= ——2 a(t):(“nOL)Feﬂ(u t)du (10)
LA Ao B
dn
()= 95 Ill. THE MODE EXPANSION
We expand the fieldg(u,t) and ¢(u,t) in terms of com-
_CTFsts , plete sets of orthogonal functions
th= L2 2 .
o(u,t)= 0,(OV(u), 11
and Q(u,t)=(cos 2p,sin 2$,0). In Egs.(1) and (2) n, and (u.t nZO n(OVa(W) @

n. are the ordinary and extraordinary indexes of the liquid

crystal and thek; (i=1,2,3) are the elastic constants for ~

splay, twist, and bend, respectively. For a typical liquid crys- (u,t)= Z dn(t)Up(cosu) = ¢o(t) + dg(u,t), (12
tal material such as E7 at room temperatukg,=11.09 n=0

X107 dyne, k= 5.82¢ 1_077 dyne, kyy=15.97<10"" whereU ,(cosu)=sin (n+1)u]/sinu are the Chebyshev poly-
dyne. For a sample with thickneks=50 um, the character- qmials of the second kinfiL6] and V,(u) are given by

istic time 7 is typically 7=3 s. The reduced Stokes vector V,(u)=U,(cosu)sinu=sin(n+1)u]. These functions are
S(u,t)=(s1,5,,S3) is used to describe the light polarization ,5rmalized according to
inside the sample. The spatial evolutionsif governed by

s'=(2L/MN)[N(6) —ngl(QXs), (3) f Vi (WV,(u)du= f Um(cosu)U,(cosu)sir u du
0 0
where\ is the optical wavelength in vacuum. The boundary -
conditions for Egs(1) and(3) are =5 Snm- (13

0(0t)=6(m,t)=0,
The anglesf(u,t) and ¢(u,t) defined in Eqs(11) and(12)

¢ (0t)=¢' (m,1)=0, obey the boundary conditions given by E@. In Eq. (12)
we split out the termeg(u,t)==7_,d,(t)U,(cosu), de-
S(0.t) =%=(510,520,530)» (4) scribing the twist distortion of the molecular director, from

the zero-order termpy(t). The termepy(t) corresponds, in
whereg, is the reduced Stokes vector of the polarization offact, to a rigid rotation ofi and does not involve an elastic
the incident wave. Another useful quantity is the phasedistortion in the sample. We assumed, as said before, a very
changex(t) suffered by the optical wave at tintén travers- ~ small elastic distortion. Then, we may retain only the lowest-
ing the liquid crystal film, order mode in Eq(11),
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(u,t)=,(t)sinu, (14) IV. THE LIGHT POLARIZATION PROBLEM
and assum@,(t) and dy(u.t) to be very small quantities. In the small distortion approximation, E(Q) becomes
We notice, however, thaby(t) is allowed to be large at will. S =(2al 7SI u[(Qy+ Q) X 5] (21)
Inserting Eq.(11) into Eq. (7) and projecting the resulting 0 ! '

equation along the zero-order modfg(u) yields a single \yherew is given by Eq(17). These equations can be solved
equation forf(t), perturbatively usingey(u,t) as a small parameter. At the

first significant order, the solution is
. pl 3 ~ 4_9 3
0g=— Og+ = 05+ (1/12)| Og— | —5—1 65

2 8 Sl=310+ sin 2¢)0[(320COS 2¢0_Slosin 2¢0)(1_COSCYU)

~ 7 +sgSinav]+
+(|/7T)eof [(Qo+Qy)-s]siZu du SsoSinav ]+ € cos 2,
0

S5= Sy~ COS 2p[ (Sp0COS 2pg— S10SIN 2¢hg) (1 —coSav)

