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We propose an experimental scheme for testing nonlocality of a correlated two-mode quantum st
light. We show that the correlation functions violating the Bell inequalities in the proposed experim
are equal to the joint two-modeQ function and the Wigner function. This assigns a novel operation
meaning to these two quasidistribution functions in tests of quantum nonlocality and also establish
direct relationship between two intriguing aspects of quantum mechanics: the nonlocality of entan
states and the noncommutativity of quantum observables, which underlies the nonclassical struct
the phase-space quasidistribution functions. [S0031-9007(99)08691-3]
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A fundamental step providing a bridge between classi
and quantum physics has been given by Wigner in the fo
of a quantum mechanical phase-space distribution:
Wigner function [1]. From the pioneering work of Weyl
Wigner, and Moyal, it follows that the noncommutativit
of quantum observables leads to a real abundance
different-in-form quantum mechanical phase-space qua
distributions. This provided a milestone step towards
c-number formulation of quantum effects in phase spa
and led to the development of efficient theoretical tools
various fields of modern physics [2].

Because of Einstein, Podolsky, and Rosen [3], follow
by the seminal contribution of Bell [4], the meaning o
quantum reality and quantum nonlocality has become
central issue of the modern interpretation and understa
ing of quantum phenomena [5]. Concepts such as ent
glement and quantum nonlocality have generated a r
flood of theoretical work devoted to various connectio
of the quantum description with different views or repre
sentations of the quantum formalism.

Despite all of these theoretical works a direct link b
tween various phase-space distributions and the nonlo
ity of quantum mechanics has been missing. In seve
works [6,7] the quantum phase space has been treate
a model for a hidden variable theory, and the incompa
bility of quantum mechanics with local theories has be
discussed in connection with the nonpositive character
the Wigner function. However, no direct link betwee
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these two aspects of quantum theory has been found,
it has been argued that these two issues are, in fact, ra
loosely connected [7].

It is the purpose of this Letter to assign a direct role
phase-space quasidistribution functions in demonstrat
quantum nonlocality. We propose an experimental test
nonlocal effects in phase space. The quantum entan
ment will be represented by an arbitrary correlated state
light, which refers to two spatially separated modes of t
electromagnetic field. We show that the proposed expe
ment establishes a direct relationship between quant
nonlocality and the positive phase-spaceQ function, as
well as the nonpositive Wigner function. We demonstra
that for a certain class of experiments these two qua
probability distributionsarenonlocal correlation functions
violating Bell’s inequalities. This result assigns a nov
operational meaning to these quasidistribution function

In this Letter we propose a photon counting experime
which leads directly to a measurement that is described
the phase-spaceQ function or the Wigner function. We
show that these functions are given by joint photon cou
correlations and as such can be used to test local realism
the form of Bell’s inequalities. Our approach is differen
from all the previous discussions involving the relation
quantum nonlocality and the phase-space quasiprobab
distributions. To the best of our knowledge, no such dire
relation between various phase-space quasidistributi
and the nonlocality of quantum correlations has ever be
© 1999 The American Physical Society 2009
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satisfactorily established. The general character of t
scheme proposed in this Letter allows one to test
arbitrary entangled state of light. Moreover, the measur
photon count correlations revealing the nonlocality hav
a natural theoretical description in terms of phase-spa
quasidistribution functions.

The link of quantum nonlocality to theQ function is
a rather striking result, since this particular distributio
function is positive everywhere, which has been consi
ered as a loss of quantum properties due to simultaneo
measurement of canonically conjugated observables.

The setup to demonstrate quantum nonlocality in th
phase space is presented in Fig. 1. For concreteness,
will take the source of the correlated state of light to be
single photon impinging onto a50:50 beam splitter. We
label the outgoing modesa and b. From the following
discussion it will be obvious that the same scheme c
be used to test the nonlocal character of any correlat
state of modesa and b and that the corresponding
Wigner andQ functions will play the same operationa
role of nonlocal correlations. The quantum state of o
exemplary source, written in terms of the outgoing mode
is of the form analogous to the singlet state of two spin
1y2 particles [8]:

jCl ­
1

p
2

sj1laj0lb 2 j0laj1lbd . (1)

We will now demonstrate how nonlocality of this state i
revealed by the Wigner and theQ functions.

Each of the measuring apparatuses in our setup cons
of a photon counting detector preceded by a beam split
with the power transmissionT . The second input port of
the beam splitter is fed with a highly excited coheren
state jgl. As is known [9], in the limit T ! 1 and
g ! `, the effect of the beam splitter is described by th
displacement operator̂Ds

p
1 2 T gd with the parameter

equal to the amplitude of the reflected part of the cohere
state. In the following, we will assume that this limit
describes sufficiently well the measuring apparatuses.

