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ALGEBRAS OF HOLOMORPHIC FUNCTIONS ON 
ONE-DIMENSIONAL VARIETIES 

BY 

HUGO ROSSI(') 

1. Introduction. By Cn we mean n-dimensional complex vector space. For 
zE Cn, we will represent the ring of germs of holomorphic functions at z by 
En, and the sheaf of germs of holomorphic functions in Cn by On (for sheaf- 
theoretic terminology, see [2; 5]). In general, a ringed space is a pair (X, 0), 
where X is a locally compact Hausdorff space and 0 is a sheaf of rings of 
germs of continuous functions on X (see [6]). Thus (Cn, 0n) is a ringed 
space. By holomorphic function on the ringed space (X, 0) we mean a con- 
tinuous function on X whose germ at any xEX is in E3=. If U is an open sub- 
set of X, (U, 01 U) is a ringed space; we will let H(U, 0) denote the ring of 
holomorphic functions on U. Where it is clear what 03 is we will write H(U) 
for H(U, 0). 

Let U be an open set in C", and f, * , ft C H(U, 0n). Let 
V= { zC U;fi(z) =0,1 < i_t}. We will write V= V(fi, * , ft). We consider 
0n as defining a sheaf of germs of continuous functions on V, and write 

=0V n I V. Then (V, 0V) is a ringed space. A function f defined on V is thus 
holomorphic on V if, for every xC V, there is a neighborhood W of x in Cn 
such thatfI WO V is the restriction to WO V of a function holomorphic in W. 
Any closed subset of a domain U in Cn which is locally given as the zeros of 
a finite number of holomorphic functions is called a variety. 

Let (X, 0), (Y, 4b) be ringed spaces and 4): X-> Y a continuous map. By 
+(b) we mean the sheaf on X whose stalk at xCX is the set { f o a; f fC4(S) }I. 
If +(bD) CE3, we say 4) is holomorphic. If 4) is a homeomorphism and 4-1 is 
also holomorphic, we say 4) is biholomorphic. 

A complex manifold is a ringed space (X, 0) with the following property: 
for every xCX, there is a neighborhood U of x and a biholomorphic map of 
(U, 0) onto (W, 0n), where W is an open set in Cn. An analytic space is a 
ringed space (X, 0) with the following property: for every xEX, there is a 
neighborhood U of x and a biholomorphic map of (U, 0) onto (V, 0v), 
where (V, 0V) is a variety. 

Let (S, 0) be an analytic space. A point xES is regular if x has a neighbor- 
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hood U such that (U, 0) is a complex manifold. The Set Sreg of regular points 
of S forms a complex manifold dense in S. By a one-dimensional analytic 
space we mean an analytic space S such that Sreg is a one-dimensional mani- 
fold. In this case S.ing= S-Sreg is a discrete set of points on S (see [2 ]). 

If K is a compact subset of an analytic space, let H(K) be the ring of all 
functions holomorphic in a neighborhood of K. Let A (K) be the uniform clo- 
sure on K of H(K). A (K) is a Banach algebra with the uniform norm. Our 
main purpose is to study A (K) with respect to the property of being a maxi- 
mal subalgebra of C(r(A (K))), the algebra of all continuous functions on the 
Silov boundary of A (K). This will be done under the restriction that K con- 
sists of a domain bounded by finitely many piecewise analytic curves. It has 
been shown, in the case where S is a Riemann surface, that A (K) is maximal 
in C(r(A (K))) (Wermer, Royden [9; 10]). This result is our starting point. 
In particular, we will associate with any one-dimensional analytic space S a 
one-dimensional complex manifold R, and a projection ir: R- S, and with 
compact K on S, a compact K on R. We shall show that, in a natural senCe, 
A (K) is a subalgebra of A (K) of finite codimension in A (K); this fact is the 
basis of the discussion. 

We shall also attempt to describe certain subalgebras of A (K), for K a 
compact subset of a Riemann surface. These subalgebras are of the form 
A O(K, U), the uniform closure on K of a subalgebra Ao of H(U), where U 
is a neighborhood of K. The first result in this direction is Wermer's theorem. 

1.1. THEOREM (WERMER [11]). Let R be a Riemann surface, r a simple 
closed analytic curve on R such that r is the boundary of a domain D with Dur 
compact. Let f, g be holomorphic in a neighborhood of Dur, df does not vanish 
on r and f, g together separate points on r. Then there is a finite subset T of 
Dur and an integer n such that if h is in A (Dur), and h vanishes at each point 
of T with order no less than n, then h is approximable on Dur by functions in 
the algebra {f, g } of polynomials in f and g. 

In the appendix of [11] he extends this to finitely many functions. The 
crucial feature of this theorem is to prove that D'Jr is {f, g}-convex (see 
the definition below); with this assumption the proof depends only on theo- 
rems of several complex variables of a general nature. 

Later Bishop proved a closely related, but essentially different theorem. 
DEFINITION. Let U be an open set on an analytic space S, and K a com- 

pact set in U. Let Ao be a subalgebra of H(U). We say K is A o-convex if 
K= {xC U; lf(x)| jsup I f(y)|; yCK} for all fEA OC}. For VC U open, we 
say V is A o-convex if V can be written as the increasing union of a sequence of 
A 0-convex compact sets. 

1.2. THEOREM (BISHOP [3]). Let R be an open Riemann surface, K a com- 
pact subset of R, B a subalgebra of H(R) such that (i) K is B-convex, (ii) { p ER; 
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there is a q $ p in R such that f (p) =f (q) for all f EBB } U Ip R; df(p) = 0 for all 
f GB } (the singular set relative to B, denoted by S(B)) is finite. 

Then there is a positive integer N such that B, the closure of B on K, contains 
the ideal of C(K)rfH(int K) consisting of those functions which vanish on 
S(B)fK, and vanish of order at least N at those points of S(B) interior to K. 

The main point here is the approximation theorem, which we shall use 
in the maximality discussion. In ?6 we shall prove the following theorem. 

6.7. THEOREM. Let K be a compact subset of a Riemann surface R, and let 
U be a neighborhood of K. Suppose AI is a subalgebra of H( U) such that (i) A0 

is generated by fi, * , - . f CzH( U), (ii) K is A?-convex, (iii) { pG U; there is a 
q G U such that p # q but f(p) =f(q) for all f CA?} is finite. Let A be the uniform 
closure of AI on K. 

Then there is a variety V in the unit polycylinder of some Ct and a map 4 of 
a neighborhood of K onto V such that 

A = {f o q; f in the closure of the polynomials on O(K) }. 

Together these three theorems give a complete description of Ao(K, U) 
when it is finitely generated. 

This work was originally done at the Massachusetts Institute of Tech- 
nology as part of my doctoral thesis. I am greatly indebted to my teachers, 
Professors Singer and Hoffman, and to the department of mathematics at 
Massachusetts Institute of Technology for all the assistance I received. 

2. Ideals of A(K) on a Riemann surface. Let R be a compact Riemann 
surface, and S any subset of R. We write M(S) for the vector space of func- 
tions, meromorphic on R which are regular on S. From the Riemann-Roch 
theorem we obtain the following result. 

2.1. LEMMA. Let U be any open set on R. 
(i) Given p 0 q in U, there is an fE M( U) such that f(p) $f(q). 
(ii) Given p, pi, - * *, pt in U, and positive integers n, ni, * . * , nt, there 

is an f E M( U) with zeros of orders > ni at pi, 1 _ i < t and a zero of order n at p 
(i.e., if (U, z) is a local parameter at p, f has the Taylor series in U: f = EanZ" 
with ai =, i < n, and a. 0 0). 