~ 2 3u| S - . .
— (/) 372 aofo (Qp-s)sinffudu, (15 +SzpSinav |+ € Sin 2¢,,

where we expand2(u,t) according to S3= Sa0+ (S20€0S 2o S10SIN 2p)sinav

Q=0,(t)+ 0, (ut) (16) ~Saol 1 cosav), 22
with  Q(t) = (cos o(t).sin 2(0,0) and  Qy(ut) Vhere
=2¢q(u,t) (—sin 2¢(t),cos 2po(1),0). Since ¢q(u,t) is U—sinu cosu
small, we neglected the term containify(u,t) in the last v(uy=——— (ve[0,1)) (23
term on the right of Eq(15), containing the already small ™
guantity 08. In the same approximation, the optical phaseand
changea(t) reduces to

a(t)=Loj(1), 17 ezZaf [ S30COSAW + ( Sy, COS 2b,
0

wherel = (muny/2\)L. Inserting Eq.(17) into Eq. (15) we — 810SiN 2¢00)Sinaw] (W, t)dw (24)
get the following differential equation for the optical phase
changea(t): is a small quantity proportional to the twist distortiafy, .

Without loss of generality, we may choose thaxis along

.~ ~[Ou— a® (2 the major axis of the polarization ellipse of the incoming
a=(1=2)a+|| th ?Ha . light, so thats;;=c0s 2, Sy,=0, Sso=Sin 2y with angle y
e[0,7/4].
™ _ ~[2 3u|a®(2
X fo [(Qo+Qy)-s]sif udu—T| —— — Tl V. THE COUPLED-MODE EQUATIONS
Inserting Eq.(22) into Egs.(18) and(20) we obtain
xf (Qo-9)sinfudu. (18 o~
0 a=[1(1+cos2ycos2pyt+F,)—2]a
Inserting Eq.(14) into Eqg. (8) yields - u— 2
g Ea(14) a®y J{I ——— | (1+c0os 2y cos 2p) + p1 %,
. J o~
QSIME(S”\ZUd} )+ (1/2)(Q2XS),. (19

do=—(112a)[ sin2y(1— cosa) + cos2ysin24,sina],
Projecting this equation along the modésg yields o
. $n=—n(+2)(¢n=n) (N=12,..), (29
n=—n(n+2) o+ (1) [ 100+ 01 %31, _
0 where ¢, are given by
XU,(cosz)sifudu (n=0,1,...). (20 ~

|

=— ———sin2yA,(a)+c0os 2y sin 2¢,B,(«
Equations(15) and (20) are coupled by means of the Stokes &n 2n(n+2)°" X @) 2(SiNn 2oBy( )]
vectors. We must therefore solve the light polarization prob-

lem first. (n=1,2,...) (26)
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andF, is given by
Fi= 2 fndbn,
n=1

fo=—2sin2y[A,(a)—Cy(a)]+cos 2y
Xsin 2¢o[ By(a) +Dp(a)]. (27)

In Egs.(26) and (27), we introduced the functions

An(a)= fol sinav U ,(cosu(v))dv,

B,(a)= f cosavU,(cosu(v))dv, 00 0.1 02 03 04 05 06 07 08
0
% (rad)
1 . . L~
_ _ FIG. 1. Map of the dynamical regimes in the ) plane. The
Cl@) afo(l ujcosauUn(cosz(u))du, points refer to the experimental observatiori®?]. Undistorted

states(U); M distorted state¢D); O oscillating stategO); A rotat-
1 ing stategR); V hysterical rotating stateéR).
Dn(a)zaf (1—u)sinauU,(cosz(u))du. (28
0 VI. THE MAP OF THE REGIMES

Equations(25) form an infinite set of coupled ODEs for ~ In Fig. 1 we present a map of the dynamical regimes in
a(t), ¢o(t), andg,(t) (n=1,2,...). Asshown in the last the parameter pland (x). The points are the experimental

of Egs.(25), the modesp,, are highly damped, with damping data taken from Ref.12]. The different dynamical regimes
constants increasing with as n(n+2). We may assume, are separated by critical curves. We can locate three regions
therefore, that the modes, follow adiabatically their steady of ellipticity with different dynamical behavior: almost linear
state valuesp, given by Eq.(26). When the modes,, are ptolflrization (OEXtS?T/tlo)a g_m}[/ diﬁ'totr'tegy/ggg o<scilllg)ting

