
VOLUME 78, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 30 JUNE 1997

no
or all

5022
Entanglement of a Pair of Quantum Bits
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(Received 3 March 1997)

The “entanglement of formation” of a mixed stater of a bipartite quantum system can be defined
as the minimum number of singlets needed to create an ensemble of pure states that representsr. We
find an exact formula for the entanglement of formation for all mixed states of two qubits having
more than two nonzero eigenvalues, and we report evidence suggesting that the formula is valid f
states of this system. [S0031-9007(97)03443-1]

PACS numbers: 89.70.+c, 03.65.Bz
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Entanglement is the potential of quantum states to e
hibit correlations that cannot be accounted for classica
For decades, entanglement has been the focus of m
work in the foundations of quantum mechanics, being a
sociated particularly with quantum nonseparability and t
violation of Bell’s inequalities [1]. In recent years, how
ever, it has begun to be viewed also as a potentially use
resource. The predicted capabilities of a quantum co
puter, for example, rely crucially on entanglement [2
and a proposed quantum cryptographic scheme conv
shared entanglement into a shared secret key [3].
both theoretical and potentially practical reasons, it h
become interesting to quantify entanglement, just as
quantify other resources such as energy and informati
In this Letter we adopt a recently proposed quantitati
definition of entanglement and derive an explicit formu
for the entanglement of a large class of states of a pair
binary quantum systems (qubits).

The simplest kind of entangled system is a pair of qub
in a pure but nonfactorizable state. A pair of spin-1

2

particles in the singlet state1p
2
sj "# l 2 j #" ld is perhaps the

most familiar example, but one can also consider mo
general states such asaj "# l 1 bj #" l, which may be less
entangled. For any bipartite system in a pure state, Ben
et al. [4] have shown that it is reasonable to define th
entanglement of the system as the von Neumann entr
of either of its two parts. That is, ifjcl is the state
of the whole system, the entanglement can be defin
as Escd  2Tr r log2 r, where r is the partial trace
of jcl kcj over either of the two subsystems. (It doe
not matter which subsystem one traces over; the res
is the same either way.) What Bennettet al. showed
specifically is the following. Considern pairs, each in
the statejcl. Let an observer Alice hold one member o
each pair and let Bob, whom we imagine to be spatia
separated from Alice, hold the other. Then ifjcl hasE
“ebits” of entanglement according to the above definitio
the n pairs can be reversibly converted by purely loc
operations and classical communication intom pairs of
qubits in the singlet state, wheremyn approachesE for
largen and the fidelity of the conversion approaches 100
0031-9007y97y78(26)y5022(4)$10.00
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This interconvertibility is strong justification for the above
definition ofE and characterizes it uniquely.

It is somewhat harder to define the entanglement
mixed states [5], though again one can use the singlet
the basic unit of entanglement and relate the given mix
state to singlets. The new feature in the case of mixe
states is that the number of singlets required tocreatethe
state is not necessarily the same as the number of sing
one canextractfrom the state [6]. In this paper we focus
on the former quantity, which leads to the following
definition of “entanglement of formation” [7]. Given a
mixed stater of two quantum systemsA andB, consider
all possible ways of expressingr as an ensemble of pure
states. That is, we consider statesjcil and associated
probabilitiespi such that

r 
X

i

pijcil kcij . (1)

The entanglement of formation ofr, Esrd, is defined as
the minimum, over all such ensembles, of the avera
entanglement of the pure states making up the ensemb

E  min
X

i

piEscid . (2)

Entanglement of formation has the satisfying property th
it is zero if and only if the state in question can be
expressed as a mixture of product states. For ease
expression, we will refer to the entanglement of formatio
simply as “entanglement.”

Peres [8] and Horodeckiet al. [9] have found elegant
characterizations of states with zero and nonzeroE, and
Bennett et al. [7] have determined the value ofE for
mixtures of Bell states. (These are a particular set
orthogonal, completely entangled states of two qubits; w
will refer to other sets of such states as “generalized Be
states.”) But the value ofE for most states, even of two
qubits, is not known, and in fact it has not been evide
that one can even expressE in closed form as a function
of the density matrix. The exact formula we derive in
this Letter is proved for all density matrices of two qubit
having only two nonzero eigenvalues, but it appears like
that it applies toall states of this system.
© 1997 The American Physical Society
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Our starting point is a curious and useful fact about t
pure states of a pair of qubits. For such a system,
define a “magic basis” consisting of the following fou
states (they are the Bell states with particular phases)

je1l 
1
2 sj "" l 1 j ## ld ,

je2l 
1
2 isj "" l 2 j ## ld ,

je3l 
1
2 isj "# l 1 j #" ld ,

(3)

je4l 
1
2 sj "# l 2 j #" ld ,

where we have used spin-1
2 notation for definiteness

When a pure statejcl is written in this particular basis
as jcl 

P
i aijeil, its entanglement can be expressed

a remarkably simple way [7] in terms of the componen
ai : Define the function

E sxd  Hs 1
2 1

1
2

p
1 2 x2 d for 0 # x # 1 , (4)

where H is the binary entropy functionHsxd 
2fx log2 x 1 s1 2 xd log2s1 2 xdg. Then the entangle-
ment ofjcl is

Escd  E sssCscdddd , (5)

whereC is defined by

Cscd 
Å X

i

a2
i

Å
. (6)

The quantityC, like E for this system, ranges from zer
to one, and it is monotonically related toE, so thatC
is a kind of measure of entanglement in its own rig
It is sufficiently useful that we give it its own name
concurrence. As we look for a pure-state ensemble wi
minimum averageentanglement for a given mixed stat
our plan will be to look for a set of states that all have t
sameentanglement, which is to say that they all have t
same concurrence.