Proof. (i) Let poq in U; by the Riemann-Roch theorem, there is a 
meromorphic function f regular on U with a zero of some order k at p. If 
f(q) $ 0, then f(p) Of(q). Suppose f has a zero of order m at q. Let g be mero- 
morphic on R, with a pole only at q of order, say, n. Then fngk(q) $ 0, but 
fngk(p) = 0, so fngk is the required function. 

(ii) Let now fE M(U) such that f has a zero of order at least ni at Pi, 
and is zero at p. Let k be the order of the zero at p. Again by the Riemann- 
Roch theorem there is a meromorphic function g whose only pole is at p 
and is of order m, where m is prime to p, so long as m is large enough. Then 
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there are positive s, t such that sk - tm = 1. Then pgt is in M(U) and has a 
zero of order 1 at p. Thus (pgt)n has a zero of order n at p, and obviously 
still has zeros of orders at least ni at pi. 

Now let K be a compact proper subset of R. M(K) is contained in H(K), 
so the closure A (K) of H(K) in the uniform norm on K contains the restric- 
tion to K of functions in M(K). We use this fact to show that the structure 
space S(A (K)) of A (K), (the set of complex holomorphisms of A (K)) is 
just K. 

2.2. LEMMA. S(A(K))=K. 

Proof. By Lemma 2.1, M separates the points of K; thus A (K) separates 
points of K. Every point of K thus determines a continuous homomorphism 
of A (K), so S(A (K)) contains K. 

Let U be a neighborhood of K. Let h be in S(A (K)), different from 
evaluation at some point r in K. Let F be meromorphic on R with its only 
pole in U a simple pole at r. Now there is a g in H(K) such that h(g) = 1, 
g(r) = 0. Then gF is in H(K). Let t = h(gF); then for P =F-t, gP is in M(K) 
and h(gP) =h(g(F-t)) =h(gF) -th(g) =0. Let ri, *, r. be the zeros of P 
on K of order ml, * *, mn, respectively. If h is not evaluation at any rj, there 
are fj in H(K), h(fj) = 1, fj(rj) = 0. Let f = (UJTji)P-1. f is in H(K) and, since 
f(r) =0, fP is also in H(K). Thus h(Jfji) = lJh(fj)mi= 1; but Iflf =fP, so 
h( llf"i) = h(fP) = h(fP)h(g) = h(fPg) = h(f)h(gP) = 0, a contradiction. Thus 
h is evaluation at r or some r1, i.e., evaluation at some point of K. 

This proof is essentially a part of Arens' proof that the algebra C(K) 
nH(int K) has K as its structure space [1]. 

We now exploit the infinite dimensionality of M(K) as a vector space to 
obtain a theorem which will be useful in the discussion of holomorphic func- 
tions on one-dimensional analytic spaces. 

2.3. THEOREM. Let xl, , xnEK. Let (Ui, zi) be a local coordinate at xi, 
and let Pi(X) be polynomials of degree ni over the complex numbers. Then there 
is a gE M(K) such that the first ni terms of the Taylor expansion of g about xi 
in zi agrees with Pi(zi). 

Proof. For fE M(K), we can expand f in a Taylor series in zi about 
xi: f= X,:ij(f)zi. Xij(f) is a linear functional on M(K). According to 2.1 (ii) we 
can find an fijEM(K) such that fij has a zero of order j at xi and a zero of 
order at least nr at xr. That is, X.r(fij) =0 if r6i and s_nr, or if r=i and s<j. 
Thus the matrix M=G(r.(fi,)), 1:! r, i<n, 0 <s <nr, 0<j_ni, is a (Eni) 
X( :ni) triangular matrix all of whose diagonal entries are nonzero. Thus 
M is nonsingular. 

Write Pi(X) = 2aijXi. Let a be the vector (ass). Then there is a vector 
b = (bej) such that Mb = a. Let g = Fbi;fij; then gC M(K), and Xr.(g) 
= EbiXs 8(fij) = ars; thus g is the required function. 
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2.4. COROLLARY. Let xi, *, Xn be in the interior of K. Let I = {fCA (K); 
f has a zero of order > ni at xi }. Then A (K) = M(K) +1. 

Proof. Let (Ui, zi) be a local parameter at xi, and let fCA(K). By 2.3, 
there is a gE M(K) such that the Taylor expansion of g in zi at xi coincides 
with that of f up to the nith term. Then f-gCA (K), and vanishes of order 
>ni at xi, sof-g is in I. Thusf=g+(f-g) is in M(K) +I. 

3. Normalization of an analytic space. Let S be a one-dimensional ana- 
lytic space. We shall show that there is a complex manifold R and a projec- 
tion 7r: R-?S such that for U an open set on S, U compact, the set {f o 7r; 
fCH(U) } is of finite codimension in H(7r1(U)). R will be the normal model 
for S (see [6]). 

DEFINITION. Let S be an analytic space. The normalization of S is a pair 
(R, 7r) such that: (i) R is a locally compact, locally connected Hausdorff space; 
(ii) 7r: R->S is continuous, proper and onto; (iii) 7r-1(s) is finite for all s in S 
(in fact, ir-a(s)= I pi, * * *, Pk(.}, where k(s) is the number of irreducible 
components of S at x); (iv) 7r-(Ssing) separates no connected set in R and 
is nowhere dense; (v) 7r: R-7r-'(Sing)<--S-S8ing is a homeomorphism. 

The points of R are pairs (s, V), s CS and V an irreducible branch of S 
at s, and 7r(s, V) =s. The basis neighborhoods are of the form O(U, V) 
=7r1(UTnV) where V is an irreducible branch of S in the open set U. The 
space R is called the normal model of S. 

Let UCR be open. If f: U->C is continuous and f o 7r-1 U-7r-'(Ssing) is 
holomorphic, we say thatf is holomorphic on U. Let OR be the sheaf of germs 
of holomorphic functions on R. Then r is a homomorphic map. 

The following facts were proven by Oka [8; 6]. 

3.1. THEOREM. The normal model exists, is an analytic space and is unique 
up to a biholomorphic map with respect to the properties (i)-(v) and that 7r is 
holomorphic. 

3.2. THEOREM. If s E S is an irreducible point, r-' (s) = p. OR is the integral 
closure of 7rw(E) = If o r; f Ce }. There is a nonzero ideal C of E(R such that 
cp Cw(0s) 

We now prove 

3.3. THEOREM. The normal model of a one-dimensional analytic space is a 
one-dimensional complex manifold. 

Proof. We know R-7r-'(S&i.g) is a complex manifold, since it is biholo- 
morphic to S - Ssng Let s C Ssing. Since 5Sing is discrete, s has a neighborhood 
U such that UnS.8ing = Is }. Let V1, * *, Vt be the branches of S in U; then 
7r-(U) =UO(U, Vi) and each O(U, Vi) is connected. It is easy to see that 
r: O( U, Vi) -U(- Vi is a homeomorphism and ir: O( U, Vi)-I p }iIU UN Vi 
-{ s } is biholomorphic, where pi = (s, Vi). We need only prove that we can 
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define a local coordinate at pi which, with the natural structure of O(U, Vi) 
- { pi }, makes of O( U, Vi) a Riemann surface such that ir is still holomorphic. 
Then, by the uniqueness, this structure is the normalization structure. Thus, 
since we are interested in only O( U, Vi) near Pi, we can assume S has only one 
branch at s, further, that S is embedded as a variety V in a neighborhood of 
the origin (s =0) in C". 

3.5. LEMMA. Let V be an irreducible one-dimensional variety in Cn at 0, 
and suppose that 0 is the only singular point of V. Then there are a Riemann sur- 
face RI and a holomorphic homeomorphism p: RI<-* V such that p IR p-1(O) is 
biholomorphic. 

