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We present and discuss a novel approach to the direct and inverse protein folding problem. T
proposed strategy is based on a variational approach that allows the simultaneous extraction of am
acid interactions and the low-temperature free energy of sequences of amino acids. The knowled
based technique is simple and straightforward to implement even for realistic off-lattice proteins becau
it does not entail threadinglike procedures. Its validity is assessed in the context of a lattice model
means of a variety of stringent checks. [S0031-9007(98)07051-3]
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Two long-standing challenges in molecular biology a
the direct and inverse problems of protein folding [1
The first deals with the determination of the thermod
namically stable conformation of a known sequence
amino acids [2,3] while the second involves the elucid
tion of the amino acid sequence (if any) which admits
given target structure as its stable conformation [4–
One route to a solution of the direct problem requir
knowledge of the interaction potentials between the p
tein constituents—in principle one studies the energies
the sequence in various conformations and identifies
native state structure as being the one with the lowest
ergy [2]. A solution of the inverse or the sequence desi
problem entails knowledge of the free energies of the
quences [5]. This follows from an application of Boltz
mann statistics—what matters is not how low the ener
of a sequence is in the target conformation (a measure
which can be obtained from the knowledge of the inte
action potentials) but whether this energy is lower th
those in alternative conformations.

In this Letter, we introduce a variational approach fo
extracting the interaction potentials between the prote
constituents and the free energies of candidate seque
simultaneously. The method is general and applicable
real proteins. The input is a set of sequences and th
respective native structures, as available from the prot
data bank (PDB). A feature of the technique is th
alternative conformations that compete with the nati
state in housing a given sequence are not required. H
we apply this method to a lattice model of proteins
provide a stringent validation of the approach. Unlik
real proteins, the interaction potentials in such a mod
system can be chosen and one may measure the accu
with which these potentials are determined as well as
effectiveness of sequence design.

We adopt the approach of treating proteins at a me
scopic level with the amino acids being the fundamen
units. The influence of the internal degrees of freedo
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associated with each amino acid as well as the solvent
grees of freedom is incorporated through a coarse-grain
Hamiltonian with effective interactions between the amin
acids.

The free energy,FsSd, of a sequence,S, is defined from
the equation

e2bFsSd ­
X
G

e2bH sS,Gd, (1)

whereH sS, Gd is the energy ofS mounted on a conforma-
tion G and the sum is taken over all conformations that th
sequence can adopt. A rigorous solution [5] of the desi
problem on a target structureG entails the identification of
the sequence(s),S, that maximizes the functional

PGsSd ­ e2bfH sS,Gd2FsSdg, (2)

evaluated at a low temperature [below the folding tra
sition temperature wherePGsSd ­ 1y2]. PGsSd is the
probability that a sequenceS is found in conformationG
at an inverse temperatureb. Thus the solutionS is the se-
quence which has the highest low-temperature probabi
of being found onG. At low temperatures [10], a sequenc
S̄ with a uniqueground state,̄G, satisfies the inequality

HsS̄, Ḡd 2 FsS̄d # HsS, Ḡd 2 FsSd , (3)

for arbitrary sequence,S, with the equality possibly hold-
ing only whenS admitsḠ as its native state. A range o
such equalities could be used to determine optimal v
ues of variational parameters characterizing the intera
tions and the low-temperature free energies.

The maximization ofPGsSd is computationally de-
manding because it involves the calculation ofFsSd for
each amino acid sequence and an exact calculation
FsSd for a given sequenceS involves a sum over the
enormous number of its possible conformations. The u
of importance-sampling techniques for the estimation
FsSd at low T requires efficient algorithms to find confor-
mations that compete significantly withG [5]. Such an
© 1998 The American Physical Society
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approach has been used fruitfully for lattice models
proteins [8] but is not feasible for realistic off-lattice
cases [9].

FsSd formally depends only onS and hence one
may postulate a functional form ofF which depends
on sequence properties (e.g., the concentration of am
acids) [8,9]. AtT ­ 0 [10], the free energy of a sequenc
ought to be exactly equal to its energy in the native sta
conformation (which depends on the conformation an
the interaction potentials)—this forms the basis for o
variational approach. Unlike the inequalities (3), the ne
approach does not entail the mounting of a sequence
any but its own native state conformation. We defin
an intensive functionalD (whose choice is not unique),
whose minimization can be used to identify a consiste
set of potential and free energy parameters. A conveni
choice that we used in our calculations is

