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ALGEBRAS OF HOLOMORPHIC FUNCTIONS ON
ONE-DIMENSIONAL VARIETIES

BY
HUGO ROSSI()

1. Introduction. By C* we mean n-dimensional complex vector space. For
2& C*, we will represent the ring of germs of holomorphic functions at z by
07, and the sheaf of germs of holomorphic functions in C* by ®* (for sheaf-
theoretic terminology, see [2; 5]). In general, a ringed space is a pair (X, 0),
where X is a locally compact Hausdorff space and © is a sheaf of rings of
germs of continuous functions on X (see [6]). Thus (C*, ©*) is a ringed
space. By holomorphic function on the ringed space (X, ©®) we mean a con-
tinuous function on X whose germ at any x&X is in ©,. If U is an open sub-
set of X, (U, ®] U) is a ringed space; we will let H(U, ©) denote the ring of
holomorphic functions on U. Where it is clear what © is we will write H(U)
for H(U, 9).

Let U be an open set in C* and fi,---, fi € H(U, ©%). Let
V={3€U; fi(z) =0, 1=<i<t}. We will write V=V(fi, - - -, f.). We consider
® as defining a sheaf of germs of continuous functions on V, and write
@V=0"| V. Then (V, O") is a ringed space. A function f defined on V is thus
holomorphic on V if, for every x& V, there is a neighborhood W of x in C»
such that f| WNV is the restriction to WNV of a function holomorphic in W.
Any closed subset of a domain U in C* which is locally given as the zeros of
a finite number of holomorphic functions is called a variety.

Let (X, ©), (¥, ®) be ringed spaces and ¢: X—Y a continuous map. By
¢(®) we mean the sheaf on X whose stalk at x€X is the set { fod; fEDPyx }
If $() CO, we say ¢ is holomorphic. If ¢ is a homeomorphism and ¢! is
also holomorphic, we say ¢ is biholomorphic.

A complex manifold is a ringed space (X, ®) with the following property:
for every x & X, there is a neighborhood U of x and a biholomorphic map of
(U, ©) onto (W, ©), where W is an open set in C*. An analytic space is a
ringed space (X, ®) with the following property: for every x€ X, there is a
neighborhood U of x and a biholomorphic map of (U, ®) onto (V, ©Y),
where (V, ©Y) is a variety.

Let (S, ®) be an analytic space. A point x €S is regular if x has a neighbor-
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hood U such that (U, ©) is a complex manifold. The set S, of regular points
of S forms a complex manifold dense in S. By a one-dimensional analytic
space we mean an analytic space S such that S;e is 2 one-dimensional mani-
fold. In this case Sying=S—Sre is a discrete set of points on S (see [2]).

If K is a compact subset of an analytic space, let H(KX) be the ring of all
functions holomorphic in a neighborhood of K. Let 4(K) be the uniform clo-
sure on K of H(K). A(K) is a Banach algebra with the uniform norm. Our
main purpose is to study 4 (K) with respect to the property of being a maxi-
mal subalgebra of C(I'(4(K))), the algebra of all continuous functions on the
Silov boundary of A(K). This will be done under the restriction that K con-
sists of a domain bounded by finitely many piecewise analytic curves. It has
been shown, in the case where .S is a Riemann surface, that A(K) is maximal
in C(T'(A(K))) (Wermer, Royden [9; 10]). This result is our starting point.
In particular, we will associate with any one-dimensional analytic space S a
one-dimensional complex manifold R, and a projection 7: R—S, and with
compact K on S, a compact K on R. We shall show that, in a natural sence,
A(K) is a subalgebra of A(K) of finite codimension in 4 (K); this fact is the
basis of the discussion.

We shall also attempt to describe certain subalgebras of 4(K), for K a
compact subset of a Riemann surface. These subalgebras are of the form
Ao(K, U), the uniform closure on K of a subalgebra 4o of H(U), where U
is a neighborhood of K. The first result in this direction is Wermer’s theorem.

1.1. TueoreM (WERMER [11]). Let R be a Riemann surface, T a simple
closed analytic curve on R such that T is the boundary of a domain D with D\UT
compact. Let f, g be holomorphic in a neighborhood of D\JT, df does not vanish
on T and f, g together separate points on I'. Then there is a finite subset T of
DVUT and an integer n such that if b is in A(D\JT'), and h vanishes at each point
of T with order no less than n, then h is approximable on D\JIT by functions in
the algebra {f, g} of polynomials in f and g.

In the appendix of [11] he extends this to finitely many functions. The
crucial feature of this theorem is to prove that DUT is {f, g}-convex (see
the definition below); with this assumption the proof depends only on theo-
rems of several complex variables of a general nature.

Later Bishop proved a closely related, but essentially different theorem.

DEFINITION. Let U be an open set on an analytic space .S, and K a com-
pact set in U. Let 4 be a subalgebra of H(U). We say K is Ao-convex if
K={xCU; If(x)l <sup|{ If(y)[ : yEK} for all fEA,}. For VCU open, we
say Vis Ao-convex if V can be written as the increasing union of a sequence of
Ay-convex compact sets.

1.2. TueoreM (Bisuop [3]). Let R be an open Riemann surface, K a com-
pact subset of R, B a subalgebra of H(R) such that (i) K is B-convex, (ii) {pER;
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there is a g#=p in R such that f(p) =f(g) for all f&B U {pER; df(p) =0 for all
fEBY} (the singular set relative to B, denoted by S(B)) is finite.

Then there is a positive integer N such that B, the closure of B on K, contains
the ideal of C(K)NH(int K) consisting of those functions which vanish on
S(B)NK, and vanish of order at least N at those points of S(B) interior to K.

The main point here is the approximation theorem, which we shall use
in the maximality discussion. In §6 we shall prove the following theorem.

6.7. THEOREM. Let K be a compact subset of a Riemann surface R, and let
U be a neighborhood of K. Suppose A° is a subalgebra of H(U) such that (i) A°
is generated by fi, - - -, [xEH(U), (ii) K is A -convex, (iii) {pe U; there is a
qE U such that p=q but f(p) =f(q) for all fE A°} is finite. Let A be the uniform
closure of A° on K.

Then there is a variety V in the unit polycylinder of some C* and a map ¢ of
a neighborhood of K onto V such that

A= { fo@; fin the closure of the polynomials on ¢(K) }

Together these three theorems give a complete description of 4(X, U)
when it is finitely generated.

This work was originally done at the Massachusetts Institute of Tech-
nology as part of my doctoral thesis. I am greatly indebted to my teachers,
Professors Singer and Hoffman, and to the department of mathematics at
Massachusetts Institute of Technology for all the assistance I received.

2. Ideals of A(K) on a Riemann surface. Let R be a compact Riemann
surface, and S any subset of R. We write M(S) for the vector space of func-
tions, meromorphic on R which are regular on S. From the Riemann-Roch
theorem we obtain the following result.

2.1. LEMMA. Let U be any open set on R,

(1) Given ps~q in U, there is an f& M(U) such that f(p) #Zf(q).

(1) Given p, p1, - - -, pe in U, and positive integers n, my, - - -, n;, there
is an & M(U) with zeros of orders Zn; at p;, 1 i<t and a zero of order n at p
(i.e., if (U, 3) is a local parameter at p, f has the Taylor series in U:f= Y anz®
with a;=0, 1<n, and a,70).