Proof. In a neighborhood of 0, by the Nullstellensatz [5, Chapter XIV] 
for a suitable choice of coordinates we can write V- 0 } = V(f1, , fn-1) 

where 
r-1 

fl(Zl . . *, Zn) = gl(ZI, Z2) = Z2 + Eai(z)Z2, 

gj(Zi, Z2) i=O 

fj (Z * ** Zn) = Zi- D(z ) 

where gj are distinguished polynomials, and D(0) = 0. 
Let R' be the Riemann surface covering { z1| <e } of the algebraic func- 

tion defined by gl(zi, Z2) = 0, and 7rO: R1 I{ I zi < e } the projection. Let x in 
R1, 7r0x5O; then x corresponds to a certain branch 4x of this algebraic func- 
tion. We define p: Rl-> V {I Zi I < 4: 

g2(7r0X, 45x(7r0X)) gn(7r0x, Ox(w0x))\ 

((X) 
= roX,x(70X 

D(ir0x) D(ir0x) / 

p(x) = 0 if w0x= 0. 

If 7r1 is the projection of V onto { Izij <e} it is obvious that 7r= r' o p. 
p is one-one. For if px=py, then lr0x=70ry, 45x(7r0x) =4+(ir0y) = 4.(7r0x) 

which implies that 4. = 0,,, or x = y. 
p is biholomorphic on R'-p-1(0). Let 7rwx$0; then for Ux a small enough 

neighborhood of x, (U., 7r0) is a local parameter at x. Similarly, since 7rx is in 

Vregy (UPX, w1) is a local parameter at x for Upx small enough. But since 
rl=7r' o p, p also is biholomorphic in a sufficiently small neighborhood of x. 

Easily p is holomorphic. For if f is holomorphic on V, f o p is holomorphic 
on R-p-1(0), but also continuous. Thus since R1 is a complex manifold, 
f o p is holomorphic on RI. 

Now, we can transfer the structure of R' to R, the normalization of V by 
r-i o p, making of R a complex manifold. This structure coincides with the 

given one on R-7r (0), and with it ir is still holomorphic. Thus the two 
structures do coincide and R is a complex manifold. 
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If x in S is a singular point, r'-(x) = { r1, * * *, r. I and for U a neighbor- 
hood of x, there are neighborhoods Ui of ri such that ir: U Ui onto U and 
7: U Ui- { rl, . , rn } -U- x } one-one and onto. We call the r(Ui) the 
sheets of S at x. Note that ir(Ui) is an analytic space and Ui is its normal 
model. If x is in r(Ui)reg, then r: Ui+-7r(Ui) is a biholomorphic map. If x is 
in 7r(Ui)sing, then 7r is just holomorphic. This type of point we call a branch 
point of r( Ui) or a branch point of S if r-1(x) is just one point (x is an irreduci- 
ble point). If 7r-i(x) is more than one point we call x an identification point. 

Let x be a branch point of S; then 7r: R-+S is one-one holomorphic from 
a neighborhood of 7r-'(x) = r to a neighborhood of x in S. For the moment 
we replace these neighborhoods by R and S respectively and we assume S is a 
variety V at 0 in Cn. Then 7r(Ei).) (the transfer by ir of all functions holo- 
morphic in a neighborhood of 0) is a subring of 0- R. In fact we have: 

3.6. LEMMA. f(63V) is precisely the set of germs of functions which can be 
uniformly approximated in a neighborhood of r by polynomials in the 

* (zn). Further, (E(')F) contains a power of the maximal ideal of eR. 

Proof. Let f be in *r(E),); then f =g o r, g in O). Then, for a sufficiently 
small polycylinder pn about x, there is an h in H(Pn) such that g=hl V. But 
then h is approximable by polynomials in compact neighborhoods of x, thus 
also is g; thus g o r =f is approximable by polynomials in the zj a 7r= 7(Zj) in 
a neighborhood of r. Conversely, if f is in OR, in a neighborhood of r, f o a-1 
is defined, since r is one-one. If f is approximable by polynomials in the 
1i(zj), f o 7r-' is approximable in a neighborhood of x on V by polynomials in 
the zj. But Ov is closed in the topology of local uniform convergence [5], 
sofa o7r is in EV, implyingf=f o rl o7r is in *4). 

Now, by 3.2, there is an ideal e of Exv such that ee ceV. But CeR is an 
ideal of OR ; thus E)v contains an ideal I of OR, and I 0 O, since e O0. But the 
only ideals of eR are the powers of the maximal ideal. Let g be in I; suppose 
g has a zero of order n at r, g' has a zero of order >n. Then g'/g is in , so 
g'=g(g'/g) is also in I. Thus I contains Mn (M=maximal ideal). Let n? 
=min{n; IDMn}. Then I=Mn; for if not then there is a g in I with a zero 
of order m<nO, but this implies, as we have seen, IDMm, contradicting the 
definition of n0. 

3.7. COROLLARY. If x is a branch point of S, 7r: R-8, ir(r) = x, then there 
exists an N such that, if f is analytic in a neighborhood of r and vanishes at r 
with order > N, then f is in * (es). 

Now we look at the local behavior at an identification point; so we may 
assume we have maps iri: { Izi <1}4-+ViCPn, 7ri(O)=O, and V1, * * *, Vk 

are the irreducible components of a variety V containing 0. Let 
T= { (fi, * * *, fk); f; in e1 such that there exists g in e', g| V, a xi =fj . 
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3.8. LEMMA. There are integers Nj > 0 such that if fj is in 00 and vanishes at 
0 with order > Nj, then (fi, * fk) is in T. 

Proof. Write Vi = V(p', * n, p1) Since Vjfr Vi = { 0}, there is pj in 
I(Vj) such that pJl v; has its only zero at 0. Let nij be the order of vanishing 
of p| vi o 7ri at 0. According to 3.7 there is an integer nsi such that if f is in 
e' and vanishes at 0 with order _nii, then f is in i(00). Let Ni= I ne,. 
These are the required integers. 

Let (fi, * - *, fk) be as in the statement of the lemma. Then 

fA= [[fi1[jFdi PJ1 vi o7ri- ] is in E() and vanishes with order _ nii, so there 
is a gi in E)' such that gil vi =f4 or, what is the same, fi = (gi Hi,,, P>| vi) o Xri. 
But now, for m$i, gm I tIjm pJ I Vi vanishes on Vi, so we have 

fi =(E gm rl pm) ? ri- 
m-1 jFdm 

Then g = E- i gmI flim pj is in 00, g o 1ri =fi, proving (fi, , fn) is in T. 
Now consider K a proper compact set on a connected one-dimensional 

analytic space S. Since Ssing is discrete KnSsing is finite. Furthermore we 
can find a neighborhood U of K such that U is compact and UOiSsing 
- KrSsing. 

Let (R, ir) be the normalization of S. Then 7r-1(U) has finitely many con- 
nected components. For any regular point on S can be connected to a singular 
point by an arc contained in Sreg, the set of regular points. Since 7r-1 is 
homeomorphic on Sreg, any rCR-7r'1(Si.Jg) can be connected by an arc in 
7r-1(U) to a point ini7r-'(Sijng), but Ur-'(S8inC\U) is finite. 

Thus we can write ir-1(U) = U Ui, where Ui is an open connected set on a 
Riemann surface Ri (a component of R). Since ir is proper and U is compact, 
each Ui is compact, so we may consider Ui to be an open subset of a compact 
Riemann surface RX'. 