The first type of the measurement we will consider
the test for the presence of photons. This is a more rea
tic case, as the most efficient detectors available curren
for single-photon level light, namely, the avalanche phot
diodes operating in the Geiger mode, are not capable
resolving the number of photons that triggered the outp
signal. This type of measurement is described by a p
of two orthogonal projection operators depending on th
coherent displacementa ­

p
1 2 T g:

Q̂sad ­ D̂sad j0l k0jD̂ysad ,

P̂sad ­ D̂sad
X̀
n­1

jnl knjD̂ysad ,

(2)

which satisfy the completeness relation:

Q̂sad 1 P̂sad ­ '̂ . (3)
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In the following, we will use the indicesa andb to refer
to the two apparatuses.

In contrast to the standard approach, we will be inte
ested in events whenno photonswere registered. Let us
assign1 to no-count events and0 otherwise. This estab-
lishes a strict analogy with two-particle coincidence e
periments, where each of the spatially separated analyz
provides a binary outcome. The role of adjustable p
rameters of the analyzers is now played by coherent d
placementsa andb. Consequently, all Bell inequalities
derived for a measurement of local realities bounded
0 and 1 can be applied to test the nonlocal character
correlations obtained in our setup.

The joint quantum mechanical probability of no-coun
events simultaneously in both the detectors is

Qabsa, bd ­ kCjQ̂asad ≠ Q̂bsbd jCl

­
1
2

ja 2 bj2e2jaj22jbj2

, (4)

where a and b are coherent displacements for th
modesa andb, respectively. The probabilities on singl
detectors are

Qasad ­ kCjQ̂asad ≠ '̂bjCl ­
1
2

sjaj2 1 1de2jaj2

,

Qbsbd ­ kCj'̂a ≠ Q̂bsbd jCl ­
1
2

sjbj2 1 1de2jbj2

.

(5)

The measurement is now performed for two settings
the coherent displacement in each of the apparatuses:

FIG. 1. The optical setup proposed to demonstrate quant
nonlocality in phase space. The exemplary source of nonc
sical correlated radiation is a single photon incident on a50:50
beam splitter, which generates a quantum singletlike state. T
measuring devices are photon counting detectors preceded
beam splitters. The beam splitters have the transmission c
ficient close to one and strong coherent states injected into
auxiliary ports. In this limit, they effectively perform coher
ent displacementŝDasad and D̂bsbd on the two modes of the
input field.



VOLUME 82, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 8 MARCH 1999

If
)

his
ave
ter

er
c-
ho-

has
pair

on

on
the
he
s of
ur

or:

t

e

s
s
by

he
or a for modea and zero orb for modeb. From the
resulting four different correlation functions we build th
Clauser-Horne combination [10]:

C H ­ Qabs0, 0d 1 Qabsa, 0d 1 Qabs0, bd

2 Qabsa, bd 2 Qas0d 2 Qbs0d , (6)

which for local theories satisfies the inequality21 #

C H # 0. We will take the coherent displacements t
have equal magnitudesjaj2 ­ jbj2 ­ J and an arbitrary
phase differenceb ­ e2iwa. For these values we obtain

C H ­ 21 1 J e2J 2 2J e22J sin2 w . (7)

As depicted in Fig. 2, this result violates the lowe
bound imposed by local theories. The violation is mo
significant for the phasew which minimizes the last
term in Eq. (7). This takes place when the cohere
displacements have opposite phasesb ­ 2a.

The only measurement that is required to demonstr
the nonlocality of this state requires single and join
registration ofno photons. When the state is not shifted
this measurement is described by the projection on t
vacuum statej0l. Furthermore, application of a coheren
displacementD̂sad is equivalent to the projection on a
coherent statejal. And here comes the most striking
link of the quantum nonlocality with the phase-spac
quasidistribution:Qabsa, bd is consequently equal, up to
a multiplicative constant1yp2, to the joint Q function
of the statejCl. The operatorQ̂sad, defined above,
represents a projection on a coherent statejal, and the
correlation function is

Qabsa, bd ­ jka, b j Clj2, (8)

where ja, bl ­ jala ≠ jblb . The probabilities of no-
count events on single detectors are given by margin
Q functions:

FIG. 2. The plot of the Clauser-Horne combination defined
Eq. (6) as a function of the intensity of coherent displacemen
J ­ jaj2 ­ jbj2, for opposite phasesb ­ 2a. The dotted
line indicates the lower bound imposed by local theories.
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Qasad ­ kajTrbsjCl kCjd jala ,

Qbsbd ­ kbjTrasjCl kCjd jblb .
(9)

Thus, we now clearly see that theQ function contains
direct information on nonlocal quantum correlations.
a four-point combination of the type given in Eq. (6
violates the inequality0 # C H # 1, this immediately
certifies the nonlocal properties of the quantum state. T
definition has an obvious operational meaning, as we h
discussed an experiment in which the nonlocal charac
of theQ function can be tested [11].