Proof. (i) Let ps#¢ in U; by the Riemann-Roch theorem, there is a
meromorphic function f regular on U with a zero of some order %k at p. If
f(@) #£0, then f(p)#=f(g). Suppose f has a zero of order m at g. Let g be mero-
morphic on R, with a pole only at g of order, say, n. Then frg*(q) #0, but
frg¥(p) =0, so frgk is the required function.

(ii) Let now fEM(U) such that f has a zero of order at least #; at p;,
and is zero at p. Let k be the order of the zero at p. Again by the Riemann-
Roch theorem there is a meromorphic function g whose only pole is at p
and is of order m, where m is prime to p, so long as m is large enough. Then



442 HUGO ROSSI [September

there are positive s, ¢ such that sk—¢m=1. Then feg! is in M(U) and has a
zero of order 1 at p. Thus (f*g®)" has a zero of order # at p, and obviously
still has zeros of orders at least #; at p;.

Now let K be a compact proper subset of R. M(K) is contained in H(K),
so the closure 4(K) of H(K) in the uniform norm on K contains the restric-
tion to K of functions in M(K). We use this fact to show that the structure
space S(A(K)) of A(K), (the set of complex holomorphisms of A(K)) is
just K.

2.2. LEmMa. S(A(K)) =K.

Proof. By Lemma 2.1, M separates the points of K; thus A(K) separates
points of K. Every point of K thus determines a continuous homomorphism
of A(K), so S(4(K)) contains K.

Let U be a neighborhood of K. Let & be in S(A(K)), different from
evaluation at some point 7 in K. Let F be meromorphic on R with its only
pole in U a simple pole at ». Now there is a g in H(K) such that &(g) =1,
g(r)=0. Then gF is in H(K). Let t=h(gF); then for P=F—¢, gP is in M(K)
and h(gP)=h(g(F—1t))=h(gF)—th(g)=0. Let r1, - - -, r, be the zeros of P
on K of order m, - - -, ma,, respectively. If i is not evaluation at any r;, there
are f; in H(K), h(f;) =1, fi(r;) =0. Let f=([If7%)P-'. fis in H(K) and, since
f(r)=0, fP is also in H(K). Thus (] f7) = 1[#(f;))m=1; but [Ifri=fP, so
r(11fM) =h(fP) = h(fP)h(g) = h(fPg) =h(f)k(gP) =0, a contradiction. Thus
k is evaluation at 7 or some 7;, i.e., evaluation at some point of K.

This proof is essentially a part of Arens’ proof that the algebra C(K)
NH(int K) has K as its structure space [1].

We now exploit the infinite dimensionality of M(K) as a vector space to
obtain a theorem which will be useful in the discussion of holomorphic func-
tions on one-dimensional analytic spaces.

2.3. THEOREM. Let x1, + + + , xoEK. Let (U, 2;) be a local coordinate at x;,
and let P;(X) be polynomials of degree n; over the complex numbers. Then there
is @ g&E M(K) such that the first n; terms of the Taylor expansion of g about x;
in z; agrees with P(2;).

Proof. For f& M(K), we can expand f in a Taylor series in z; about
xi: f= 2 Nii(f)z7. Ni;(f) isa linear functional on M (K). According to 2.1 (ii) we
can find an f;& M (K) such that f;; has a zero of order j at x; and a zero of
order at least #, at x,. That is, A,;(fi;) =0if r>£4¢ and s<#,, or if =4 and s <j.
Thus the matrix M=A.(fij)), 157, iSn, 0SsSn,, 0SjSn,;, is a (Dn)
X(Zn;) triangular matrix all of whose diagonal entries are nonzero. Thus
M is nonsingular.

Write Pi(X) = Y _a:Xi. Let a be the vector (a:;). Then there is a vector
b=(b;;) such that Mb=a. Let g= Y bifij; then g€M(K), and \.(g)
= D biiAra(fij) =a..; thus g is the required function.
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2.4. COROLLARY. Let x1, - -+, Xa be in the interior of K. Let I = {fEA(K);
f has a zero of order Zm;at x;}. Then A(K)=M(K)+1.

Proof. Let (U, 2:) be a local parameter at x;, and let f&A(KX). By 2.3,
there is a g€ M(K) such that the Taylor expansion of g in 2; at x; coincides
with that of f up to the #;th term. Then f—g& A(K), and vanishes of order
=n;at x; 80 f—gisin I. Thus f=g+4+(f—g) isin M(K)+1.

3. Normalization of an analytic space. Let .S be a one-dimensional ana-
lytic space. We shall show that there is a complex manifold R and a projec-
tion m: R—S such that for U an open set on S, U compact, the set {fo ;
fEH( U)} is of finite codimension in H(r~!(U)). R will be the normal model
for S (see [6]).

DerINITION. Let S be an analytic space. The normalization of S is a pair
(R, m) such that: (i) Ris a locally compact, locally connected Hausdorff space;
(ii) m: R—.S is continuous, proper and onto; (iii) #~1(s) is finite for all s in S
(in fact, 7' (s)={py, * - -, Prw}, where k(s) is the number of irreducible
components of S at x); (iv) 77 (Ssing) separates no connected set in R and
is nowhere dense; (v) m: R—7"(Ssing) >S5 — Ssine is @ homeomorphism.

The points of R are pairs (s, V), s&€S and V an irreducible branch of S
at s, and (s, V)=s. The basis neighborhoods are of the form O(U, V)
=7"1(UNV) where V is an irreducible branch of S in the open set U. The
space R is called the normal model of S.

Let UCR be open. If f: U—C is continuous and f o 1r‘1| U—7"1(Ssing) is
holomorphic, we say that f is holomorphic on U. Let ©F be the sheaf of germs
of holomorphic functions on R. Then 7 is a homomorphic map.

The following facts were proven by Oka [8; 6].

3.1. THEOREM. The normal model exists, is an analytic space and is unique
up to a biholomorphic map with respect to the properties (i)—(v) and that 7 is
holomorphic.

3.2, THEOREM. If sES is an trreducible point, 7=1(s) =p. @,’f 15 the integral
closure of m(@5)={fom; fEOS}. There is a nonzero ideal C of OF such that
COECr(@f).

We now prove

3.3. THEOREM. The normal model of a one-dimensional analytic space is a
one-dimensional complex manifold.

Proof. We know R—7"1(S,ing) is a complex manifold, since it is biholo-
morphic to S —Sing. Let s& Sqing. Since Sing is discrete, s has a neighborhood
U such that UNS,ing= {s} Let V4, - - -, V. be the branches of S in U; then
=~1(U)=UO0(U, V,) and each O(U, V,) is connected. It is easy to see that
7: O(U, Vi)«<>UNYV; is a homeomorphism and x: O(U, Vi) —{p:} >UNV;
—{s} is biholomorphic, where p;=(s, V). We need only prove that we can
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define a local coordinate at p; which, with the natural structure of O(U, V)
—{p:}, makes of O(U, V) a Riemann surface such that = is still holomorphic.
Then, by the uniqueness, this structure is the normalization structure. Thus,
since we are interested in only O(U, V;) near p;, we can assume S has only one
branch at s, further, that S is embedded as a variety V in a neighborhood of
the origin (s=0) in C»,

3.5. LEMMA. Let V be an irreducible one-dimensional variety in C* at 0,
and suppose that 0 is the only singular point of V. Then there are a Riemann sur-
face R! and a holomorphic homeomorphism p: RV such that p| R'—p~1(0) s
biholomorphic.