Now if xCKnSjing, 7r-1(x)= {ri, . , rt4. Now any ri may be the only 
point of -rx'(K) on that component of R, for the branch corresponding to ri 
may intersect K only at x. We want to exclude such points from ir-1(K), so 
instead we take K, the closure of 7r-1(KnSreg), and thus if K has no isolated 
points (which case we exclude) ir maps K onto K. Since K differs from 
7r-'(KnSrcg) by a finite point set, we have the following: (a) if K is the 
closure of its interior, so also is K the closure of its interior; (b) if int K is 
connected, int K is connected; (c) if K is bounded by finitely many piecewise 
analytic curves, so is K. 

Now K is a disjoint union of finitely many proper compact sets Ki on 
compact Riemann surfaces. Thus A(K) obviously is the direct sum of the 
A (Ki), and so by 2.2, S(A (K))=S(A (Ki)) = UKi = K. 

3.9. THEOREM. Let K be a compact subset of a connected one-dimensional 
analytic space S. Then there are finitely many compact Riemann surfaces 
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R1, * , Rt and KiCUiCRi, Ki compact, U; open, and a map ir: UUi onto 
a neighborhood U of K such that (i) for R = U Us, (R, 7r) is the normalization of 
U, (ii) R=Uki is the closure of 7r-1(KnSreg). (iii) Let KnSsing= UC-Ssing 

-=I si, s4. Let 7r-1(si) CK= {xii, * ..., xiti}. There exist integers ni1 
such that A (K) D {f a 7r-; f holomorphic in a neighborhood of K, f(xip) =f(xiq) 
for all p, q, 1 < i _ n, f(x) -f(xij) has a zero of at least order nij at xij}. (iv) In 
particular, A (K) D {f o 7r-'; f in I } where I is an ideal of A (K) with finite hull; 
in fact hull I = 7r (KCSsing). 

Proof. If in the preceding discussion we take K i= Rn Ui, then (i), (ii) are 
verified. As for (iii), the integers nij are just those given by Lemma 3.8 applied 
at the point si. That is, if 7r-'(si)= Ixii, , xiti}, then for Sj a branch of 
S at si, let nij be the integer given by Lemma 3.8, so that if fj is in ORj and 
vanishes at xij with order 2nij, then there is a gCzE) (where we now con- 
sider a neighborhood of si as embedded in en) such that (g I Sj) 0 7r =fj. Now 
let f be in H( V, eDR), V a neighborhood of K; suppose f is as described in (iii). 
Since f identifies the points which 7r identifies, f o r-1 is a continuous function 
on K. Since sjingCrK = Sjng\n U, g =f o 7r1 is a continuous function on 7r( V) 
and since 7rI R --'(S8i,g) is biholomorphic, for all regular points s we have 
g. C e. If s = si, then by Lemma 3.8, since f is as described in (iii), there is a 
GCO', such that GISj=g-g(si)ISj; so g=G+g(s,). But G+g(si) is in eI, 
so g is in E0,. Thus g is in H(7r(V), &,I), so that gI K =f o wr1lj K is in A (K). 
Thus (iii) is proven. 

Letting H(K) = [f holomorphic in a neighborhood of K], then by (iii), 
A (K)D[f o r-1; f in I] where I= f in H(K); f(xi1) = 0, f has a zero of order 
> nij at xiJI is an ideal of H(K). Now H(K) is dense in A (K). Thus 7 (closure 

of I in A(R)) is also an ideal of A(K), and since A(K) is closed, A(K) 
D If o 7r-1; f in 7} . Now hull 7 = I xi;} . Surely each xij is in hull I. On the 
other hand, if x is in K, xFxij, by 2.3, there is an fij in H(K) such that 
fij(x) 5 0, fi=(xi)=0. Then f= [lfj]sup nfi is in I and f(x) =0, so x is not in 
hull 7. 

3.10. THEOREM. S(A (K)) =K. 

Proof. Since A (K) is an algebra of continuous functions on K, evaluation 
at any point of K is a continuous homomorphism of A (K). We prove A (K) 
separates point of K. Let s, t be in K, s in Sreg. Let x= 7r-1(s). There is a func- 
tionftk in H(K) such thatftk(x) F?O,ftk(yk) =0, for all yk in 7r-(t). There is an 
fij in H(K) such that fij(x) 50,fii(xij) =0. Thenf= [ TIftkfij]sup nSi is in I and 
f(x) $0, f(7r-1t) = 0. Thus g =f o 7r-1 is in A (K) and g(s) 5g(t). 

Suppose now s = sj, t = s2. By 2.3 there is an f in M(K), f(x1i) = 1, f(xi,) = 0 
if i$ 1, and f(x) -f(xij) has a zero of order at least ni, at xiq. Then f is in 
H(K) and by (iii) of 3.9, g=fo 7r-1 is in A(K). But g(s) = 1, g(t) =0. Thus 
A (K) separates points. 
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Let h be in S(A (K)), suppose h is not evaluation at any si, * s*,. Then 
there is an f' in A (K) such that fi(s,) = 0, 1 gj < n, and h(f1) =1. For f in I, 
let h(f) = h(f o 7r'). h is a nonzero continuous homomorphism on 7, since 
[fi o7r]N,where N= sup { ni,} is in 7, and i((fi o7r)N)= h((fi)N)= 1. But now, 
by 2.2 S(A(K)) =k, and hull 7= {xij}, so S(7) -K- {xij}. Then h(f) =f(x) 
for some x in K, xF-4xij. Thus irx is a regular point of S. Let g be in A (K); 
we prove h(g) = g(7rx). Then, since (fi)No r is in 7, g(f)N r o = (go wr) ((f1)No w7) 
is in I, so that 

hI(g) = h(g)h((fi)N) = h(g(fi)N) = h(g(fl)N o 7r) 

= g(7rx)((fj)N(7rx)) = g(7rx)h((fl)'N o 7) = g(irx). 

Then S(A(K))=K. 
4. Runge sets. If K is a compact set on an analytic space S, it is not 

necessarily true that A (K) = C(K) CH(int K), i.e., it is not always true that 
every function continuous on K and analytic in the interior of K is approx- 
imable by functions holomorphic in a neighborhood of K. If S is a complex 
manifold, it is evident that A (K) CC(K)rnH(int K) since H(int K) is closed 
in the topology of uniform convergence. But for S a general analytic space 
this has only recently been proven by Remmert and Grauert [5]. We have 
already used this result in 3.6. The possibility of A (K) = C(K) fH(int K) 
depends greatly on the geometry of K. 

DEFINITION. If K CS is a proper compact subset of S and there is a do- 
main UDK such that K is H( U)-convex, we call K a Runge set. 

4.1. THEOREM (RUNGE'S THEOREM) (BEHNKE). Let R be a Riemann sur- 
face, UC U' domains on R. Suppose U is simply connected with respect to U', 
i.e., if y C U bounds a domain in U' it bounds a domain in U. Then every function 
holomorphic on U can be approximated uniformly on compact sets by functions 
holomorphic on U' [3]. 

4.2. COROLLARY. Let K be a compact, proper subset of R. If there is a family 
of domains U(n) C U, n an integer, satisfying (i) U(n) is simply connected 
with respect to U(1), (ii) U(n)D U(n+ 1), (iii) n. U(n) =K, then H(U(1)) is 
dense in A (K). 

Proof. Let f be in A (K); f can be uniformly approximated by functions 
holomorphic in a neighborhood of K. If U is a neighborhood of K there is an 
n such that U(n) C U. If f is in H?(U, E)R), then fI U(n) is uniformly approxima- 
ble on K by functions in H(U(1)). Thus the corollary is proven. 

