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Testing Quantum Nonlocality in Phase Space
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We propose an experimental scheme for testing nonlocality of a correlated two-mode quantum state of
light. We show that the correlation functions violating the Bell inequalities in the proposed experiment
are equal to the joint two-mod@ function and the Wigner function. This assigns a novel operational
meaning to these two quasidistribution functions in tests of quantum nonlocality and also establishes a
direct relationship between two intriguing aspects of quantum mechanics: the nonlocality of entangled
states and the noncommutativity of quantum observables, which underlies the nonclassical structure of
the phase-space quasidistribution functions. [S0031-9007(99)08691-3]

PACS numbers: 03.65.Bz, 42.50.Dv

A fundamental step providing a bridge between classicathese two aspects of quantum theory has been found, and
and quantum physics has been given by Wigner in the fornit has been argued that these two issues are, in fact, rather
of a quantum mechanical phase-space distribution: theosely connected [7].

Wigner function [1]. From the pioneering work of Weyl, It is the purpose of this Letter to assign a direct role to

Wigner, and Moyal, it follows that the noncommutativity phase-space quasidistribution functions in demonstrating
of quantum observables leads to a real abundance ofuantum nonlocality. We propose an experimental test of
different-in-form quantum mechanical phase-space quasionlocal effects in phase space. The quantum entangle-
distributions. This provided a milestone step towards ament will be represented by an arbitrary correlated state of
c-number formulation of quantum effects in phase spacdight, which refers to two spatially separated modes of the

and led to the development of efficient theoretical tools inelectromagnetic field. We show that the proposed experi-
various fields of modern physics [2]. ment establishes a direct relationship between quantum

Because of Einstein, Podolsky, and Rosen [3], followechonlocality and the positive phase-spa@efunction, as
by the seminal contribution of Bell [4], the meaning of well as the nonpositive Wigner function. We demonstrate
quantum reality and quantum nonlocality has become ¢hat for a certain class of experiments these two quasi-
central issue of the modern interpretation and understangbrobability distributionsare nonlocal correlation functions
ing of quantum phenomena [5]. Concepts such as entawiolating Bell's inequalities. This result assigns a novel
glement and quantum nonlocality have generated a realperational meaning to these quasidistribution functions.
flood of theoretical work devoted to various connections In this Letter we propose a photon counting experiment
of the quantum description with different views or repre-which leads directly to a measurement that is described by
sentations of the quantum formalism. the phase-spac@ function or the Wigner function. We

Despite all of these theoretical works a direct link be-show that these functions are given by joint photon count
tween various phase-space distributions and the nonlocatorrelations and as such can be used to test local realism in
ity of quantum mechanics has been missing. In severahe form of Bell's inequalities. Our approach is different
works [6,7] the quantum phase space has been treated fiem all the previous discussions involving the relation of
a model for a hidden variable theory, and the incompatiquantum nonlocality and the phase-space quasiprobability
bility of quantum mechanics with local theories has beerdistributions. To the best of our knowledge, no such direct
discussed in connection with the nonpositive character ofelation between various phase-space quasidistributions
the Wigner function. However, no direct link between and the nonlocality of quantum correlations has ever been
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satisfactorily established. The general character of thén the following, we will use the indices andb to refer
scheme proposed in this Letter allows one to test amo the two apparatuses.
arbitrary entangled state of light. Moreover, the measured In contrast to the standard approach, we will be inter-
photon count correlations revealing the nonlocality haveested in events whemo photonswere registered. Let us
a natural theoretical description in terms of phase-spacassignl to no-count events an@l otherwise. This estab-
quasidistribution functions. lishes a strict analogy with two-particle coincidence ex-
The link of quantum nonlocality to th@ function is  periments, where each of the spatially separated analyzers
a rather striking result, since this particular distributionprovides a binary outcome. The role of adjustable pa-
function is positive everywhere, which has been considrameters of the analyzers is now played by coherent dis-
ered as a loss of quantum properties due to simultaneoysacementsyr and 3. Consequently, all Bell inequalities
measurement of canonically conjugated observables.  derived for a measurement of local realities bounded by
The setup to demonstrate quantum nonlocality in th& and 1 can be applied to test the nonlocal character of
phase space is presented in Fig. 1. For concreteness, werrelations obtained in our setup.
will take the source of the correlated state of light to be a The joint quantum mechanical probability of no-count
single photon impinging onto 80:50 beam splitter. We events simultaneously in both the detectors is

label the outgoing modes and 5. From the following ——at ® O ¥
discussion it will be obvious that the same scheme can Qap(@, B) = (V1Qu(@) ® O, (B) V)
be used to test the nonlocal character of any correlated _ 1 la — Blze—|a|2—|3|2 (4)
state of modese and b and that the corresponding 2 ’

