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We present and discuss a novel approach to the direct and inverse protein folding problem. The
proposed strategy is based on a variational approach that allows the simultaneous extraction of amino
acid interactions and the low-temperature free energy of sequences of amino acids. The knowledge-
based technique is simple and straightforward to implement even for realistic off-lattice proteins because
it does not entail threadinglike procedures. Its validity is assessed in the context of a lattice model by
means of a variety of stringent checks. [S0031-9007(98)07051-3]

PACS numbers: 87.15.By, 64.60.Cn, 87.10.+e

Two long-standing challenges in molecular biology areassociated with each amino acid as well as the solvent de-
the direct and inverse problems of protein folding [1]. grees of freedom is incorporated through a coarse-grained
The first deals with the determination of the thermody-Hamiltonian with effective interactions between the amino
namically stable conformation of a known sequence ofcids.
amino acids [2,3] while the second involves the elucida- The free energyt'(S), of a sequencss, is defined from
tion of the amino acid sequence (if any) which admits athe equation
given target structure as its stable conformation [4-9]. B B
One route to a solution of the direct problem requires e PFE) = Z" pILED, (1)
knowledge of the interaction potentials between the pro- r

tein constituents—in principle one studies the energies ofvhereJ{ (S, I') is the energy of mounted on a conforma-
the sequence in various conformations and identifies thgon I and the sum is taken over all conformations that the
native state structure as being the one with the lowest ersequence can adopt. A rigorous solution [5] of the design
ergy [2]. A solution of the inverse or the sequence desigiproblem on a target structuiéentails the identification of

problem entails knowledge of the free energies of the sethe sequence(sy, that maximizes the functional
quences [5]. This follows from an application of Boltz-

mann statistics—what matters is not how low the energy
of a sequence is in the target conformation (a measure @yaluated at a low temperature [below the folding tran-
which can be obtained from the knowledge of the inter-sijtion temperature wher@r(S) = 1/2]. Pr(S) is the
action potentials) but whether this energy is lower tharprobability that a sequencgis found in conformatior”
those in alternative conformations. at an inverse temperatu Thus the solutiors is the se-

In this Letter, we introduce a variational approach forquence which has the highest low-temperature probability
extracting the interaction potentials between the proteif being found or”. At low temperatures [10], a sequence
c.onsi[ituents ?nd :[I'hhe free ﬁngfgies of czlalndigate ?_eqlé?ncﬁlvith auniqueground statel", satisfies the inequality
simultaneously. e method is general and applicable to - = < -
real proteins. The input is a set of sequences and their H(S.T) = F(S) = H(S.T) = F(S), (3)
respective native structures, as available from the proteifor arbitrary sequences, with the equality possibly hold-
data bank (PDB). A feature of the technique is thating only whenS admitsI" as its native state. A range of
alternative conformations that compete with the nativesuch equalities could be used to determine optimal val-
state in housing a given sequence are not required. Herges of variational parameters characterizing the interac-
we apply this method to a lattice model of proteins totions and the low-temperature free energies.
provide a stringent validation of the approach. Unlike The maximization ofPr(S) is computationally de-
real proteins, the interaction potentials in such a modemmanding because it involves the calculation F(fS) for
system can be chosen and one may measure the accuraach amino acid sequence and an exact calculation of
with which these potentials are determined as well as th&'(S) for a given sequencé involves a sum over the
effectiveness of sequence design. enormous number of its possible conformations. The use

We adopt the approach of treating proteins at a mesasf importance-sampling techniques for the estimation of
scopic level with the amino acids being the fundamentalF(S) at low T requires efficient algorithms to find confor-
units. The influence of the internal degrees of freedommations that compete significantly with [5]. Such an