Proof. In a neighborhood of 0, by the Nullstellensatz [5, Chapter XIV]
for a suitable choice of coordinates we can write V—{0} =V (f, - - -, fa1)
where

r—1 .
fi(z1, * -+ 2a) = g1z, 22) = 7+ > ai(zl)z;’
=0
gi(z1, 22)
D(z1)

fi(a, - - "y %) = 8 —

where g; are distinguished polynomials, and D(0) =0.

Let R! be the Riemann surface covering {|z:| <e} of the algebraic func-
tion defined by gi(z, 2) =0, and 7°: R'—{ lzl <e} the projection. Let x in
R!, 7% 50; then x corresponds to a certain branch ¢, of this algebraic func-
tion. We define p: R\— VN {|z| <e}:

ga(r'x, 6:(n%)  guln's, ¢,(vr°x)>),

p(x) = (Wox) ¢-‘¢(7rox) ’ D(1r°x) ' ' D(Wox)

p(x) =0 if =% =0.

If «! is the projection of V onto {|z| <e} it is obvious that #®=m'0 p.

p is one-one. For if px=py, then 7l%x=7, ¢.(7'%)=0e,(7%)=¢,(7')
which implies that ¢.=¢,, or x=y.

p is biholomorphic on Rt —p~1(0). Let w%0; then for U. a small enough
neighborhood of x, (U,, ) is a local parameter at x. Similarly, since 7« is in
View, (U,z, T) is a local parameter at x for U, small enough. But since
w0 =x'0p, p also is biholomorphic in a sufficiently small neighborhood of x.

Easily p is holomorphic. For if f is holomorphic on V, f o p is holomorphic
on R—p~1(0), but also continuous. Thus since R! is a complex manifold,
fop is holomorphic on R

Now, we can transfer the structure of R! to R the normalization of V by
7! o p, making of R a complex manifold. This structure coincides with the
given one on R—7~1(0), and with it = is still holomorphic. Thus the two
structures do coincide and R is a complex manifold.
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If x in S is a singular point, 7=(x) = {r1, - - - , 7} and for U a neighbor-
hood of x, there are neighborhoods U; of 7; such that w: UU; onto U and
mUU;— {r;, I rn}—>U— {x} one-one and onto. We call the w(U,) the
sheets of S at x. Note that w(U,) is an analytic space and U, is its normal
model. If x is in T(U;)reg, then w: U;w(U;) is a biholomorphic map. If x is
in 7(U)sing, then 7 is just holomorphic. This type of point we call a branch
point of w(U;) or a branch point of Sif 7—!(x) is just one point (x is an irreduci-
ble point). If 7~1(x) is more than one point we call x an identification point.

Let x be a branch point of S; then w: R—S is one-one holomorphic from
a neighborhood of 7#!(x) =7 to a neighborhood of x in S. For the moment
we replace these neighborhoods by R and S respectively and we assume Sisa
variety V at 0 in C* Then #(@)) (the transfer by = of all functions holo-
morphic in a neighborhood of 0) is a subring of ®F. In fact we have:

3.6. LEMma. #(O)) is precisely the set of germs of functions which can be
uniformly approximated in a neighborhood of r by polynomials in the
#(21), - - -, #(24). Further, #(®)) contains a power of the maximal ideal of OF.

Proof. Let f be in #(@Y); then f=gom, g in ®). Then, for a sufficiently
small polycylinder P* about x, there is an % in H(P") such that g=h| V. But
then & is approximable by polynomials in compact neighborhoods of x, thus
also is g; thus g o m=f is approximable by polynomials in the z; 0 #=#(z;) in
a neighborhood of 7. Conversely, if f is in ®F, in a neighborhood of 7, f o 7!
is defined, since 7 is one-one. If f is approximable by polynomials in the
#(2;), f o 7! is approximable in a neighborhood of x on V by polynomials in
the z;. But ©/ is closed in the topology of local uniform convergence [5],
so fow1isin @), implying f=f o 71 o 7 is in #(0)).

Now, by 3.2, there is an ideal € of ®) such that @®F C®O/. But €®Fis an
ideal of OF; thus ©) contains an ideal I of ®F, and I #0, since €0. But the
only ideals of ®F are the powers of the maximal ideal. Let g be in I'; suppose
g has a zero of order # at r, g’ has a zero of order =Z#. Then g’/gisin 0F so
g'=g(g’/g) is also in I. Thus I contains M" (M =maximal ideal). Let n°
=min{n; IDM”}. Then I= Mr; for if not then there is a g in I with a zero
of order m <n° but this implies, as we have seen, I D M™, contradicting the
definition of »°.

3.7. CorOLLARY. If x is a branch point of S, m: R—S, w(r) =x, then there
exists an N such that, if f is analytic in a neighborhood of r and vanishes at r
with order = N, then f is in #(05).

Now we look at the local behavior at an identification point; so we may
assume we have maps ;: {Izl <1}<—>V.~CP", 7;(0)=0, and Vi, - -+, Vi
are the irreducible components of a variety V containing 0. Let
T={(fi, - - -, fr); f;in O} such that there exists g in 0}, gl Viomi=f;}.
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3.8. LEMMA. There are integers N; =0 such that if f; is in ©g and vanishes at
0 with order = Nj, then (f1, + -+, fx) isin T.

Proof. Write V,=V(g!, - - -, pi_,). Since V,NVi={0}, there is p} in
I(V,) such that ¢} | v, has its only zero at 0. Let #,; be the order of vanishing
of Pﬂ v, 0 m; at 0. According to 3.7 there is an integer #;; such that if f is in
0} and vanishes at 0 with order =7, then f is in #;(0%). Let N;= Y ", ni;
These are the required integers.

Let (fi, -, fi) be as in the statement of the lemma. Then
fi=1[f[ I jmi pi|v; 0 m:]'] is in ©) and vanishes with order =, so there
isa g; in OF such that g;|v,=f}, or, what is the same, f:=(g: [ [;a #i|v,) o 7s.
But now, for m#4, gm | irm p{,,l v; vanishes on V;, so we have

k .

fi= (ng HP:n>07l'i-
m=1 j=m

Then g= > %1 gn ] Lim th is in O, g o mi=f;, proving (fi, - - -, fa) isin T.

Now consider K a proper compact set on a connected one-dimensional
analytic space S. Since Sging is discrete KM\Ssing is finite. Furthermore we
can find a neighborhood U of K such that T is compact and UM Ssine
= KN Ssing.

Let (R, ) be the normalization of S. Then #—'(U) has finitely many con-
nected components. For any regular point on .S can be connected to a singular
point by an arc contained in S, the set of regular points. Since 7! is
homeomorphic on Sy, any r&R—7"1(Ssine) can be connected by an arc in
7 1(U) to a point in 7= (Ssing), but 7~ 1(Ssing/ M U) is finite.

Thus we can write 7=(U) =UU;, where U; is an open connected set on a
Riemann surface R; (a component of R). Since = is proper and U is compact,
each T, is compact, so we may consider U; to be an open subset of a compact
Riemann surface R/.