Wigner andQ functions will play the same operational where o and 8 are coherent displacements for the
role of nonlocal correlations. The quantum state of ourmodesa andb, respectively. The probabilities on single
exemplary source, written in terms of the outgoing modesgdetectors are

is of the form analogous to the singlet state of two spin-

N A 1 lal?
1/2 particles [8]: Oula) = (¥]|Qu(a) ® 1,|¥) = > (lal? + Dele,
1 5)
—_ — A A 1 _ 2

> =75 (Dal0 = 10)clL)s). @ 0,(8) = (¥lia ® 0B W) = S (I8P + De 4.
We will now demonstrate how nonlocality of this state is 1he measurement is now performed for two settings of
revealed by the Wigner and ti@ functions. the coherent displacement in each of the apparatuses: zero

Each of the measuring apparatuses in our setup consists

of a photon counting detector preceded by a beam splitter 10)
with the power transmissiofi. The second input port of f)a(a)
the beam splitter is fed with a highly excited coherent 1
state |y). As is known [9], in the limit7T — 1 and 1) / D
v — oo, the effect of the beam splitter is described by the

displacement operatdd(~/1 — T y) with the parameter

equal to the amplitude of the reflected part of the coherent )
state. In the following, we will assume that this limit
describes sufficiently well the measuring apparatuses.
The first type of the measurement we will consider is
the test for the presence of photons. This is a more realis-
tic case, as the most efficient detectors available currently Is)
for single-photon level light, namely, the avalanche photo- b (8) / 1b
diodes operating in the Geiger mode, are not capable of b /
resolving the number of photons that triggered the output
signal. This type of measurement is described by a pair U
of two orthogonal projection operators depending on the
coherent displacemeat = /1 — T v: FIG. 1. The optical setup proposed to demonstrate quantum
. . . nonlocality in phase space. The exemplary source of nonclas-
O(a) = D(a)|0)(0lD(a), sical correlated radiation is a single photon incident di9&0
% (2) beam splitter, which generates a quantum singletlike state. The
P . At measuring devices are photon counting detectors preceded b
Pla) D(a),; ) (nlD* (@), beam spl%ters. The beallom splitters hav% the transmﬁssion coef}/
ficient close to one and strong coherent states injected into the
which satisfy the completeness relation: auxiliary ports. In this Iimit,Athey effectively perform coher-
. . R ent displacement®,(«) and D,(B) on the two modes of the
O(a) + Pla)=1. (3) input field.
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or « for modea and zero or8 for modeb. From the Qu(a) = {a|Tr,(|¥)(¥]) |a), , ©
resulting four different correlation functions we build the .
Clauser-Horne combination [10]: 0p(B) = (BITra (1L} CYD 1B -

Thus, we now clearly see that th@ function contains
CH = 0uw(0,0) + Qup(@.,0) + Qus(0, B) direct information on nonlocal quantum correlations. If
— Qu(a, B) — 04(0) — 0,(0), (6) a four-point combination of the type given in Eq. (6)
violates the inequality) = CH = 1, this immediately
certifies the nonlocal properties of the quantum state. This
definition has an obvious operational meaning, as we have
discussed an experiment in which the nonlocal character
of the Q function can be tested [11].
CH=-1+JeJ —2Jesirte. @) In order to give an operational meaning to the Wigner
function, we will now consider the case when the detec-
tors are capable of resolving the number of absorbed pho-
tons. Let us assign to each event or —1, depending
on whether an even or an odd number of photons has

tgrm in Eq. (7). This tak_es place when the COheren[)een registered. This measurement is described by a pair
displacements have opposite phages —a. of projection operators:

The only measurement that is required to demonstrate "
the nonlocality of this state requires single and joint A (+) _ A At
registration ofno photons When the state is not shifted, a) D(a),;)|2k> kD% (@), (10)
this measurement is described by the projection on the A * R
vacuum staté0). Furthermore, application of a coherent ~ 117(a) = D(a) D 2k + 1)(2k + 1]1DY(a). (11)
displacementD(«) is equivalent to the projection on a k=0
coherent statda). And here comes the most striking Using these projections, we construct the correlation
link of the quantum nonlocality with the phase-spacefunction between the outcomes of the apparatusasd
quasidistribution:0,,(a, B) is consequently equal, up to 5. It has a clear analogy to spin or to photon polarization
a multiplicative constant /72, to the joint O function  joint measurements: the spin value is replaced by the
of the state|¥). The operatorQ(«), defined above, parity of the registered number of photons, and the
represents a projection on a coherent state and the coherent displacements correspond to the orientations of
correlation function is the polarizers. The correlation function measured in our