Two other facts about the magic basis are wo
highlighting. (i) The set of states whose density matric
arereal when expressed in the magic basis is the same
the set of mixtures of generalized Bell states (Horode
et al. have called such mixtures “T states” [10]). (ii) The
set of unitary transformations that are real when expres
in the magic basis (or real except for an overall pha
factor) is the same as the set of transformations that
independently on the two qubits.

It happens that our formula forE is conveniently
expressed in terms of a matrixR, which is a function ofr
defined by the equation

Rsrd 
q

p
rrp

p
r . (7)

Here rp is the complex conjugate ofr when it
is expressed in the magic basis; that is,rp P

ij jeil kejjrjeil kejj. To get some sense of the meanin
of R, note that TrR, ranging from 0 to 1, is a measure o
the “degree of equality” [11] betweenr and rp, which
in turn measures how nearlyr approximates a mixture
of generalized Bell states. Note also that the eigenval
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of R are invariant under local unitary transformations
the separate qubits, a fact that makes these eigenva
particularly eligible to be part of a formula for entangle
ment, since entanglement must also be invariant un
such transformations. We now state our main result.

Theorem.—Let r be any density matrix of two qubits
having no more than two nonzero eigenvalues. Letlmax
be the largest eigenvalue ofRsrd. Then the entanglemen
of formation ofr is given by

Esrd  E scd; c  maxs0, 2lmax 2 Tr Rd . (8)

[The quantityc can thus be called the concurrence of th
density matrixr. If r is pure, thenc reduces to the
concurrence defined in Eq. (6).]

Proof.—Let jy1l and jy2l be the two eigenvectors of
r corresponding to its two nonzero eigenvalues. Defi
the 2 3 2 matrix t such thattij  yi ? yj, where the
dot product is taken in the magic basis with no compl
conjugation: yi ? yj ;

P
kkek j yil kek j yjl. Consider

an arbitrary pure statejcl that can be written in the
form jcl  ajy1l 1 bjy2l. If jcl is expressed as a four
vector in the magic basis, we can rewrite Eq. (6)
Cscd  jc ? cj, and

C2scd  sc ? cd sc ? cdp  Tr fsptstpg , (9)

wheres  s a
b d sa bdp is the density matrix ofjcl in the

(y1,y2) basis.
Let us define the function

fsvd  Trfvptvtpg (10)

for any density matrixv expressed in the (y1,y2) basis.
From Eq. (9),fsvd  C2svd if v represents a pure state
Now, v is a 2 3 2 density matrix, and as such can b
written as a real linear combination of Pauli matrice
v 

1
2 sI 1 $r ? $sd where rj  Trfsjvg. Substituting

this form into Eq. (10) gives us an expression

fsvd 
1
4 Tr ftptg 1

X
j

rjLj 1
X
i,j

rirjMij , (11)

with

Lj 
1
2 Tr fsjtptg (12)

and

Mij 
1
4 Tr fsp

i tsjtpg . (13)

Thus f is defined on the surface and interior of a un
sphere in three dimensions, the domain of$r.

M is a real, symmetric matrix with eigenvalue
6

1
2 j dettj and 1

4 Tr ftptg, andL is the eigenvector ofM
corresponding to the eigenvalue1

4 Tr ftptg. SinceM has
two positive eigenvalues and one negative eigenval
fsvd is convex along two directions and concave alon
a third. For the purpose of this proof, we would like t
have a function that is equal tofssd for pure statess, but
convex in all directions. With this in mind we define

gsvd  fsvd 1
1
2 j dettjsj$rj2 2 1d , (14)
5023
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which is identical tof for pure states (j$rj  1). The extra
term added tofsvd in effect adds a constant tof and a
multiple of the identity matrix toM. If we define a matrix

N  M 1
1
2 j dettjI (15)

and a constant

K 
1
4 Tr ftptg 2

1
2 j dettj , (16)

then we can write

gsvd  K 1
X

j

rjLj 1
X
i,j

rirjNij . (17)