D ­ ē

(X
i

µ
H sSi , Gid 2 FsSid

Li

∂2

1

µ
H sSi , Gid 2 FsSid

Li

∂4

QfFsSid 2 H sSi , Gidg

)
,

(4)
where Qfxg is the Heaviside function, and the sum i
taken over the sequence-native state conformation se
the protein data bank, andLi is the length of theith
sequence. The second term in (4) is used to penalize ca
for which the parameters violate the physical constrai
H sSi , Gid $ FsSid. The quantityē is the absolute value
of the average of the interaction strengths between am
acids and its utility is explained below. A zero valu
for D would correspond to a perfect parametrizatio
of both the interaction potentials and the free energi
for the finite set of sequences in the data bank. Mo
generally, for a finite protein data bank, there will exist
nonzero region in the parameter space of potentials a
free energies within whichD is at a minimum. With
perfect parametrization, this region would be expect
to shrink around the parameter values as the data b
size increases [11]. It should be stressed that, contr
s
. The
column
ond data
ctively.
TABLE I. A summary of the results with two data banks containing 500 and 250 training proteins, respectively. In all casee1,1
was fixed at240 in order to set the energy scale. The row entitled TRUE shows the true potential parameters in both cases
other rows show the values of the extracted parameters of the potential and the free energy with the number in the first
showing the number of proteins in the training set. A single randomly chosen set was employed in each case. For the sec
bank, the folding success rate was 91%, while the unique and degenerate design success rates were 73% and 96%, respe

PDB Size e1,2 e1,3 e1,4 e2,2 e2,3 e2,4 e3,3 e3,4 e4,4 a1 a2 a3 a4

TRUE 230 220 217 225 213 210 25 22 21
100 232.63 226.80 222.71 231.57 222.71 217.76 217.76 217.75 20.00 226.50 217.44 212.60 210.39
200 232.62 225.56 223.17 230.65 223.17 216.06 214.07 25.43 20.00 226.15 217.14 212.33 211.07
300 231.27 227.91 223.29 227.91 223.17 212.61 28.50 28.50 20.00 227.17 215.62 211.83 210.87
400 231.03 227.14 223.27 227.14 222.44 212.50 26.94 26.77 20.00 227.62 215.25 211.52 210.38
500 232.23 225.93 224.12 228.55 222.78 216.40 211.79 29.13 25.21 225.63 216.49 210.53 29.55

TRUE 222 218 212 211 217 21 228 213 21
250 224.05 217.95 213.22 213.02 217.95 20.00 224.06 213.22 20.00 226.26 210.41 212.70 24.14
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to common potential extraction or design procedures, t
minimization of the functional (4) doesnot involve the
use of decoy structures nor the mounting of sequen
i on any structure other than its ground state,Gi . In
order to create a data bank, a random exploration of t
ensemble of 4-amino-acid sequences of length 16 w
performed to select those admitting a unique ground sta
conformation. The possible protein conformations wer
assumed to be self-avoiding oriented walks embedded
a square lattice [12] with an interaction between amin
acids i and j only if they are next to each other on
the lattice and yet not next to each other along th
sequence.

We chose an interaction matrix,e, between the four
different types (or classes) of amino acids. These are t
entries of the4 3 4 e matrix in the first row of Table I
(with e1,1 ­ 240).

To mimic the thermodynamic stability of proteins, we
further selected the sequences and retained only tho
with an energy gap between the unique native sta
and the first excited state energies$10, a constraint
satisfied by, roughly, 1% of the sequences. Our final da
bank consisted of 500 sequences with their ground sta
hSi , Giji­1,...,500.

In our model studies, we chose to parametrize th
interaction matrix with the same functional form as
the true interaction matrix but with nine variationa
parameters in the symmetrice matrix (e1,1 was held fixed
at a value of240 in order to set the energy scale). We
assumed the simplest form for an extensive free ener
[8,9] with four variational parameters (denoted byai,
i ­ 1 . . . 4):

FsSd ­ a1n1 1 a2n2 1 a3n3 1 a4n4 , (5)

where ni is the number of amino acids of typei found
in S. Equation (5) may be viewed as the lowest orde
expansion ofF in the “order parameters,”ni ’s.

D was minimized using a simulated annealing pro
cedure by constraining the interaction energies,ei,j ,
to satisfy the hierarchy of strengths deduced from th
2173
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frequencies of pair contacts in the data bank (the mo
frequent, the stronger). This allowed for a restriction o
the search in parameter space.

The quantityē in (4) was useful in avoiding conver-
gence to a spurious trivial solution in which all theei,j ’s
are equal toe1,1 ­ 240, andFsSd becomes (240) times
the number of contacts.

The functionalD was minimized using subsets of ou
global data bank within which the number of elemen
ranged from 100 to 500. The minimization was carrie
out using a simulated annealing algorithm. On th
average, for each elementary move,1y4 of the parameters
in H and F were varied simultaneously by adding
to each an independent random quantity picked in t
interval f2d, 1dg. At the beginningd was taken to be
of order unity and was then decreased proportionally w
the annealing temperature. The temperature was redu
in the annealing process by steps of 5% with the syste
being equilibrated at each temperature.