Now if xEKN Ssing, 7 1(x) = {n, < r;}. Now any r; may be the only
point of 7-1(K) on that component of R, for the branch corresponding to ;
may intersect K only at x. We want to exclude such points from 7—!(K), so
instead we take K, the closure of 7=1(KM\Sr), and thus if K has no isolated
points (which case we exclude) = maps K onto K. Since K differs from
7~ 1(KNS:s) by a finite point set, we have the following: (a) if K is the
closure of its interior, so also is K the closure of its interior; (b) if int K is
connected, int K is connected; (c) if K is bounded by finitely many piecewise
analytic curves, so is K.

Now K is a disjoint union of finitely many proper compact sets K; on
compact Riemann surfaces. Thus 4(K) obviously is the direct sum of the
A(K)), and so by 2.2, S(4(K))=S(4(K,))=UK;=K.

3.9. THEOREM. Let K be a compact subset of a connected one-dimensional
analytic space S. Then there are finitely many compact Riemann surfaces
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Ry, -+, Riand R;CU;CR:, K; compact, U; open, and a map w:UU; onto
a neighborhood U of K such that (i) for R=UU;, (R, 7) is the normalization of
U, (ii) K=URK; is the closure of m'(KNSreg). (iii) Let KN Ssing= UN Ssing
={s1, -+, sa}. Let 7Y (s)NK={xa, - - -, %ir,}. There exist integers ni;
such that A(K) D {f o 71; f holomorphic in a neighborhood of K, f(xip) =f(xiq)
for all p, g, 11 n, f(x) —f(xi;) has a zero of at least order nij at xi;}. (iv) In
particular, A(K)D{f o 7Y, f in I} where I is an ideal of A(K) with finite hull;
in fact hull I =1"1(KM Ssing).

Proof. If in the preceding discussion we take K;= KN Us;, then (i), (ii) are
verified. As for (iii), the integers n;; are just those given by Lemma 3.8 applied
at the point s;. That is, if 7=(s;) = {x,-l, e, x;,..}, then for S; a branch of
S at sy, let n;; be the integer given by Lemma 3.8, so that if f;is in @f‘.,. and
vanishes at x;; with order =n,;, then there is a g&@j, (where we now con-
sider a neighborhood of s; as embedded in €*) such that (g| S;) o m=f;. Now
let f be in H(V, ©F), V a neighborhood of K; suppose f is as described in (iii).
Since f identifies the points which 7 identifies, f o #~! is a continuous function
on K. Since Ssing K =S,sing U, g=f 0 7w 11is a continuous function on w(V)
and since 1r| R —m1(Ssing) is biholomorphic, for all regular points s we have
2C05. If s=s,, then by Lemma 3.8, since f is as described in (iii), there is a
GEO;, such that G|S;=g—g(s:)|S;; so g=G+g(s:). But G+g(s:) is in O,
so g is in @f.. Thus g is in H(w(V), ©5), so that g[K=fo 1r"1|K is in A(K).
Thus (iii) is proven.

Letting H(K) = [f holomorphic in a neighborhood of K], then by (iii),
AK)D[for; fin I] where I=[f in H(K); f(x:;) =0, f has a zero of order
=1, at x;;] is an ideal of H(K). Now H(K) is dense in 4(K). Thus T (closure
of I in A(K)) is also an ideal of A(K), and since 4(K) is closed, 4(K)
D{fon1; fin IT}. Now hull T={x,;}. Surely each #,; is in hull 7. On the
other hand, if x is in K, x#x,;, by 2.3, there is an fi; in H(K) such that
Fii(x) #0, fij(x:;) =0. Then f=[[]f:;]®® »iis in I and f(x) =0, so x is not in
hull 7.

3.10. TreorEM. S(4(K))=K.

Proof. Since 4(K) is an algebra of continuous functions on K, evaluation
at any point of K is a continuous homomorphism of 4(K). We prove 4 (X)
separates point of K. Let s, ¢ be in K, s in Syee. Let x =7"1(s). There is a func-
tion fu in H(K) such that fu(x) %0, fu(y) =0, for all y; in 7-1(¢). There is an
fi in H(K) such that f;(x) #0, f:;(x:;) =0. Then f=[ [ faf;]®® »iisin I and
f(x)#0, f(m%) =0. Thus g=fow!is in 4(K) and g(s) #g(®).

Suppose now s=s1, t=s;. By 2.3 there is an f in M(K), f(x1;) =1, f(x:;) =0
if 451, and f(x) —f(x;;) has a zero of order at least n;; at x;;. Then f is in
H(K) and by (iii) of 3.9, g=fow!is in A(K). But g(s) =1, g(#) =0. Thus
A(K) separates points.
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Let % be in S(4(K)), suppose % is not evaluation at any s;, * - -, s,. Then
there is an fi in 4(XK) such that fi(s;) =0, 1=j=<n, and h(fi)=1. For fin 1,
let 2(f)=h(fowY). k is a nonzero continuous homomorphism on I, since
[fi o w]¥, where N=sup{n,;}is in T,and k((fi o )¥) = h((f)¥) = 1. But now,
by 2.2 S(A4(K)) =K, and hull T= {x,-,-}, so S(T) =K — {x;}. Then k(f) =f(x)
for some x in K, x#x;; Thus mx is a regular point of S. Let g be in 4(K);
we prove k(g) =g(wx). Then, since (fi)¥ orisin I, g(f)¥Y or=(gom)((f)¥ o)
isin I, so that

h(g) = hQM(f)Y) = h(g(f)") = h(g(f)¥ o m)
= g(ax)((f)"(72)) = g(rx)((f)¥ o m) = g(mx).

Then S(4(K))=K.

4, Runge sets. If K is a compact set on an analytic space S, it is not
necessarily true that A(K)=C(K)NH(int K), i.e., it is not always true that
every function continuous on K and analytic in the interior of K is approx-
imable by functions holomorphic in a neighborhood of K. If S is a complex
manifold, it is evident that 4 (K) CC(K)NH (int K) since H(int K) is closed
in the topology of uniform convergence. But for S a general analytic space
this has only recently been proven by Remmert and Grauert [5]. We have
already used this result in 3.6. The possibility of 4(K)=C(K)NH(int K)
depends greatly on the geometry of K.

DeriNIiTION. If K CS is a proper compact subset of .S and there is a do-
main UDK such that K is H(U)-convex, we call K a Runge set.

4.1. TueoreM (RUNGE's THEOREM) (BEHNKE). Let R be a Riemann sur-
face, UC U’ domains on R. Suppose U is simply connected with respect to U’,
s.e.,if v C U bounds a domain in U’ it bounds a domainin U. Then every function -
holomorphic on U can be approximated uniformly on compact sets by functions
holomorphic on U’ [3].

4.2. CoROLLARY. Let K be a compact, proper subset of R. If there is a family
of domains U(n) CU, n an integer, satisfying (1) U(n) is simply connected
with respect to U(1), (ii) U(n) D U(n+1), (iii) N. U(n) =K, then H(U(1)) s
dense in A(K).

Proof. Let f be in A(K); f can be uniformly approximated by functions
holomorphic in a neighborhood of K. If U is a neighborhood of K there is an
n such that U(n) CU. If fis in H°(U, ©F), then f| ) is uniformly approxima-
ble on K by functions in H(U(1)). Thus the corollary is proven.