The added term in Eq. (15) makes all the eigenvalu
of N non-negative, one of them being zero. Thusg
is a convex function. SinceL is an eigenvector ofN
associated with a positive eigenvalue, and is orthogo
to the eigenvector with zero eigenvalue, the functiong
is constant along the latter direction. We can imagi
the functiong (suppressing one dimension) as a sheet
paper curved upward into a parabolic shape; it achiev
its minimum value along a straight line. Moreover, on
can show by direct calculation that the minimum value
g is zero. In Fig. 1, we indicate surfaces along whichg
is constant, for a generic choice ofjy1l and jy2l. The
surfaces appear as cylinders with elliptical cross sectio
The mixed stater that we are considering lies on on
of these cylinders and can be decomposed into two p
states lying on the same cylinder; that is, having the sa

FIG. 1. The surface of the sphere represents the set of
pure superpositions ofjy1l and jy2l, the eigenvectors ofr.
The interior represents all mixed states formed from su
superpositions. The elliptical cylinders are surfaces of const
g, and their intersections with the spherical surface are theref
curves of constant entanglement.r itself lies on the vertical
axis, betweenjy1l and jy2l which are at the poles. Its
minimum-entanglement decomposition consists of two pu
states lying on the same cylinder asr.
5024
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value of g. (These two states are connected tor by a
straight line parallel to the cylinders’ axis.) The next tw
paragraphs show that no other decomposition ofr has a
smaller average entanglement than this one.

Any decomposition ofr into pure states can be viewed
as a collection of weighted points on the surface of th
sphere in Fig. 1 whose “center of mass” is the poi
representingr. The average entanglement of such a
ensemble is the average ofE sss

p
gssdddd over the ensemble,

sinceE sss
p

gssdddd is equal to entanglement for pure statess.
If we can show thatE sss

p
gsvdddd, regarded as a function of

v, is convex over the interior of the sphere, then it wi
follow that this average cannot be less thanE sss

p
gsrdddd.

But we have just seen thatr can be decomposed into
two pure statess for which gssd is the same asgsrd,
so this will prove that the entanglement ofr is equal to
E sss

p
gsrdddd.

In fact it is not hard to prove the desired convexity
The function gsvd is parabolic with minimum value
zero. Its square root is therefore a kind of cone a
is also convex. The functionE sxd is a convex and
monotonically increasing function ofx. It follows, then,
from the transitive property of convex functions [12] tha
E sss

p
gsvdddd is a convex function ofv.

We have thus found the entanglement ofr and need
only express it in a simpler form. Replacingv with r

in Eq. (10) and using the fact thatr is diagonal in the
sy1, y2d basis, we obtain

fsrd  TrsR2d  l2
1 1 l2

2 , (18)

where l1 and l2 are the nonzero eigenvalues ofR
[Eq. (7)]. Similarly, one finds that for the other term in
Eq. (14),

1
2 j dettjsj$rj2 2 1d  22l1l2 , (19)

so that gsrd  l
2
1 1 l

2
2 2 2l1l2. Taking the square

root, we arrive at the result

Esrd  E scd; c  jl1 2 l2j . (20)

The expression (20) is equivalent to Eq. (8) for the ca
of two nonzero eigenvalues. This completes the proof
the theorem.

Although we have proved our result only for densit
matrices with just two nonzero eigenvalues, we can rep
three pieces of evidence suggesting that the formula
may hold quite generally for a system of two qubits.

(1) For a mixture of Bell states, mixed with proba
bilities p1, . . . , p4, Bennett et al. [7] have shown that
the entanglement is equal toE scd, with c given by
maxs0, 2pmax 2 1d. But in this caseR is equal tor, so
that our expression is equal to theirs. Thus our formu
applies also to this class of density matrices, most
which are not covered by the above theorem.
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(2) Peres [8] and Horodeckiet al. [9] have provided
a test, based on partial transposition, for determini
whether a given state of two qubits has zero or nonze
E. We have applied both the Peres-Horodecki test and
own formula to several thousand randomly chosen dens
matrices and have found agreement between them in ev
case. That is, Eq. (8) gaveE . 0 if and only if the Peres-
Horodecki test indicated the presence of entangleme
which happened in roughly one-third of the cases.

(3) For each of 25 randomly chosen density matric
with nonzero entanglement, we have explored the spa
of all decompositions of the density matrix into pur
states, limiting ourselves to ensembles of four state
(The example of Bell mixtures [7] suggests that four-sta
ensembles may be sufficient.) In each case, the resul
numerically minimizing the average entanglement of th
ensemble agrees with the result predicted by our formu

If the formula turns out to be correct for all states
it will considerably simplify studies of entanglement
Questions such as whether the “distillable entangleme
is equal to the entanglement of formation [6,7], that i
whether one can extract as much entanglement as one
into the state, will presumably be easier to answer if the
is an explicit formula for the latter quantity. It is also
conceivable that our result can be generalized to syste
with larger state-spaces, such as an entangled pair
n-level atoms, though it is not clear whether there is a
structure in such spaces that would play quite the sa
role that the magic basis plays in the two-qubit case.
imagining possible generalizations, it is interesting to no
that the form ofR has much in common with the “mixed-
state fidelity” [11] of Bures, Uhlmann, and Jozsa, whic
is in no way special to two-qubit systems.

We would like to thank Charles Bennett, David Di
Vincenzo, and John Smolin for helpful and stimulatin
discussions.
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