; ; L . = . states are present; intermediate elliptici < xy=/6),

?ndé?r?:ém@léyarzhlrgf'{] \?vﬁ?k? ’theb %rsffxgl%ﬁnlz_ qﬁES)(c();nalll/e;kr:g distorted, oscillating, and rotating states are present; almost

circular polarization /6= y= w/4), hysteresis between os-
the degrees of freedom of our system reducerand ¢ cillating and rotating regimes is present. As shown in Fig. 1

Moreover, Eq.(26) shows that the values, are rapidly  he agreement between theory and experiment is very good,
decreasing functions af, so that we may retain only a few i gpite of the fact that only two ODEs were used. Some
of them. If all the twist modes were neglected sett#hg  considerations are in order, however. First, the data have
=0, the first two of Eqs(25) would reduce to the set of heen corrected for thermal heating of the sample, as indi-
equations already studied in REL7]. In this approximation,  ¢ated in Ref[12]. Heating in fact produces a lowering of the
however, there is no way to obtain the oscillations of thejiqig crystal order parameter and hence a lowering of the
directorn, which instead have been observed experimentalls|astic constants with increasing optical power. Second,
e e 1 £ hen we changes e ey e llptcty gl
adding the first torsional modg¢,, even in its adiaba'éic ap- ).()’ we tak_e as initial data to |_ntegrate the_ differential equa-
] 9 ) —_— b ) p tions the final data of the previous run. This procedure simu-
proximation ¢, = ¢, is enough to produce the oscillating |ates an abrupt increase of the incident laser intensity, so that
regime. Adding further adiabatic modes, (we tried up to  the system has no time to move. This yields the solid critical
n=64 modeg produces no appreciable change in the dynameurves drawn in Fig. 1. If, instead, we simulate a very little
ics. Similarly, releasing the adiabatic approximation for therelaxation of the system by slightly changing the initial con-
dominant twist mode setting, = ¢,(t) adds no new feature. itions during the change df (only one part of 10* is
Then, in order to have a model as simple as possible, we takéough, the critical line separating the steady states from the
only the first two of Eqs(25) with F, given byF;=1f,¢;. oscillations is changed into the dotted one. The difference
The results obtained in this way and their connection withbetween the two cases is particularly evident in the almost
the experimental data will be discussed in the following seclinear polarization region: the presence of a small relaxation
tions. Here we notice that the integrals defining the functiongjuenches the transition to the oscillation regime and the dis-
An(@),B,(a),C(a),D,(a) can be evaluated dynamically torted steady state remains stable, as observed in the experi-
at each step of the numerical integration of our two ODEaments. This behavior may be explained considering that the
exploiting the numerical fast Fourier transform algorithm, attraction basin of the limit cycle corresponding to oscilla-
with no appreciable increase of the total integration time. tions becomes negligibly small as the light polarization tends
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FIG. 2. The solution diagram fox= /12 (solid line, stable FIG. 3. The solution diagram foy= /8 (solid line, stationary

stationary solutions; dashed lines, unstable stationary solutionsSelutions; dashed lines, unstable stationary solutidfte vertically
The dashed regions represent the amplitude ofxtpeojection of ~ dashed regions represent the amplitude ofxtgrojection of the

the oscillating cycles. The two symmetrical regions remain always°Scillating cycles that over the gluing poing merge into rotating
separated. cycles, represented by the obliquely dashed regions.

to be linear. So very particular initial data are needed to drivénd the origin, which corresponds to the rotation rofAn
the system into its oscillation state. Because of the presen&xample of trajectories in then{,ny) plane is shown in Fig.
of relaxation and of unavoidable noise, during the intensity4 for different intensity values near the gluing point. The
change, the oscillation regimes are not reached in practicéansition point(G) between the oscillation and rotation is a

with almost linearly polarized light. homoclinic bifurcation, where the motion suffers a marked
slowing down in time. This is shown in Fig. 5 where the
VII. BIFURCATION ANALYSIS period of the motion is plotted as a functionlofa search for

a critical slowing down exponent yielde®@/ roc(T—135) "
with y=0.118+0.005. The exponeny was found to be the
same on both sides of the critical polgt Unfortunately, we
found no measurements on the slowing down effect in the
literature. Forl >15, the rotation cycle remains stable.