If K has a neighborhood U such that H(U) is dense in A (K), then K is 
H(U)-convex. For we know that S(A (K)) =K, so it follows that S(H(U)) 
=K, with the sup norm on K on H(U). Thus if xC- U-K, the map f-+f(x) 
is not a continuous multiplicative functional on H(U) in this norm, so there 
is an f GH( U) such that If(x) I > IIfIIK. But this is the condition of H( U)- 
convexity. 
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It is easily seen that if K-=Q&yiJU * J - Uy,, Q a domain, -yi, ** y, 
piecewise analytic curves, then the hypotheses of 4.2 are satisfied with U(1) 
a sufficiently small neighborhood of K, so K is a Runge set. 

4.3. COROLLARY. Let K be a Runge set in a compact Riemann surface R. 
There is a neighborhood U of K such that H(U) is dense in C(K)fH(int K), 
and in particular A (K) = C(K) GH(int K). 

This follows from an immediate application of Bishop's theorem, Theo- 
rem 1.2. We now obtain the same result for Runge sets on one-dimensional 
analytic spaces. 

4.4. THEOREM. Let K be a compact subset of S, and K as defined in ?3. K 
is a Runge set if and only if K is a Runge set. If K is a Runge set, A (K) = C(K) 
nH(int K). 

Proof. If K is a Runge set, there is a UCS such that UDK and K is 
H(U)-convex. If KC VC U, then obviously K is also H(V)-convex, so we 
may assume U chosen so small that ir-I( nr- (S8i. = Knfr-l(Ssing). Then 
if x is in 7r-'(U), but not in K, then 7rx is not in K, so there is an fCH(U) 
such that If(7rx) j > IIfl K. Then f o r is holomorphic on ir( U) and If o ir(x) I 
> lf ? w|k. Thus K is H(r-l(U))-convex. Now we can write K=UUKi, a dis- 
joint union and ir-'(U) = U Ui where Ci:DKi are both subsets of a compact 
Riemann surface. Obviously Ki is H(Ut)-convex, so it follows from 4.3 
that A(kR) = C(KQ) nH(int Ki), and then A(K) = C(K) H(int K). 

Now we assume only K is a Runge-set, and is H(C)-convex. 
Let KflS8ing= {SI, . . . , snI let si, * * Se be in 9K, se+, * Sn in 

int K. Let w-1(si) -={ xij, 1 <j _ ki }, and nij the integer corresponding to si 
as 3.9. Let 1= {f in H(C);f has a zero of at least order n,j at xi;}. Now K is 
I-convex. For I is an ideal in H(C) and since K is H( U)-convex, the closure 
of H( C) on K is A (K), and S(A (K)) = K. Thus the closure 7 of I is an ideal 
of A (K), so S(7) is a subspace of K. But if K is not I-convex, there is an x in 
U-K such that Jf(x) I IIfIIK for all f in I, so evaluation at x extends to a 
homomorphism of 7, not evaluation at any point of K; since I separates 
points of U (but for hull ICK), contradicting S(7) CK. Since I C [f o 7r; in 
H(r(CT)) ], then K is H(r(CT)) -convex. 

Now, by Bishop's theorem, 1.2, 7 contains {f in C(K)CH(int K) such 
that f vanishes on 7r1(Sing) and has a zero of order > N at xij, i > e}, for 
some integer N. Let g be the ideal of A (K), 9 = {f in A (K); f(x) =f(xij) has 
a zero of order _ N for i > e }I. 

Now let f be in C(K) CH(int K) such that f vanishes on S8ingCgOK; then 
f o ir is in C(K)CrH(int K) = A (K), since K is a Runge set. By 2.4 considering 
only the points xij, i>e, we can write f o wr=g+h, g is meromorphic on R, 
holomorphic on K, and h is in W. We can arrange, in fact, that h is in 7 by add- 
ing and subtracting a meromorphic function in 4 which takes the values 
g(xij) at xij, i<e; then h vanishes on 7r1(Ssin). Since g is holomorphic in a 
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neighborhood of K, we can write g=gl+g2, where gi, g2 are also meromorphic 
functions, holomorphic on K, such that gi vanishes with order n,j at xi;, i < e, 
and g2 is in g, i.e., let g2 be in g and g2 have the same power series up to the 
nij term as - g at xij (in some local coordinate system) for all i ? e. This can 
be done by 2.3. Also gi, g2 vanish on r- ing). Thus we have fo 7r=gi 
+(g2+h); gi vanishes of order nij at xij, i?e, and g2+h is in t and vanishes 
on7-r(Ssing). Thus g2+his in7and {Fo7r-1; Fin I1} CA (K), so (g2+h) o7r'1 
is in A(K), so also is in C(K)C\H(int K). Thus g1 o r-'=f- (g2+h) o r-1 is 
also in C(K)OH(int K). But gi is meromorphic on R, and holomorphic on K, 
so is holomorphic in a neighborhood W of K. Thus gi o 7r-1 Sreg is in 
H(7r(W)CSreg). But for xij, i_ e, gi vanishes of order nij, so by 3.8 [gi o 

1 8 

is in Es. This, for all i <e, but for i>e, gi o r-1 is in ES. since si is in int K. 
Thus gi o 7r-1 is in H(r(W), Os), 7r(W) is a neighborhood of K, so gl o r-1 is in 
A (K). (g2 +h) o 7-1 is in A (K) also, thusf = gi o ir-'+ (g2+h) o 7r-1 is in A (K). 

Since aKnS8ing = {s , . , Se } is finite, given any complex numbers 
ti, ..., te, there is a g in A(K) such that g(si) =-t. Thus if f is in C(K) 
nH(int K), there is a g in A(K) such that g(si) =f(si). Thus f-g is in 
C(K)C\H(int K) and vanishes on 9KC'iSsjng, so by the above is in A (K). 
Thus f= (f-g) +g is also in A (K). Theorem 4.4 is proven. 

We obtain as a corollary of the above (more explicitly, corollaries of 
Bishop's Theorem (1.2)) certain approximation theorems; more general re- 
sults are found in [13 ]. 

4.5. THEOREM. Let y be a piecewise analytic arc on a one-dimensional ana- 
lytic space S. Then A (y) = C(y), i.e., the algebra of functions holomorphic in a 
neighborhood of y is dense in C(y). 

Proof. Let R be the normalization of S, ir: R-*S, and let I =i-r'1('ySrSg). 
Then jy is a piecewise analytic arc on R, and is obviously a Runge set. Then 
,y is a Runge set and 4.4 applies, so A (y) = C('y), since int y is empty. 

Now since the image under a holomorphic map of a domain in C' into Cn 

is always an analytic space [9], we have 

4.6. THEOREM. Let y be any analytic arc in Cn (i.e., the image of [0, 1] 
under a holomorphic homeomorphism). Then A (-y) = C(y). 

4.7. THEOREM. Let y be a piecewise analytic arc on a variety V in a poly- 
nomial convex subset U of C". Then the polynomials are dense in C(y). 

Proof. Let R be the normalization of V, 7r: R-3S, and let =7r'1('TnSreg). 
We can easily write -? as the decreasing intersection of domains which are 
simply connected in R. Thus, as in 4.2, y is H(R)-convex, and similarly, as 
in 4.4, this implies -y is H(V)-convex. But then y as a subset of U is H(U)- 
convex. For if xE U-7y and xE V, there is anf CH(V) such that jf(x) I> IfIlK* 
But f is just the restriction to V of a function gEH( U), so Ig(x) I > I IgI . If 
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x V, then there is an fCH(U) such thatfI V=0, andf(x)50. Then If(x)I 
>IlfI17. Then, since y is H(U)-convex, H(U) is dense in A(,y). But U is 
polynomial convex, implying that the polynomials are dense in H(U) in 
the topology of uniform convergence on compact subsets of U, so the poly- 
nomials are dense in A('y). But by 4.5, A('y) = C(y). 