Ous(a, B) = Ka, BV, ®) scheme iAs given by theA ((ei()pectatioAn(v;allue of the operator:

where |a, 8) = |a), ® |8),. The probabilities of no- Wap(a, p) = [, "(@) — 1, (a)]
count events on single detectors are given by marginal ® [ﬁﬁ,ﬂ(ﬁ) - f[ﬁ,_)([g’)], (12)
0 functions:

which for local theories satisfies the inequalityl =
CH = 0. We will take the coherent displacements to
have equal magnitudéa|> = |8|*> = J and an arbitrary
phase differenc@ = ¢*¢a. For these values we obtain

As depicted in Fig. 2, this result violates the lower
bound imposed by local theories. The violation is mos
significant for the phaser which minimizes the last

and, as we will show, it is proportional to the joint
two-mode Wigner function of the staf@). This link
becomes obvious if we rewritH ,;, («, 8) to the form

My (cr, B) = Du(@)Dy(B) (1) ™Dl (a)D] (B),
(13)

showing that the correlation function is given by the
displaced parity operatof—1)"*# which is one of
equivalent definitions of the Wigner function [12]. It is
a striking result that the nonlocality in a dichotomous
correlation measurement in our setup is given directly by
the phase-space Wigner function of the state.

An easy calculation yields the expectation value of the
operatorll,;(a, B) over the stat¢¥):

0.0 05 1.0 L5 2.0 25 3.0 Map(a. B) = (Wlap (. B) 1¥) . .
J = Qla = BI> — De AF2BE (1)

FIG. 2. The plot of the Clauser-Horne combination defined inNow we consider the combination [13]:

Eqg. (6) as a function of the intensity of coherent displacements,, _
J = lal> = |BI?, for opposite phaseg = —a. The dotted B = M (0.0) + Mop(@.0) + Mep(0. B) — Map(a. B)
line indicates the lower bound imposed by local theories. (15)
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entangled quantum states. This is due to the fact that these
two quasiprobability distributions directly correspond to
nonlocal correlation functions which can be measured
in a class of photon counting experiments involving
application of coherent displacements. In addition, the
discussed setup provides a new method for measuring
directly the two-mode quasidistribution functions.

In this Letter attention was focused on the principle
linking quasidistribution functions with quantum nonlo-
cality, which provides a novel operational meaning of the
former. A realistic analysis of a photon counting experi-
ment should take into account detector inefficiencies and
dark counts [15]. On the other hand, it should be possible

00 02 04 06 08 10 12 14 16 18 20 to improve the performance of the experiment by optimiz-
J ing the controllable parameters such as coherent displace-
FIG. 3. The plot of the combination defined in Eq. (15) ments an_d by Se_le_Cting carefully the t.WO_que source of
as a function of the magnitude of coherent displacement§ionclassical radiation. A complete discussion of all ex-
parametrized with] = |a|> = |B|?, for 8 = —a. The dotted perimental aspects would require much more space and
line indicates the lower bound imposed by local theories. will be presented elsewhere.
Finally, let us recall that the past several years have wit-
nessed fascinating advances in the field of quantum state
for which local theories impose the boundd = B =< 2. reconstruction, which, in particular, provided feasible ex-
Again we will take equal magnitudes of the coherent disperimental schemes for measuring quantum mechanical
placementda|®> = |B|> = J and a certain phase differ- quasidistribution functions [16]. The results presented in
ence between theid = ¢?¢a. Then the combinatio®  this Letter suggest an exciting route of applying these
takes the form novel methods in the studies of quantum entanglement
_ _ _ -2J _ : _ —47 exhibited by optical systems.
B L+ (@] =2 BT si @ — De™™, This research was partially supported by Komitet
(16) Badan Naukowych, Grant No. 2P03B 089 16, and by
which, as shown in Fig. 3, for sufficiently small intensi- Stypendium Krajowe dla Miodych Naukowcow Fundaciji
ties J violates the lower bound of the inequality imposedna rzecz Nauki Polskie;.
by local theories. As before, the strongest violation is
obtained fore = 7 /2, i.e., when the coherent displace-
ments have opposite phases.
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