For y=0.6 (third region the solution diagram shows a

further branch of periodic solutions fog<T<1, as shown

Solution diagrams in the three different regions of the
parametery were obtained with a continuation algorithm.
Figure 2 shows the stationary and periodic solutions xfor
=/12 (first region. For the sake of illustration, the director
componentn, = sin 6, cos(py—2¢;), with 6, derived from

Eq. (17), is reported versus the normalized intengitgf the

optical wave. Whenl is below the threshold valué=1,
=2/(1+ cos %) for the OFT, the only stable state is the un-
distorted onen,=n,=0. At the threshold valué¢; a pitch- 0.3
fork bifurcation is encountere@). Above the threshold, the
undistorted state becomes unstable and a new stable distorte 4,
state appears. Because of the symmetry of the system, a se

ond branch is obtained from the first under the chaiéyéor 014

a fixed value ofi . Going on increasing the intensity the ]
distorted state remains stable, until the second critical value:m 0.0
I, is reached where a Hopf bifurcatiqhl) occurs and the

system evolves towards a limit cycle corresponding to non- |
linear oscillations oh. The boundaries of the dashed regions

yield, for fixedT, the maximum and minimum value thag 02
reaches during the cycle. |

The solution diagram foly= /8 (second regionis re- 03 : — , S : i :
ported in Fig. 3. This diagram shows the same behavior anc 0.2 -0.1 00 0.1 02
bifurcations as the previous one fox 1. For this intensity n

value a gluing bifurcation is foundQ), where the cycle is

gluing with the symmetric one obtained under the transfor- FIG. 4. The trajectories in the phase space for0.6. The
mation (6). After the two cycles have been glued together,cycles correspond to the following intensity valuga; I =1.808,
the director motion develops along a large limit cycle enclos<{b) T=1.828,(c) T=1.832, andd) T=1.920.
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FIG. 6. The solution diagram fogg=0.6 showing the hysteresis
FIG. 5. The period’ of the motion near the transition poinfas  of the rotation regime. BrancRH (solid line): stationary distorted
a function ofT. The solid line is the best fit for the scaling law states. BranchiG (filled circles: peak value of, in the oscillating
T/7oc(T—15) "7 with y=0.118+0.005. states; the oscillation center is on the dashed line starting fbrm
Upper branch(filled squares peak value ofn, in the rotating
in Fig. 6. This branch corresponds to a hysteretical regime a3lates; the center of rotation is the dashed line,at0. The states

. =~ . indicated by empty squares are unstable. The vertical arrows mark
experimentally observed. Increasihgbove the gluing value i . .
. . . transitions between different regimes.
I 3 a new bifurcation poin(saddle-node, SN1is encountered

atl=14, where the system jumps to cycles with larger andyceq, including the hysteresis between rotations and oscil-
larger diameters. For the intensity values<l<I, three |ations at large ellipticityy. The transition from the distorted
branches of periodical regimes are possible, two stable ansteady states to the oscillation regime was found to be a Hopf
one unstable. The transition poi@N2) at1=15 corresponds bifurcation, while the transition from oscillations to rotations
to a point of saddle-node bifurcation where the unstablgurned out to be associated to the gluing of two limit cycles

branch disappears. Whadnis decreased down to SN2, the through the homoclinic bifurcation point. An interesting as-
system jumps to either a distorted steady stasein the case Pect of our model is that the addition of small noise to the

shown in Fig. 6 or directly to the undistorted state, depend-initial conditions, when the intensity is changed, tends to
ing on the value ofy. maintain the system in a distorted steady state, avoiding the

occurrence of nonlinear oscillations. This behavior is particu-

larly evident when the light polarization is almost linear and

it explains why the multistability foreseen in the case of a
We presented a coupled-mode approach to the optical réinearly polarized light bearfil 7] has never been observed in

orientation induced in a liquid crystal film by a light plane Practice.

wave at normal incidence. Depending on the light polariza-

tion and_intensity, d_ifferent dynamical regi_me_s of the mo- ACKNOWLEDGMENT

lecular director are induced: rotations, oscillations, and dis-
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