If K has a neighborhood U such that H(U) is dense in A(K), then K is
H(U)-convex. For we know that S(4(K)) =K, so it follows that S(H(U))
=K, with the sup norm on K on H(U). Thus if x©€ U—K, the map f—f(x)
is not a continuous multiplicative functional on H(U) in this norm, so there
is an fEH(U) such that |f(x)| >||f||x. But this is the condition of H(U)-
convexity.
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It is easily seen that if K=QUy\U + « - Uy, @ a domain, v, * * +, ¥»
piecewise analytic curves, then the hypotheses of 4.2 are satisfied with U(1)
a sufficiently small neighborhood of K, so K is a Runge set.

4.3. COROLLARY. Let K be a Runge set in a compact Riemann surface R.
There is a neighborhood U of K such that H(U) is dense in C(K)NH(int K),
and wn particular A(K) =C(K)NH(int K).

This follows from an immediate application of Bishop’s theorem, Theo-
rem 1.2. We now obtain the same result for Runge sets on one-dimensional
analytic spaces.

4.4. THEOREM. Let K be a compact subset of S, and K as defined in §3. K
1s @ Runge set if and only if K is a Runge set. If K is a Runge set, A (K) = C(K)
NH(int K).

Proof. If K is a Runge set, there is a UCS such that UDK and K is
H(U)-convex. If KCVCU, then obviously K is also H(V)-convex, so we
may assume U chosen so small that 7= (U)N\7~(Saing) = KN7(Ssing). Then
if x is in 7=1(U), but not in K, then mx is not in K, so there is an fEH(U)
such that |f(mx)]| >|[fHK Then f o w is holomorphic on w(U) and |f o m(x)]
>|fo 1r]] Thus K is H(x—'(U))-convex. Now we can write K=UK,, a dis-
joint union and 7=Y(U)=UU; where U;DK; are both subsets of a compact
Riemann surface. Obviously K; is H(U;)-convex, so it follows from 4.3
that 4(K,) = C(K.)f\H(mt K, and then 4(K)=C(K)NH(int K).

Now we assume only K is a Runge-set, and is H(T)-convex.

Let KN Sging= {51, * =, Sa}, let s1, - - -, 5. be in 0K, Sep1, - = *, Sa in
int K. Let 7='(s;) = { x4, 1=5j<k; }, and #,; the integer corresponding to s;
as 3.9. Let I={fin H(U); f has a zero of at least order n,; at x;;}. Now K is
I-convex. For I is an ideal in H(U) and since K is H(U)-convex, the closure
of H(U) on K is A(K), and S(4(K)) =K. Thus the closure T of I is an ideal
of A(K’), so S(T) is a subspace of K. But if K is not I-convex, there is an x in
U—K such that If(x)! <||fllz for all f in I, so evaluation at x extends to a
homomorphism of I, not evaluation at any point of K; since I separates
points of U (but for hull I C K), contradicting S(IT) CK. Since I C[fo=;in
H(w(T))], then K is H(w(U))-convex.

Now, by Bishop's theorem, 1.2, T contains {f in C(K)NH(int K) such
that f vanishes on 7~1(S;ing) and has a zero of order =N at x4, 'i>e}, for
some integer N. Let 9 be the ideal of 4(K), 9= {f in A(K); f(x) =f(x:;) has
a zero of order =N for i>e}.

Now let f be in C(K)NH(int K) such that f vanishes on Seing/ 0K ; then
fomisin C(K)NH(int K) =A(K), since K is a Runge set. By 2.4 considering
only the points x;;, 1>e, we can write fo m=g+#h, g is meromorphic on R,
holomorphic on K, and % is in 4. We can arrange, in fact, that z is in I by add-
ing and subtracting a meromorphic function in g which takes the values
g(x4;) at xi;, 1<e; then % vanishes on 7=!(Ssing). Since g is holomorphic in a
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neighborhood of K, we can write g=g;+ gz, where g1, g2 are also meromorphic
functions, holomorphic on K, such that g vanishes with order n;; at x;;, 1 <e,
and g, isin 4, i.e., let g; be in 4 and g have the same power series up to the
ni term as —g at x;; (in some local coordinate system) for all 4=<e. This can
be done by 2.3. Also g1, g2 vanish on 7 !(Ssing). Thus we have for=g
+(g2+4); g1 vanishes of order n;; at x;;, 1<¢, and g+ is in g and vanishes
on 7= (Ssing). Thus g;+hisinTand { For!; Fin I} CA(K),so (ga+h) on!
is in A(K), so also is in C(K)NH(int K). Thus gior'=f—(g2+h) omr'is
also in C(K)NH(int K). But g is meromorphic on R, and holomorphic on K,
so is holomorphic in a neighborhood W of K. Thus g o 1r—‘] S,eg 18 in
H(w(W)N\Seeg). But for x5, i <e, g1 vanishes of order n,j, so by 3.8 [g10 7!],,
is in @)i.. This, for all 2=e, but for :>e, g1 0o 71 is in @)i since s; is in int K.
Thus g; o 7~ tisin H(w(W), ©5), w(W) is a neighborhood of K, s0 g1 0o 7~ !isin
A(K). (g2+h) o ntisin A(K) also, thus f=g1 0 7=+ (g2+%) o 7 lisin A (K).

Since KN Sging= {sl, <, s,} is finite, given any complex numbers
b, ++ +, L, there is a g in A(K) such that g(s;) =¢;. Thus if f is in C(X)
NH(int K), there is a g in A(K) such that g(s:) =f(s;). Thus f—g is in
C(K)NH(int K) and vanishes on dKM Ssing, so by the above is in A(K).
Thus f=(f—g)+g is also in A(K). Theorem 4.4 is proven.

We obtain as a corollary of the above (more explicitly, corollaries of
Bishop’s Theorem (1.2)) certain approximation theorems; more general re-
sults are found in [13].

4.5. THEOREM. Let v be a piecewise analytic arc on a one-dimensional ana-
lytic space S. Then A(y)=C(y), i.e., the algebra of functions holomorphic in a
neighborhood of v is dense in C(vy).

Proof. Let R be the normalization of S, 7: R—S, and let ¥ =71(YMN\Seg).
Then ¥ is a piecewise analytic arc on R, and is obviously a Runge set. Then
v is a Runge set and 4.4 applies, so 4 (y) = C(y), since int v is empty.

Now since the image under a holomorphic map of a domain in C! into C*
is always an analytic space [9], we have

4.6. THEOREM. Let v be any analytic arc in C* (i.e., the image of [0, 1]
under a holomorphic homeomorphism). Then A(y) =C(y).

4.7. THEOREM. Let v be a piecewise analytic arc on a variety V in a poly-
nomial convex subset U of C*. Then the polynomials are dense in C(y).

Proof. Let R be the normalization of V, m: R—S, and let §=7"1(yN\Sree).
We can easily write 4 as the decreasing intersection of domains which are
simply connected in R. Thus, as in 4.2, 4 is H(R)-convex, and similarly, as
in 4.4, this implies v is H(V)-convex. But then v as a subset of U is H(U)-
convex. For if x€ U—v and xE€ V, there is an f€ H(V) such that |f(x)| > 1Al
But f is just the restriction to V of a function g€ H(U), so |g(x)| >||g| o If
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x €V, then there is an fEH(U) such that f| V=0, and f(x) #0. Then |f(x)|
>|flls. Then, since v is H(U)-convex, H(U) is dense in A(y). But U is
polynomial convex, implying that the polynomials are dense in H(U) in
the topology of uniform convergence on compact subsets of U, so the poly-
nomials are dense in 4 (y). But by 4.5, 4(y) =C(y).