5. The maximality theorem. Before proceeding to the extension of Wer- 
mer's maximality theorem we prove a general Banach algebra result which 
appears in another form in [7]. 

DEFINITION. Let A be a function algebra on X. Let YCS(A). A is (Y, X)- 
maximal if and only if, for any algebra B, A CB C C(X), S(B)D Y implies 
B =A. We say A is a maximal subalgebra of C(X) if A is (X, X)-maximal. 
This is the same as the definition which appears in [II]. 

5.1. THEOREM. Let M be a maximal subalgebra of C(X). Let A CM be a 
closed subalgebra of M such that A DI, I an ideal of M. Let H be the hull of I 
in S(M), 4 = If in C(X) vanishing on HnX }. Then if B is a closed subalgebra 
of C(X), and BDA, then either B CM or B:D. 

Proof. Suppose there exists g in B - M. Let (P = { polynomials in g, coeffi- 
cients in M}; then (P is dense in C(X). Let h be in C(X), pn in (P, such that P. 
converges uniformly to h. Then for f in I, fpn converges to fh. Since fpn is in 
B, fh is in B. Thus B contains {fh; f in I, h in C(X) }. But then B contains 
the closed algebra generated by this set, which is a closed ideal of C(X), 
obviously, g, since it has the same hull as g. 

5.2. COROLLARY. Let M be a maximal subalgebra of C(X). Let H1, . Hn 
be pairwise disjoint hulls in S(M). Let A - {f C M; fj H1 is constant, 
j = 1, . , n }. Then A is a maximal subalgebra of c(r(A)) (F(A) is the gilov 
boundary of A), among all subalgebras having S(A) as space of maximal ideals, 
i.e., A is (S(A), r(A))-maximal. 

Proof. A is a subalgebra of M, thus there exists a map ir: S(M)- S(A). 
Obviously r is a homeomorphism on S(M) - (Un.1 Hi) and ir(Hi) = yi, a single 
point, and 7r(x) Dr (A). Let BCC(F(A)), and S(B) =S(A). B is a closed sub- 
algebra of C(X); thus either B C M, or B D {f in C(X); f I (UHmnx = 0 since 
UHi is a hull, and we can apply the theorem. If B CM, since S(B) =S(A), 
any f in B is such that ft Hi =f(yi) =constant. Thus B CA, so B =A. If not, 
then B, as a subalgebra of C( (A)), contains {f in C(r (A)); f(yi) = 0 for yi in 
r(A) }. But then, since B separates r(A), obviously B = c(r(A)). 

5.3. COROLLARY. Let M be a maximal subalgebra of C(X). Let H1, * * Hn 
be disjoint hulls in S(M), with HjnX ?0; j= 1, * , n. Then A = {f in M; 
flHjnX is constant, j = 1, . . , n } is a maximal subalgebra of c(r(A)). 

Proof. We calculate the space of maximal ideals as above. Letting 
Hi' = hull (kernel (HjnX)) we have 7r: S(M)-+S(A) onto, 7r: S(M) -Usn Hj' 
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is a homeomorphism, 7r(Hi)=yi, 7r(X)=r(A). Let B be a subalgebra of 
C(r(A)), BDA. If BCM, since also BCC(F(A)), we must have for allf in 
B,fIHi,=constant. Then, by definition of A,BCA, soB=A. If B?M, then 
as in 5.2, B=C(r(A)). 

5.4. COROLLARY. Let M be a maximal subalgebra of C(X), A a subalgebra 
of M. Let B DA be a subalgebra of C(X). If A contains an ideal I of M such 
that (hull I) nX is a finite point set, then B CM or B = C(S(B)). 

Proof. Let (hull I) fX = { X1, , xn }. Then if B is not contained in M, 
by the theorem, BD{fCC(X); f(xi)=O, i=1, * . . , n}. Since the Silov 
boundary of B is an identification space of X, we can say that for points 
a,, * * * , ak in S(B), B D {f z C(S(B)); f(as) = 0 }. Since B I{ ai } is separating, 
it is C({ ai}). Then if f is in B, there exists a g in B such that g(aj) = (f(ai))-. 
Then f-g is in C(S(B)) and is 0 on {ai}, so is in B. Then f =j -g+g is in B. 
Thus with every f in B, its conjugate 7 also is in B; thus by the Stone- 
Weierstrass theorem, B = C(X). 

5.5. THEOREM. Let S be a connected one-dimensional analytic space, let K 
be compact, K = QUJy1J * Y n kJyn, Q a domain, yi, Yn, y piecewise analytic 
curves. 

(A) A (K) is a maximal algebra in C(OK) if and only if int K = Q is a com- 
plex manifold. 

(B) In any case, A (K) is contained in precisely one maximal algebra M, 
and if B is a subalgebra of CQOK), BDA(K), then B is dense in CQ3K) or 
BCM. 

Proof. Let R be the normal model for a neighborhood U of K, 7r: R-> U 
the projection, so that R=U. 1 Ui, where Ui is a domain on a compact Rie- 
mann surface Ri. Let k be as previously defined. Then K is compact, and 
K= QUJ91Y *Jin where Q is open and ji are piecewise analytic curves, 

R=jz1yu ... *JUyn. 
(1) We first prove the necessity of (A). Suppose A (K) is a maximal sub- 

algebra of C(9K). Let {S1, * * * , Sn =KnSiing, and 7r-1(si) = {x; 1 j < ti 
Let B =(fIOK) o 7r-1; f in A(K), f(xi,) =f(xik) for si in AK}. Then B is a 
closed subalgebra of C(dK), and since w- is holomorphic, B DA (K). Further, 
since everyf in B has a holomorphic extension into Q, B # CQaK). Thus, since 
by assumption A (K) is maximal, B = A (K). Now, for x SyGint K, there is a 
meromorphic function f on R, holomorphic on K, such that f(xij) =0 for si 
in AK and f(x) f f(y) (by 2.3). Thus, since f o r-1 is in B =A (K), there is a g 
in A(K) such that go -zr=f. Thus g(7rx)5g(7ry), so 7rx#zwy. Thus wX: ~-2Q is 
one-one, thus is a homeomorphism, so Q has no identification points. Now let 
s be in int K, r-1(s) = x and g in A (K) such that g(xij) = 0 for si in OK, g(x) = 0 
and dg(x) 5z5 0. Then g o 7r- is in B = A (K); thus there is an f in A (K) such 
thatf o wr=g. Now for some neighborhood U of x, g: l7 )-D, a disc with center 
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the origin, so f: 7r(1C) = U<->D is a holomorphic homeomorphism. But f is 
biholomorphic in U. For let u be in 0S, t in U; then i(u) is in 0X-(g), and thus 
since g is biholomorphic, g-A(0(u)) is in E0(r-l(O), i.e., /(u) is in ef(I. Then 
(U, f) is a local parameter at s mapping U onto a manifold; this for all s in Q, 
so Q must be a manifold. 

(2) We now prove the sufficiency of (A), i.e., we assume Q is a manifold. 
Then =2CSsing 0. Let 

SI, * . * sSn = K l) Ssing = OKC'Ssing, and ir1'(si) = xii}. 