Pr(S) = e—ﬁ[ﬂ(S,F)—F(S)]’ 2)
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approach has been used fruitfully for lattice models ofto common potential extraction or design procedures, the
proteins [8] but is not feasible for realistic off-lattice minimization of the functional (4) doesot involve the
cases [9]. use of decoy structures nor the mounting of sequence
F(S) formally depends only onS and hence one i on any structure other than its ground stakg, In
may postulate a functional form of which depends order to create a data bank, a random exploration of the
on sequence properties (e.g., the concentration of aminensemble of 4-amino-acid sequences of length 16 was
acids) [8,9]. AtT = 0[10], the free energy of a sequence performed to select those admitting a unique ground state
ought to be exactly equal to its energy in the native stateonformation. The possible protein conformations were
conformation (which depends on the conformation andassumed to be self-avoiding oriented walks embedded on
the interaction potentials)—this forms the basis for oura square lattice [12] with an interaction between amino
variational approach. Unlike the inequalities (3), the newacids i and j only if they are next to each other on
approach does not entail the mounting of a sequence dhe lattice and yet not next to each other along the
any but its own native state conformation. We definesequence.
an intensive functionalA (whose choice is not unique), We chose an interaction matrix, between the four
whose minimization can be used to identify a consistentifferent types (or classes) of amino acids. These are the
set of potential and free energy parameters. A convenier@ntries of the4 X 4 e matrix in the first row of Table |

choice that we used in our calculations is (with €;; = —40).
H(S;.T)) — F(S)\2 To mimic the thermodynamic stability of proteins, we
A= ‘{Z( = : > further selected the sequences and retained only those
i L with an energy gap between the unigue native state
H (S, T, — F(S)H\* and the first excited state energieslO, a constraint
+ < I > O[F(S;) — H(Si.T)];,  satisfied by, roughly, 1% of the sequences. Our final data

bank consisted of 500 sequences with their ground state,
SR i
where O[x] is the Heaviside function, and the sum is |n our model studies, we chose to parametrize the
taken over the sequence-native state conformation set jAteraction matrix with the same functional form as
the protein data bank, and; is the length of theith  the true interaction matrix but with nine variational
sequence. The second term in (4) is used to penalize casggrameters in the symmetricmatrix (e;,; was held fixed
for which the parameters violate the physical constraintat a value of—40 in order to set the energy scale). We
H (S;,T:) = F(S;). The quantitye is the absolute value assumed the simplest form for an extensive free energy
of the average of the interaction strengths between aming,9] with four variational parameters (denoted by,
acids and its utility is explained below. A zero value; =1 ... 4):
for A would correspond to a perfect parametrization
of both the interaction potentials and the free energies F(S) = ainy + axny + azny + agny, (5)
for the finite set of sequences in the data bank. More
generally, for a finite protein data bank, there will exist awhere r; is the number of amino acids of typefound
nonzero region in the parameter space of potentials and S. Equation (5) may be viewed as the lowest order
free energies within whichA is at a minimum. With expansion ofF in the “order parametersyi;’s.
perfect parametrization, this region would be expected A was minimized using a simulated annealing pro-
to shrink around the parameter values as the data bardedure by constraining the interaction energies;,
size increases [11]. It should be stressed that, contratp satisfy the hierarchy of strengths deduced from the

TABLE I. A summary of the results with two data banks containing 500 and 250 training proteins, respectively. In a#;gases

was fixed at—40 in order to set the energy scale. The row entitled TRUE shows the true potential parameters in both cases. The
other rows show the values of the extracted parameters of the potential and the free energy with the number in the first column
showing the number of proteins in the training set. A single randomly chosen set was employed in each case. For the second data
bank, the folding success rate was 91%, while the unique and degenerate design success rates were 73% and 96%, respectively.

PDB Size €, €13 €14 €22 €23 €24 €33 €34 €44 ai a as aq
TRUE -30 —20 —-17 —25 —13 —10 -5 -2 -1
100 —32.63 —26.80 —22.71 —31.57 —2271 —-17.76 —17.76 —17.75 —0.00 —-26.50 —17.44 —12.60 —10.39
200 —32.62 —2556 —23.17 —30.65 —23.17 —16.06 —14.07 —-543 —-0.00 -26.15 —17.14 —1233 —11.07
300 —31.27 —-2791 -2329 —-2791 -23.17 —1261 -850 -850 —0.00 —27.17 —15.62 —11.83 —10.87
400 —31.03 —27.14 —2327 —27.14 —2244 —1250 —-694 —-6.77 —0.00 —27.62 —1525 —11.52 —10.38
500 —32.23 —2593 —24.12 —28.55 —22.78 —1640 —11.79 —9.13 —-521 —2563 —1649 —10.53 —9.55
TRUE —22 —18 —12 —11 —17 —1 —28 —-13 —1
250 —2405 —-1795 —-1322 —13.02 —-1795 —-0.00 -—24.06 —1322 —-0.00 -2626 —1041 —1270 —4.14
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frequencies of pair contacts in the data bank (the more 100.0
frequent, the stronger). This allowed for a restriction of J.