The extracted potentials, as well as the free ener
coefficients appear in Table I. We further checked, usi
the extracted parameters, whether each sequence in
data bank recognized the associated structure as its gro
state among all the possible conformations. The succ
rate was typically.80% with an increase in the succes
rate on increasing the size of the data bank.

We then proceeded to use the functionalsH 2 Fd to
carry out the sequence design on a target structure. T
entails the identification from among the416 sequences
the one that minimizessH 2 Fd (using the extracted
parameters) on the target structureG. The correctness
of the design is checked by using the true Hamiltonia
to verify whether the designed sequence admitsG as
its (possibly degenerate) ground state. Our test w
performed on 100 structures taken from our data ba
using a Monte Carlo procedure.

Figure 1 shows a plot of the design success rate
a function of the size of the training set. It is worth
noting that none of the designed sequences appeare
the original data bank. Our analysis was not limite
to those sequences with the lowestsH 2 Fd score; we
extended it to the ten highest ranking sequences for e
target structure. Using the parameters deduced from
training set of size 500, we found an excellent overa
design success of 88% and 92% for unique and degene
encoding, respectively.

In Fig. 2 we have plotted the histogram of thesH 2 Fd
distribution for the improperly chosen sequences (blac
and the correct ones (gray). ThesH 2 Fd score for
the improperly chosen sequences takes on large posi
values, signaling that the estimated energyF of the
sequence in its unknown native state is substantially low
than in the target structure. Thus one may discarda priori
the majority of bad solutions by a mere inspection of the
largesH 2 Fd scores. The unphysical negative values
sH 2 Fd originate from the small size of the training se
and the imperfect parametrization of the free energy. W
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FIG. 1. Plot of the success rate in identifying the sequenc
that admits a preassigned target structure as its degener
(squares) and nondegenerate (circles) ground state as a func
of the training set size. The results were obtained with a sing
randomly chosen set of each size.

also considered several generalizations of (5) includin
two-body terms of the formninj and chemical potentials
that control the number of “walls” separating segment
of identical amino acids [9] with slight improvement in
the success rates. A further check of the quality o
the designed sequences was performed by inspecting
distribution of their energy gaps versus those used
the data bank. The designed sequences tend to ha
energy gaps between the native state and the first exci
state that are larger than those of sequences in the d
bank (Fig. 3) showing that the design procedure yield
sequences with a higher thermodynamic stability.

Finally, we performed a challenging blind test to
assess the validity of the variational approach. Th
coefficients extracted for the 16-bead case were us
to carry out a sequence design on a compact targ
conformation of length 25. The target conformation wa
RRDLDRDDLULDLLURULUURDRD (where R, L,
U, andD stand for right, left, up, and down, respectively

-30.0              -10.0 10.0 30.0 50.0
H-F

0.0

50.0

100.0

FIG. 2. Distribution of the quantitysH 2 Fd for the correctly
chosen sequences (gray) and the improper sequences (black
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FIG. 3. Distribution of the energy gaps between the nativ
state and the first excited state energies for the sequen
in the data bank (gray) and designed sequences that hav
nondegenerate ground state (black).

and indicate the directions of the bonds that defin
the self-avoiding lattice conformation) which is highly
designable [13] in a different lattice model [14] and
is geometrically regular [13]. The sequence chose
was 124211324211324211324211. Indeed, an exhaus
search of the native state of the sequence among all s
avoiding walks of length 25 confirmed that this sequenc
had the target structure as its unique ground state.

In order to ensure that the strategy used here is rob
and independent of the particular choice of thee matrix
and/or data bank, we performed a similar analysis usi
another randomly generated interaction matrix and fou
results of statistically similar quality as summarized in th
bottom of Table I.

Our results show that one may define a design sco
D, that takes on small values for sequences mount
on their true native state and large positive values f
improper mounting. It is striking that the simple free
energy form as in (5) can be so effective for building
reliableD functional. A physically appealing explanation
for this is to regard the parameters in (5) as controllin
both the residue composition of the designed sequen
as well as indicating its expected ground state energ
The solution to a design problem will be provided b
the sequence(s) that meets the composition requireme
and which, when mounted on the target structure, has
energy equal to or better than the expected value. Th
the variational approach provides a feedback mechani
for design; it is self-regulating in that no external actio
is required to rule out runaway solutions favoring th
abundance of the most energetically favored contac
This self-regulating mechanism also counterbalances
improper parametrization ofH and/orF, thus decreasing
the sensitivity of the overall (H 2 F) score to the detailed
functional form ofD.

In conclusion, we have presented a novel procedure
tackling the direct and inverse folding problems simulta
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neously. The proposed strategy is general and ought to
applicable to the case of real proteins. We have discus
a practical implementation of the technique and have c
ried out rigorous testing of its efficiency in folding and
design. The results are encouraging and are suggestiv
the feasibility of a simple parametrization of the free en
ergy of sequences of amino acids.
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