Since K is a Runge set, by 4.4, A(K) = C(K)flH(int K), and also K is a 
Runge set, so A (K) = C(QK)H(int K), which is (by Wermer's maximality 
theorem) a maximal subalgebra of C(1k). Then by 5.3, M= {f in A (K); 
f(xij) =f(xik), 1 _ i < n } is a maximal subalgebra of C( Y), where Y= d1? with 
these points Xil, . . . , xini } identified for 1 ? i ? n. But then Y is homeo- 
morphic to K via r-1: Y<->0K, so If o 7r-1; f in A (K), f(xij) =f(Xik) , 1 _ i < n } 
is a maximal subalgebra of C(dK). But this is just A (K). For surely it con- 
tains A (K). Conversely, if f is in A (K), and f(xi;) =f(xik), 1 _ i _ n, then 
f or-' is in C(K). Further, 7r: P-+QQ is biholomorphic (since Q CSreg), so 
f o 7r-w1 Q is in H(Q). But A (K) = C(K)CnH(Q), then f o 7r-' is in A (K). Thus 
A (K) is a maximal subalgebra of C(0K). 

(3) We now prove (B). Let {sj, . . . I Se4 CK, { Se+1, ... * sn } Cint K. 
Let A1= {f A(K); f(xij)=f(xik), 1<i_ e}. Then by 5.3, A1 is a maximal 
subalgebra of C( Y) with Y= 01? with { XI, , xini } identified for 1 ? i ? e. 
But then, as in the above Y is dK and M= {f o 7r-1; fA } is a maximal sub- 
algebra of C(0K). As we have observed, {f o 7r; f CA (K) } contains an ideal 
of A (K) whose hull is a finite point set. Thus A (K) contains an ideal of M 
whose hull is a finite point set. Then by 5.4, if B C C(0K) and B DA (K), then 
either B = C(S(B)) or B C M. In the former case, since A (K) separates points 
on dK, so does B, so S(B) =0K. Thus Theorem 5.5 is proven. 

6. Extension of Wermer's theorem. In order to prove Theorem 6.7 it is 
necessary to appeal to several theorems of Oka. 

6.1. THEOREM (ABBILDUNGSATZ). Let Si, S2 be analytic spaces and g a 
proper holomorphic map of Si into S2. Suppose also that g-'(x) is finite for all 
XEX2. Then g(Si) is a variety in S2 [8]. 

6.2. THEOREM. Let K be a polynomial-convex subset of Cn. Then the poly- 
nomials are dense in A (K) [5 ]. 

6.3. THEOREM. Let V be a variety in the H( U)-convex domain U in C". Let 
fEH(V, 9v). Then there is a gEH(U, in) such that gj V=f [5]. 

We shall also use the following lemmas concerning various types of con- 
vexities, 
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6.4. LEMMA. Let V be a variety in a polynomial convex domain P in Cn, 
K C V a compact H( V, Ov) -convex set. Then K is polynomial convex. 

Proof. Let x EEK. If x is not in V, there is anfH(P, On) such that f(x) = 1, 
fj V=O. If x is in V, there is anf in H(V, Ov) such thatf(x) =1 and IIft Kit <e. 
But by 6.3f=gI V; gH(P, (n), so g(x) = 1 and jlgI K|| <e. Thus K is H(P, O")n 

convex, but since P is polynomial convex, K is also polynomial convex. 

6.5. LEMMA. Let S be a connected set in Cn satisfying: for all xCS there is a 
neighborhood U. of x such that Sn U,, is a variety in U, (i.e., S is locally a vari- 
ety). Suppose K CS, as a subset of Cn is compact and polynomial convex. Then 
for any f CH( UnS, Os), U a neighborhood of K, f j K is uniformly approximable 
by polynomials. 

Proof. For x in K, there is a U. such that SO U. is a variety in U.. Cover 
K by finitely many U1, * * *, Un. Let V, open, V, compact, contained in U, 
and V1, * * *, Vn cover K. Then SO Vy is compact. Let K'= U..1 SCVj. 
Then K'CS, K' is compact and int K'DK. By the polynomial convexity, 
we can find an analytic polyhedron P= { Ipi4 <1; j=1, - * , k, pi poly- 
nomials} such that KCPnSCint K'. Then PnS is closed in P (for K' is 
closed, and K'nP=SnP). Thus since PC'S is locally a variety, Pr'S is a 
variety in P. Every f in H(Pr'S, Os) then is the restriction of g in H(P, "n) 

to PnS by 6.3. Since P is polynomial convex, glf =f K is approximable by 
polynomials, by 6.2. 

6.6. LEMMA. K is a compact subset of a Riemann surface. fl, , fn are 
holomorphic in a neighborhood U of K, and co: U -- S C Cn, w(r) 
= (fi(r), * * . , fn(r)), where S is locally a variety. Suppose K is convex with 
respect to polynomials in fi, * * - , fn. Then w(K) is polynomial convex. 

Proof. Let UDVD VDK, V a domain, V compact. Then c(V) is compact. 
For x in 9V', there is a P, (fi, * * * , fn) such that j Px(x) I >II PxI K, Px a poly- 
nomial. Then IpP(CO(x)) > 1|PX|.,(K). Thus for every z in w(1V), there is a poly- 
nomial p, such that I Pz(z) I > ttPz.1I(K). By compactness, there are polynomials 
Pl, * * * , Pk such that w(V)D{I pjl <1, j=1, * * , k}I\SDw(K). If we add 
proper multiples of the coordinate functions, we can say that there is an 
analytic polyhedron P = { Ipi4 <1; pi polynomials } such that K CP and 
PnS is a variety in P. PnS is closed in P, for it is the intersection of a closed 
set, w(TV), with P. Now C(H(SCnP, 19s)) contains the polynomials infi, * *, f.. 

so by assumption, w(K) is H(SnP, Os)-convex. Now Lemma 6.4 applies, 
proving co(K) is polynomial convex. 

6.7. THEOREM. Let K be a compact subset of a Riemann surface R, and let 
U be a neighborhood of K. Suppose A0 is a subalgebra of H(U) such that: 
(i) A ? is generated by fl, * - . , fnEH( U); (ii) K is A 0-convex; (iii) { p E U; there 
is a qE U such that p$q but f(p) =f(q), for allfEAO} is finite. 
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Let A be the uniform closure of A I on K. Then there is a variety V in the unit 
polycylinder of some Cn and a map 4 of a neighborhood of K onto V such that 

A = {f o 4; f in the closure of the polynomials on +k(K) }I. 

Proof. We note first that if K is a domain bounded by an analytic arc 'y 
and df,O0 on y, that (ii) follows from conditions (i) and (iii) by Wermer's 
Theorem (1.1). On the other hand, the methods of the proof are general for 
any analytic space, so the theorem still holds if we replace R by any analytic 
space (of any dimension). 

Because of (ii) we can find pi, , ptEA0 such that IrER; Ipi(r)I ? 1, 
1 _ i < t } = W is compact on R. By multiplication of the fi by a constant we 
may assume 1fifuIw<1, 1<i<n. Then, easily, the map 4 on W= {rCR; 

|pi(r)I< 1 <i_t}, 
4 (r) = (f, (r), ,fn (r) , p I (r), , (r)), 

is a proper holomorphic map of W into pn+t = { w; wi <11, and +-1(w) is 
finite for all w. Thus, by 6.1, +(W) = V is a subvariety of pn+t, and O(K) is a 
compact subset of ?(W). Now since K is A?-convex, it is H(W)-convex, and 
thus q5(K) is H( V)-convex. Thus by 6.4 q5(K) is polynomial convex. It follows 
that the polynomials are dense in A (+(K)). 