,,,,,,,,,,,,,,,,,,,,,,,, . e me
the search in parameter space. 90.0 L - i
The quantitye in (4) was useful in avoiding conver- o ’
gence to a spurious trivial solution in which all teg;’s > 200 | o 7
are equal tae;; = —40, andF(S) becomes {40) times g ' B
the number of contacts. 2
The functionalA was minimized using subsets of our & 700 | 7
global data bank within which the number of elements& .
ranged from 100 to 500. The minimization was carried 60.0 F . ® Non-degenerate -
out using a simulated annealing algorithm. On the T ™ Degenerate
average, for each elementary movg4 of the parameters 50.0 ‘ ‘ ‘
100 200 300 400 500

in H and F were varied simultaneously by adding
to each an independent random quantity picked in the
interval[— 8, +8]. At the beginnings was taken to be FIG. 1. Plot of the success rate in identifying the sequence
of order unity and was then decreased proportionally witHhat adm)'ts j‘ pre(;;ls&gnedt tazrgetl St)rUCt”re g a? t'ts deg;anertate
: uares) and nonaegenerate (Circies) grouna state as a runction

f[he anneallng. temperature. The tempeorature was reduc the training set size. The results were obtained with a single
in jthe anng_almg process by steps of 5% with the systerindomly chosen set of each size.
being equilibrated at each temperature.

The extracted potentials, as well as the free energy
coefficients appear in Table I. We further checked, using ) o ) )
the extracted parameters, whether each sequence in tA&0 considered several generalizations of (5) including
data bank recognized the associated structure as its groufo-Pody terms of the form; nj antj chemical potentials
state among all the possible conformations. The succedgat control the number of “walls” separating segments
rate was typically>80% with an increase in the success Of identical amino acids [9] with slight improvement in

We then proceeded to use the functiofdll — F) to the designed sequences was performed by inspecting the
carry out the sequence design on a target structure. Thfistribution of their energy gaps versus those used in
entails the identification from among thé® sequences the data bank. The designed sequences tend to have
the one that minimizesH — F) (using the extracted €Nergy gaps between the native state and the first excited
of the design is checked by using the true HamiltoniarP@nk (Fig. 3) showing that the design procedure yields
to verify whether the designed sequence adnfitas Sedquences with a higher thermodynam_|c stat_)|l|ty.
its (possibly degenerate) ground state. Our test was Finally, we performed a challenging blind test to
performed on 100 structures taken from our data banRSsess the validity of the variational approach. The
using a Monte Carlo procedure. coefficients extracted for the 16-bead case were used

Figure 1 shows a plot of the design success rate g Carry out a sequence design on a compact target
a function of the size of the training set. It is worth conformation of length 25. The target conformation was
noting that none of the designed sequences appeared fRRPLDRDDLULDLLURULUURDRD (where R, L,
the original data bank. Our analysis was not limitedV, @ahdD stand for right, left, up, and down, respectively,
to those sequences with the lowd& — F) score; we
extended it to the ten highest ranking sequences for each
target structure. Using the parameters deduced from the
training set of size 500, we found an excellent overall 1000 | 8
design success of 88% and 92% for unique and degenerate
encoding, respectively.

In Fig. 2 we have plotted the histogram of tfi¢ — F)
distribution for the improperly chosen sequences (black)
and the correct ones (gray). Th& — F) score for 500
the improperly chosen sequences takes on large positive
values, signaling that the estimated enerfyof the
sequence in its unknown native state is substantially lower
than in the target structure. Thus one may dis@apdiiori 0.0 —. =
the majority of bad solutions by a mere inspection of their -30.0 -10.0 100 30.0 50.0
large(H — F) scores. The unphysical negative values of HoF

(H — F) originate from the small size of the training set FiG. 2. Distribution of the quantityf — F) for the correctly
and the imperfect parametrization of the free energy. Wehosen sequences (gray) and the improper sequences (black).
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60 neously. The proposed strategy is general and ought to be
applicable to the case of real proteins. We have discussed
a practical implementation of the technique and have car-
ried out rigorous testing of its efficiency in folding and
design. The results are encouraging and are suggestive of
the feasibility of a simple parametrization of the free en-
ergy of sequences of amino acids.
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