5. The maximality theorem. Before proceeding to the extension of Wer-
mer’s maximality theorem we prove a general Banach algebra result which
appears in another form in [7].

DEFINITION. Let 4 be a function algebra on X. Let YCS(4). 4 is (Y, X)-
maximal if and only if, for any algebra B, ACBCC(X), S(B) DY implies
B=A. We say A is a maximal subalgebra of C(X) if A is (X, X)-maximal.
This is the same as the definition which appears in [11].

5.1. THEOREM. Let M be a maximal subalgebra of C(X). Let ACM be a
closed subalgebra of M such that A DI, I an ideal of M. Let H be the huil of I
in S(M), 9 ={f in C(X) vanishing on HNX }. Then if B is a closed subalgebra
of C(X), and BDA, then either BC M or BD4.

Proof. Suppose there exists g in B— M. Let @#= {polynomials in g, coeffi-
cients in M} ; then ®is dense in C(X). Let £ be in C(X), p» in @, such that p,
converges uniformly to 4. Then for f in I, fp. converges to fh. Since fp, is in
B, fhis in B. Thus B contains {fk; fin I, k in C(X)}. But then B contains
the closed algebra generated by this set, which is a closed ideal of C(X),
obviously, 4, since it has the same hull as 4.

5.2. COROLLARY. Let M be a maximal subalgebra of C(X). Let Hy, - - - , H,
be pairwise disjoint hulls in S(M). Let A = { fE M; fl H; is constant,
j=1,-- -, n} Then A is a maximal subalgebra of C(T'(A))(T(A) is the Silov

boundary of A), among all subalgebras having S(A) as space of maximal ideals,
i.e., A 15 (S(4), T'(4))-maximal.

Proof. A is a subalgebra of M, thus there exists a map 7: S(M)—S(4).
Obviously 7 is a homeomorphism on S(M) — (U}, H;) and 7(H,) =y, a single
point, and w(x) DI'(4). Let BCC(T'(4)), and S(B) =S(4). B is a closed sub-
algebra of C(X); thus either BC M, or BD {f in C(X); fl (in)nx=0}, since
UH; is a hull, and we can apply the theorem. If BC M, since S(B)=S(4),
any fin B is such that f| H;=f(y;) =constant. Thus BC4,so B=A. If not,
then B, as a subalgebra of C(I'(4)), contains { fin C(T'(4)); f(¥:) =0 for y; in
T'(4)}. But then, since B separates I'(4), obviously B = C(T'(4)).

5.3. COROLLARY. Let M be a maximal subalgebra of C(X). Let Hy, - - - , H,
be disjoint hulls in S(M), with H;N\X#= &;j=1, -, n. Then A={fin M,
f| mnx 1S constant, j=1, - - -, n} 1s @ maximal subalgebra of C(T'(4)).

Proof. We calculate the space of maximal ideals as above. Letting
H;] =hull (kernel (H;N\X)) we have 7: S(M)—S(4) onto, 7: S(M)—U;_, H}
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is a homeomorphism, w(H;)=y;, m(X)=T(4). Let B be a subalgebra of
C(T'(4)), BDA. If BCM, since also BCC(I'(4)), we must have for all fin
B, f| ny = constant. Then, by definition of 4, BCA,so B=A.If B M, then
asin 5.2, B=C(I'(4)).

5.4. COROLLARY. Let M be a maximal subalgebra of C(X), A a subalgebra
of M. Let BDA be a subalgebra of C(X). If A contains an ideal I of M such
that (hull I)MX is a finite point set, then BC M or B= C(S(B)).

Proof. Let (hull NNX = {xl, cee, x,.}. Then if B is not contained in M,
by the theorem, BD{f&C(X); f(x:) =0, i=1, - - -, n} Since the Silov
boundary of B is an identification space of X, we can say that for points
ai, -+ -+, a;in S(B), BD{fGC(S(B)) flas) = 0} Since B| {a.} is separating,
it is C({a,}) Then if fis in B, there exists a g in B such that g(a;) = (f(a;))~.
Then f—gisin C(S(B)) and is 0 on {a,} soisin B. Then f=f—g-+g is in B.
Thus with every f in B, its conjugate f also is in B; thus by the Stone-
Weierstrass theorem, B = C(X).

5.5. THEOREM. Let S be a connected one-dimensional analytic space, let K
be compact, K=QUv\\J - - - Uy, Qa domain, 1, - - -, v. piecewise analytic
curves.

(A) A(K) is a maximal algebra in C(OK) if and only if int K=Q is a com-
plex manifold.

(B) In any case, A(K) is contained in precisely one maximal algebra M,
and if B is a subalgebra of C(OK), BDA(K), then B is dense in C(OK) or
BCM.

Proof. Let R be the normal model for a neighborhood U of K, 7: R—U
the projection, so that R=UJ., U;, where U; is a domain on a compact Rie-
mann surface R;. Let K be as prewously defined. Then K is compact, and
K= QU'le - \U#%,, where  is open and #; are piecewise analytic curves,
0Kk =5\ - U’y,.

(1) We ﬁrst prove the necessity of (A). Suppose 4 (K) is a maximal sub-
algebra of C(9K). Let {sy, - - -, s,.} KN Ssing, and 71(s;) = {x,,, 1<j=t}.
Let B={(f|0K) o 7'; f in A(K), f(x:;) =f(xa) for s; in 0K}. Then B is a
closed subalgebra of C(0K), and since = is holomorphic, BDA(K). Further,
since every fin B has a holomorphic extension into £, B C(dK). Thus, since
by assumption 4 (K) is maximal, B=A4(K). Now, for x#yCint K, there is a
meromorphic function f on R, holomorphic on K, such that f(x:;) =0 for s;
in K and f(x) #f(y) (by 2.3). Thus, since fo 7! isin B=A(K), thereisa g
in A(K) such that g o w=f. Thus g(mx) #g(wy), so mx~7y. Thus 7: 3—Q is
one-one, thus is a homeomorphism, so Q has no identification points. Now let
sbeinint K, 7~'(s) =x and gin 4 (K) such that g(x:;) =0 for s;in 9K, g(x) =0
and dg(x) #0. Then go n~!is in B=A(K); thus there is an f in A(K) such
that f o 7=g. Now for some neighborhood U of x, g: U«>D, a disc with center
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the origin, so f: 7(U)=UeD is a holomorphic homeomorphism. But f is
biholomorphic in U. For let % be in ©f, tin U; then #(x) is in ®%y), and thus
since g is biholomorphic, §~!(#(«)) is in ©},-1), i.e., f(«) is in @},. Then
(U, f) is a local parameter at s mapping U onto a manifold; this for all s in ©,
so € must be a manifold.

(2) We now prove the sufficiency of (A), i.e., we assume £ is a manifold.
Then Q@NM\Sging= . Let

{Sl, N Sn} = K M Sging = 0KN Sying, and 771(s;) = {xﬁ}'

Since K is a Runge set, by 4.4, A(K)=C(K)NH(int K), and also Kisa
Runge set, so 4(K)=C(K)NH(int K), which is (by Wermer’s maximality
theorem) a maximal subalgebra of C(K). Then by 5.3, M= {f in 4(K);
f(xi) =f(xi), 1S4<n} is a maximal subalgebra of C(Y), where ¥ =9K with
these points {x;, - - +, %in,;} identified for 1<i<#x. But then ¥ is homeo-
morphic to K via 7=1: Ye9dK, so {fo 7 1; fin A(K), f(xi;) =f(xa), 1Si<n}
is a maximal subalgebra of C(dK). But this is just 4(KX). For surely it con-
tains 4(K). Conversely, if f is in A(K), and f(x:;) =f(xa), 1<i<n, then
fomlis in C(K). Further, 7: QQ is biholomorphic (since QCSg), so
fo 7r‘1[ Qis in H(Q). But 4(K) =C(K)NH(Q), then for'isin 4A(K). Thus
A(K) is a maximal subalgebra of C(dK).