Thus if fEA (+5(K)), f is approximable on q5(K) by polynomials pn. Then 
Pn ? ?1 K converges to f o q5. But pn ? o=Pn(fi, ... * ffn, Pl, ..., Pt) is a 
polynomial in fi, * * *, fn, Pi, * *, pt, and thus is in AO since f,, * * *, fn, 
pi, . * * , pt CA 0. Thus f o 4 CA. Conversely, if f CA, we have gn I K converg- 
ing tof withfnzA0, in particular gn =Pn(fl, fn) where pn is a polynomial. 
Thus gnn = Po, so that fEE {f o ); f a polynomial on 4)(K) }, so f is in the 
closure of this set, which is {f o ); f in the closure of the polynomials on 
4,(K) }. Thus 6.7 is proven. 

If K is, in particular, a domain with finitely many piecewise analytic 
boundary curves, then for any algebra AO satisfying only (ii) and (iii) we 
can obtain the desired conclusion: that its closure on K can be represented 
as A (KO) for K? lying on some analytic space. In this case we can find 
finitely many functions fi, * * , fn satisfying the hypotheses of 6.7. Thus the 
algebra A' generated by fl, * * *, fn on K can be represented as A (K1), 
where K' is a compact set on an analytic space V. Because only finitely 
many points can be identified, K' is also a domain bounded by piecewise 
analytic curves. It is clear that R is the normalization for V, and A, the clo- 
sure of A 0 on R is a subalgebra of A (K) containing A (K'). Thus A is of finite 
codimension in A (K), which will guarantee that A is an A (K0) on some 
analytic space. 

6.8. COROLLARY. Let fi, * * *, fn be functions holomorphic in an annulus (a 
about I I zI = 1 I =1r. Suppose fi, * * *, fn separate the points of r, df, is never 
zero on r, and the algebra of A0=uniform closure on r of polynomials in 
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fi - S f,n is not c(r). Then there is a connected set SC Cn, a closed analytic 
curve 'y, bounding an open connected subset Q of S, and a homeomorphism 
4): Fr-?' such that: (i) S is locally a variety; (ii) A = [f o 4; f in the closure of 
polynomials on QUJy]. 

Proof. Under the assumption Wermer has proven: there exists a Riemann 
surface R, a biholomorphism 4)': G<-+a'CR, 4)'(r) =-y', an analytic curve 
bounding a domain Q' such that for A'= [f o 4-r; f is in A0], A?CA (Q'Uy') 
and A?D9, 4 an ideal of A (Q'iyJ'), with finite hull in O'. 

Let Fi be the function in A (2'Uy') which extends fi o 4-) to all of 
U'UJy'. Then F1, * * *, F. are holomorphic in a neighborhood U of Q'UJy'. 
Let P = { polynomials in fi, * - *, fn }. Then P is a subalgebra of H(U), and 
is dense in AO. Then, since A' contains an ideal with finite hull contained in 
Q', P satisfies (ii) and (iii) of 6.5 and thus we can apply Theorem 6.7 to AO. 

Appendix. We shall prove a special case of Wermer's Theorem, 1.1. Al- 
though this special case in a sense avoids the greatest difficulty in the theo- 
rem, that of proving convexity, still it is fairly general and indicates how a 
proof using the theory of several complex variables might go. 

THEOREM. Let M be a compact Riemann surface, K = kJy, Q a domain 
and y an analytic curve. Let fl, * * , f,, be meromorphic in M and holomorphic 
on K such that 

N = I p in M; there is q in M such thatfj(p) = fj(q) for all j= 1, * * , n} 

is finite. Let A0 = uniform closure on K of the algebra of polynomials in 
. * , f.. Then A? contains an ideal of A (K) of finite codimension. 

Proof. We may assume IIfuIIK<1 for j-1, * n. Let R={m in M; 
I fj(m) I <1}, R is compact since the fj are meromorphic on M. Define 
F: R-*P'={z; jzil <1, 1 <j_n}, 

F(m) = (fi (m), ... * fn(m)). 

(1) F is holomorphic and it is proper. For let mn be in F-'(A), A compact 
in Pn. R is compact, so there exists an m in R such that mfk -*m. Then fi(m) 
is a limit point of {fi(mn) } and since {fi(mn) } = {7iF(mn) } is contained in a 
compact subset of the unit disc, we have jfi(m)I <1. Therefore, F(m) 
= (f1(m), . . *, fn(m)) is defined and is in Pn; since A is compact, F(m) is in 
A. Therefore m in F-'(A); and F(A) is compact. 

Now because N is finite, we have that F-l(x) is always finite for xEPn. 
Thus, by the Abbildungsatz (6.1), F(R) = S is a variety in Pn. 

(2) (R, F) is the normalization for S. 
Let s be in S. Let F-'(s) = {X1i, - * , Xk}. Each xi has a neighborhood Ui 

in S such that (Ui)-CN is empty, thus F is one-one on (Ui)-, and (Ui)- is 
compact. Thus F: U1"F(Ui) is a homeomorphism. Since U'..1 { dfi = 01 is dis- 
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crete, we may also assume that except possibly for xi, some dfi 5 0 at every 
point of Ui. Thus F| (ui-x,) is a holomorphic map of a connected set onto 
F(Ui) - s, so F(Ui) - s is a connected submanifold of Sreg of dimension one, 
and thus must be an open set contained in one irreducible branch Si of S at s. 
Thus F(Ui) is a neighborhood of s on Si. Then U'.1 F(Ui) is a neighborhood 
of s. For suppose sn- s, sn is S. Let x. be in R such that F(xn) = sn; then by 
the properness of F there exists an x in R such that x-->x, so x must be some 
xi, since F(x) = s. But then the x. from some n? on must be in Us, so sn in 
F(Ui). Thus U= 1 F(Ui) is a neighborhood of s on S. 

Let s be in Ssing. The branches of S at s are just the F(Ui) described 
above, then s is an identification point if and only if F-1(s) is more than one 
point. If F-'(s) =x, then we must have here dfj(x) =0, 1<j< n, for if not 
then F is biholomorphic in a neighborhood of x, which would make S a 
manifold at s. Conversely, if s is in Sreg, then dzj(s) $0 for some j, i.e., zj is 
one-one in a neighborhood of S, implying dfj(x) $ 0. Thus F-1(Ssing) 
= NU { dfj = 0, 1 <j _ n }, which is a finite set (since R is compact). Now, for 
x not in F-1(Ssing) we have that some dfjO0, and F is a homeomorphism in a 
neighborhood of x onto a neighborhood of F(x); it follows that F is biholo- 
morphic in a neighborhood of x. Thus F| R-F-1(saing) is biholomorphic. Thus 
(R, F) is the normal model for S. 

It is easy to see that K, since it consists of a domain bounded by one 
analytic curve, can be written as the decreasing intersection of domains 
simply connected with respect to R. Then, by 4.1, K is H(R)-convex. Then 
KO = F(K) is also H(S)-convex, as in Theorem 4.4, for in this case K = K?. 
Then by 6.4, KO is polynomial convex. 

Now, as in ?5, {fo F; f in A(KO) } contains an ideal I of A(K) of finite 
codimension. If f is in H(U, Os), U a neighborhood on S of K, then by 6.3, 
there are polynomials pn such that pn I Ko-)f KO. Thus pn o F->f o F on K, but 
pn o F= pn(fl, - , fn) is in A?. Thus f o F is in A0, and finally ICA? (in 
fact, by 6.7, {f o F; f in A (K)?0)} =A0). 

COROLLARY. If in addition we assume that fi, * *, fn separate the points of 
K and for all m in K there is an fi such that dfj(m) $0 , then A0=A (K). 

Proof. In this case there is a neighborhood U of K such that Fj u is bi- 
holomorphic. Then P(H(F(U), Os)) =H(U, OR). Since f in the former is 
approximable on K by polynomials in fi, * .. , fn, then A0 is dense in 
H(U, OR). The latter is dense in A (K); thus A0 = A (K). 
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