In order to give an operational meaning to the Wign
function, we will now consider the case when the dete
tors are capable of resolving the number of absorbed p
tons. Let us assign to each event11 or 21, depending
on whether an even or an odd number of photons
been registered. This measurement is described by a
of projection operators:

P̂s1dsad ­ D̂sad
X̀
k­0

j2kl k2kjD̂ysad , (10)

P̂s2dsad ­ D̂sad
X̀
k­0

j2k 1 1l k2k 1 1jD̂ysad . (11)

Using these projections, we construct the correlati
function between the outcomes of the apparatusesa and
b. It has a clear analogy to spin or to photon polarizati
joint measurements: the spin value is replaced by
parity of the registered number of photons, and t
coherent displacements correspond to the orientation
the polarizers. The correlation function measured in o
scheme is given by the expectation value of the operat

P̂absa, bd ­ fP̂s1d
a sad 2 P̂s2d

a sadg

≠ fP̂s1d
b sbd 2 P̂

s2d
b sbdg , (12)

and, as we will show, it is proportional to the join
two-mode Wigner function of the statejCl. This link
becomes obvious if we rewritêPabsa, bd to the form

P̂absa, bd ­ D̂asadD̂bsbd s21dn̂a1n̂b D̂y
a sadD̂y

b sbd ,
(13)

showing that the correlation function is given by th
displaced parity operators21dn̂a1n̂b , which is one of
equivalent definitions of the Wigner function [12]. It i
a striking result that the nonlocality in a dichotomou
correlation measurement in our setup is given directly
the phase-space Wigner function of the statejCl.

An easy calculation yields the expectation value of t
operatorP̂absa, bd over the statejCl:

Pabsa, bd ­ kCjP̂absa, bd jCl

­ s2ja 2 bj2 2 1de22jaj222jbj2

. (14)

Now we consider the combination [13]:

B ­ Pabs0, 0d 1 Pabsa, 0d 1 Pabs0, bd 2 Pabsa, bd
(15)
2011



VOLUME 82, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 8 MARCH 1999

ese
o
ed
g
e

ing

le
-
e
i-
nd
le

z-
ce-
of
x-
nd

it-
ate
x-
ical
in
se
nt

t
y
ji

nt

s
r-

m
,

tt.

t.
FIG. 3. The plot of the combination defined in Eq. (15
as a function of the magnitude of coherent displacemen
parametrized withJ ­ jaj2 ­ jbj2, for b ­ 2a. The dotted
line indicates the lower bound imposed by local theories.

for which local theories impose the bound22 # B # 2.
Again we will take equal magnitudes of the coherent dis
placementsjaj2 ­ jbj2 ­ J and a certain phase differ-
ence between themb ­ e2iwa. Then the combinationB
takes the form

B ­ 21 1 s4J 2 2de22J 2 s8J sin2 w 2 1de24J ,
(16)

which, as shown in Fig. 3, for sufficiently small intensi-
tiesJ violates the lower bound of the inequality impose
by local theories. As before, the strongest violation
obtained forw ­ py2, i.e., when the coherent displace
ments have opposite phases.

It is now an interesting question whether the nonloca
ity of the Wigner function exhibited in the proposed ex
periment is connected to its nonpositivity. The Wigne
function of the statejCl, containing only one photon, is
not positive definite and exhibits the nonlocal charact
of quantum correlations. The nonlocal character of th
phase-space function is directly measured in an expe
ment involving a detection that resolves the number
absorbed photons. However, it should be pointed out th
the above measurement for an incoherent mixture of t
two components forming the statejCl leads to a joint cor-
relation equal tos2jaj2 1 2jbj2 2 1de22jaj222jbj2

. Note
that this joint correlation is the Wigner function of the in-
coherent mixture. This function is not positive definite
but it does not exhibit any quantum interference effec
and as a result the Bell inequality is not violated in thi
case. This shows that the nonpositivity of the Wigne
function does not automatically guarantee violation of lo
cal realism [14].

In conclusion, we have demonstrated that phase-spa
quasidistribution functions, the Wigner function and th
Q function, carry explicit information on nonlocality of
2012
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entangled quantum states. This is due to the fact that th
two quasiprobability distributions directly correspond t
nonlocal correlation functions which can be measur
in a class of photon counting experiments involvin
application of coherent displacements. In addition, th
discussed setup provides a new method for measur
directly the two-mode quasidistribution functions.

In this Letter attention was focused on the princip
linking quasidistribution functions with quantum nonlo
cality, which provides a novel operational meaning of th
former. A realistic analysis of a photon counting exper
ment should take into account detector inefficiencies a
dark counts [15]. On the other hand, it should be possib
to improve the performance of the experiment by optimi
ing the controllable parameters such as coherent displa
ments and by selecting carefully the two-mode source
nonclassical radiation. A complete discussion of all e
perimental aspects would require much more space a
will be presented elsewhere.

Finally, let us recall that the past several years have w
nessed fascinating advances in the field of quantum st
reconstruction, which, in particular, provided feasible e
perimental schemes for measuring quantum mechan
quasidistribution functions [16]. The results presented
this Letter suggest an exciting route of applying the
novel methods in the studies of quantum entangleme
exhibited by optical systems.

This research was partially supported by Komite
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