(3) We now prove (B). Let {sl, e, s.} COK, {s,+1, e, s,.} Cint K.
Let A'={fCA(K); f(xi;) =f(xa), 1Si<e}. Then by 5.3, 4! is a maximal
subalgebra of C(Y) with Y=9K with {xa, e, x.-,.,.} identified for 1 <7 =e.

But then, as in the above Yis 9K and M= {f o =—1; fEA'} is a maximal sub-
algebra of C(dK). As we have observed, {fom; fEA(K)| contains an ideal
of A(K) whose hull is a finite point set. Thus 4 (K) contains an ideal of M
whose hull is a finite point set. Then by 5.4, if BC C(dK) and BDA(K), then
either B=C(S(B)) or BC M. In the former case, since 4 (K) separates points
on 9K, so does B, so S(B)=8K. Thus Theorem 5.5 is proven.

6. Extension of Wermer’s theorem. In order to prove Theorem 6.7 it is
necessary to appeal to several theorems of Oka.

6.1. THEOREM (ABBILDUNGSATZ). Let Si, S: be analytic spaces and g a
proper holomorphic map of Sy into S.. Suppose also that g=(x) is finite for all
xEX,. Then g(S1) is a variety in S, [8].

6.2. THEOREM. Let K be a polynomial-convex subset of C*. Then the poly-
nomials are dense in A(K) [5].

6.3. THEOREM. Let V be a variety in the H(U)-convex domain U in C*, Let
fEH(V, ©"). Then there is a g H(U, ©") such that g| V=f [5].

We shall also use the following lemmas concerning various types of con-
vexities.
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6.4. LEMMA. Let V be a variety in a polynomial convex domain P in Cm,
KCV acompact H(V, OV)-convex set. Then K is polynomial convex.

Proof. Let x ¢ K. If x is not in V, there is an fH(P, @) such that f(x) =1,
fl V=0.1f xisin V, there is an f in H(V, ®Y) such that f(x) =1 and ||f| K|| <e.
But by 6.3f=g| V;gH(P,0"), so g(x)=1and ||g] K” <e. Thus K is H(P, ©%)-
convex, but since P is polynomial convex, K is also polynomial convex.

6.5. LEMMA. Let S be a connected set in C satisfying: for all xS there is a
neighborhood U, of x such that SMU, is a variety in U, (i.e., S is locally a vari-
ety). Suppose K CS, as a subset of C* is compact and polynomial convex. Then
for any fEH(UNS, ©8), U a neighborhood of K, f | K is uniformly approximable
by polynomials.

Proof. For x in K, there is a U, such that SN\ U, is a variety in U,. Cover
K by finitely many Uy, - - -, U,.. Let V; open, V; compact, contained in U;
and Vi, - -+, V. cover K. Then SNV, is compact. Let K’'=U}., SNV,.
Then K’'CS, K’ is compact and int K’ DK. By the polynomial convexity,
we can find an analytic polyhedron P = { |1>,~| <1;j=1,--+, k, p; poly-
nomials} such that K CPNSCint K’. Then PNS is closed in P (for K’ is
closed, and K’MP =SNP). Thus since PN\S is locally a variety, PN\S is a
variety in P. Every f in H(PNS, ©9) then is the restriction of g in H(P, O")
to PN\S by 6.3. Since P is polynomial convex, g| xk=f I & is approximable by
polynomials, by 6.2.

6.6. LEMMA. K is a compact subset of @ Riemann surface. fi, - - -, fa are
holomorphic in a mneighborhood U of K, and w: U—S CC" o(r)
=(fi(r), - - -, fa(r)), where S is locally a variety. Suppose K is convex with
respect to polynomials in f1, - + « , fa. Then w(K) is polynomial convex.

Proof. Let UDVD VDK, Vadomain, V compact. Then w(V) is compact.
For x in 7V, there is a p.(fi, - - -, fa) such that |p,(x)| >|]p,||x, =z a poly-
nomial. Then | p,(w(x))l >|| szMx). Thus for every z in w(V), there is a poly-
nomial p, such that | p.(2)| > || :||wcxy. By compactness, there are polynomials
b1, - -+, pi such that w(V)D{|p;] <1, j=1, - - -, F}NSDw(K). If we add
proper multiples of the coordinate functions, we can say that there is an
analytic polyhedron P= { lpjl <1; p; polynomials} such that KCP and
PN\Sisa variety in P. PNSis closed in P, for it is the intersection of a closed
set,w(V), with P. Now &(H(SNP, ©9)) contains the polynomialsinfi, - - -+, fa,
so by assumption, w(K) is H(SNP, 0%)-convex. Now Lemma 6.4 applies,
proving w(K) is polynomial convex.

6.7. THEOREM. Let K be a compact subset of a Riemann surface R, and let
U be a neighborhood of K. Suppose A° is a subalgebra of H(U) such that:
(i) A°ds generated by f1, - - -, faEH(U); (ii) K is A -convex:; (iii) { pEU,; there
is a qE U such that p5=q but f(p) =f(q), for all fEAO} is finite.
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Let A be the uniform closure of A° on K. Then there is a variety V in the unit
polycylinder of some C* and a map ¢ of a neighborhood of K onto V such that

A= { foo; f in the closure of the polynomials on ¢(K) }

Proof. We note first that if K is a domain bounded by an analytic arc v
and dfi5#0 on v, that (ii) follows from conditions (i) and (iii) by Wermer's
Theorem (1.1). On the other hand, the methods of the proof are general for
any analytic space, so the theorem still holds if we replace R by any analytic
space (of any dimension).

Because of (ii) we can find py, - - -, psEA° such that {rER; Ip.-(r)l =<1,
1=<4=<t} =W is compact on R. By multiplication of the f; by a constant we
may assume ||f{|#<1, 1Si=<n. Then, easily, the map ¢ on W={rER;
[p:(n] <1, 1=is4},

¢(r) = (fl(’)i vt :fn(r)) Pl(r)’ R P‘(r))y
is a proper holomorphic map of W into Pr+t={w; |w;| <1}, and ¢~(w) is
finite for all w. Thus, by 6.1, ¢(W) =V is a subvariety of P**¢, and ¢(K) is a
compact subset of ¢(W). Now since K is 4°convex, it is H(W)-convex, and
thus ¢(K) is H(V)-convex. Thus by 6.4 ¢(K) is polynomial convex. It follows
that the polynomials are dense in 4 (¢(X)).

Thus if fEA(¢(K)), f is approximable on ¢(K) by polynomials p,. Then
pn0¢| K converges to fop. But paod=pu(fi, -+, fu b1, *+, Do) is a
polynomial in fi, - -+, fa, $1, - + +, b1, and thus is in A° since f1, + -+, fn,
b1, + o, prEAS Thus fo ¢ 4. Conversely, if fEA, we have g,,l K converg-
ing to f with f,E A9, in particular gn=p.(f1, - - -, fa) Where p, isa polynomial.
Thus g.=pn, 0 ¢, so that fo& {fo ¢; f a polynomial on ¢(K)}, so f is in the
closure of this set, which is {fo ¢; f in the closure of the polynomials on
¢(K)}. Thus 6.7 is proven.

If K is, in particular, a domain with finitely many piecewise analytic
boundary curves, then for any algebra A4° satisfying only (ii) and (iii) we
can obtain the desired conclusion: that its closure on K can be represented
as A(K® for K° lying on some analytic space. In this case we can find
finitely many functions fi, - - -, f» satisfying the hypotheses of 6.7. Thus the
algebra A! generated by fi, - - -, f» on K can be represented as 4(K?"),
where K! is a compact set on an analytic space V. Because only finitely
many points can be identified, K! is also a domain bounded by piecewise
analytic curves. It is clear that R is the normalization for V, and 4, the clo-
sure of A° on R is a subalgebra of 4(K) containing 4(K?'). Thus 4 is of finite
codimension in A(K), which will guarantee that 4 is an A(K°) on some
analytic space.

6.8. COROLLARY. Let fi, - « « , fa be functions holomorphic in an annulus G
about | Izl =1} =T. Suppose fi, - - -, fa separate the points of T, dfs is never
zero on I', and the algebra of A°=uniform closure on T' of polynomials in
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fi, * -+, fa 15 not C(T'). Then there is a connected set SCC, a closed analytic
curve v, bounding an open connected subset Q@ of S, and a homeomorphism
¢: Ty such that: () S is locally a variety; (ii) A= [fo é; f in the closure of
polynomials on QU4 ].

Proof. Under the assumption Wermer has proven: there exists a Riemann
surface R, a biholomorphism ¢’: GG’ CR, ¢’'(I') =v’, an analytic curve
bounding a domain €’ such that for A%=[fo ¢~!; fisin A°], AJCA(Q'Uy’)
and 4904, 9 an ideal of 4(2'\Uy’), with finite hull in Q.

Let F; be the function in A(Q'Uy’) which extends f;0¢~! to all of
Q'Uv’. Then Fy, - - -, F, are holomorphic in a neighborhood U of Q'\Uy’.
Let P= {polynomials in fi, - - -, f,.}. Then P is a subalgebra of H(U), and
is dense in A% Then, since A? contains an ideal with finite hull contained in
Q, P satisfies (ii) and (iii) of 6.5 and thus we can apply Theorem 6.7 to A°.

Appendix. We shall prove a special case of Wermer’s Theorem, 1.1. Al-
though this special case in a sense avoids the greatest difficulty in the theo-
rem, that of proving convexity, still it is fairly general and indicates how a
proof using the theory of several complex variables might go.

THEOREM. Let M be a compact Riemann surface, K=QJy, Q a domain
and v an analytic curve. Let f1, + - -, fn be meromorphic in M and holomorphic
on K such that

N = {pin M;thereis g in M such that fi(p) = fi(q) forallj =1, - -, n}

is finite. Let A°=uniform closure on K of the algebra of polynomials in
fi, * * +, fn. Then A° contains an ideal of A(K) of finite codimension.

Proof. We may assume Hfj“x<1 for j=1,+--, n. Let R={m in M;
| fim)| <1}, R is compact since the f; are meromorphic on M. Define
F: R—P={3; || <1, 15j<n},

F(m) = (film), - - -, fa(m)).

(1) Fis holomorphic and it is proper. For let m, be in F~'(4), A compact
in P». R is compact, so there exists an m in R such that m.,—m. Then fi(m)
is a limit point of {fi(m,)} and since {fi(m,)} = {m:F(m,)} is contained in a
compact subset of the unit disc, we have | f.(m)l <1. Therefore, F(m)
= (fi(m), - - -, fa(m)) is defined and is in P*; since 4 is compact, F(m) is in
A. Therefore m in F~1(4); and F(4) is compact.

Now because N is finite, we have that F~!(x) is always finite for x&P".
Thus, by the Abbildungsatz (6.1), F(R) =.S is a variety in P»,

(2) (R, F) is the normalization for S.

Let s be in S. Let F-(s) = {xl, cee, xk}. Each x; has a neighborhood U;
in .S such that (U;)~MNN is empty, thus F is one-one on (U;)~, and (U;)~ is
compact. Thus F: UyF(U;) is a homeomorphism. Since U, {df:=0} is dis-
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crete, we may also assume that except possibly for x;, some df;#0 at every
point of U;. Thus F ] w—zp 1s a holomorphic map of a connected set onto
F(U;)—s, so F(U;)—s is a connected submanifold of S: of dimension one,
and thus must be an open set contained in one irreducible branch S; of S at s.
Thus F(U.) is a neighborhood of s on S;. Then Ui.; F(U.) is a neighborhood
of 5. For suppose s,—s, s» is S. Let x» be in R such that F(x,) =s.; then by
the properness of F there exists an x in R such that x,—x, so x must be some
%;, since F(x)=s. But then the x, from some #° on must be in U;, so s, in
F(U;). Thus U}, F(U,) is a neighborhood of s on S.

Let s be in Suing. The branches of S at s are just the F(U,) described
above, then s is an identification point if and only if F~!(s) is more than one
point. If F~1(s) =x, then we must have here df;(x) =0, 1=<j=n, for if not
then F is biholomorphic in a neighborhood of x, which would make S a
manifold at s. Conversely, if s is in Srg, then dz;(s) #0 for some j, i.e., 2; is
one-one in a neighborhood of S, implying dfj(x) # 0. Thus F~!(Ssing)
=NU {df,—=0, 1<j=<n}, which is a finite set (since R is compact). Now, for
% not in F~1(Ssing) We have that some df;#0, and F is a homeomorphism in a
neighborhood of x onto a neighborhood of F(x); it follows that F is biholo-
morphic in a neighborhood of x. Thus F [ R-F-1(8,,,) is biholomorphic. Thus
(R, F) is the normal model for S.

It is easy to see that K, since it consists of a domain bounded by one
analytic curve, can be written as the decreasing intersection of domains
simply connected with respect to R. Then, by 4.1, K is H(R)-convex. Then
K°=F(K) is also H(S)-convex, as in Theorem 4.4, for in this case K =K°.
Then by 6.4, K° is polynomial convex.

Now, as in §5, {fo F; fin 4(K®} contains an ideal I of A(K) of finite
codimension. If f is in H(U, ©9), U a neighborhood on S of K, then by 6.3,
there are polynomials p, such that pnl xo—f [ xo. Thus p, 0 F—f o Fon K, but
pno F=p,(fi, - - -, fa) is in A% Thus fo F is in 49, and finally ICA4° (in
fact, by 6.7, {fo F; fin A(K)%} =49).

COROLLARY. If in addition we assume that f1, - - -, f» separate the points of
K and for all m in K there is an f; such that df ;(m) #0, then A°=A(K).

Proof. In this case there is a neighborhood U of K such that F|y is bi-
holomorphic. Then F(H(F(U), ©5))=H(U, ©F). Since f in the former is
approximable on K by polynomials in fi, - - -, fa, then A° is dense in
H(U, ©F). The latter is dense in A(K); thus 4A°=A4(K).

sing:
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