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Calculations of energy levels of single-hole and two-hole states in a GaAs/Al0.3Ga0.7As parabolic quantum
dot have been performed with a multiband effective-mass method. Both the valence-band degeneracy and the
Coulomb interaction are taken into account using the axial approximation for the bulk band structure. The
variational problem is solved with an iterative relaxation technique which allows us to use a large number of
basis functions. The valence-band mixing is shown to be substantial and the Coulomb interaction between the
holes leads to a resonant tunneling energy that is~in general! nonlinear with respect to the strength of the
confinement potential. It is found that at sufficiently large confinement potentials, both the single-hole and
two-hole ground states are changed from primarily heavy-hole-like to light-hole-like.

I. INTRODUCTION

Recent progress in nanofabrication technology has made
it possible to make individual quantum dots.1 These struc-
tures confine electrons~or holes! in all three spatial dimen-
sions and are sometimes referred to as artificial atoms. Quan-
tum dots grown as nanocrystallites usually have a spherical
shape and a steplike confinement potential. In such prepara-
tion processes several dots are created and the interaction
between individual dots may be important. This complication
can be circumvented with the use of modern lithographic
techniques. Through a series of masking and etching steps it
is possible to make a single quantum dot starting with a
quantum-well heterostructure. The resulting dot then typi-
cally has a disklike shape with a lateral confinement potential
~from band bending! that to a good approximation is
parabolic.2 In such quantum dots the gate potential of the dot
can be controlled at will, giving unprecedented control of the
number of electrons on the dot. The spectroscopic study of
these nanostructures has been facilitated by the recent devel-
opment of techniques that allow the measurement of energy
levels of a single quantum dot containingN
(N51,2,3,. . . ) electrons.3,4 Few-electron systems in quan-
tum dots have been considered theoretically by several
authors.5–9The early study by Bryant emphasized the impor-
tance of electron-electron correlations, as the confinement
energy and Coulomb energies are comparable in magnitude.
As opposed to larger dots with many electrons, these small
dots can consequently not be described semiclassically in
terms of single-particle energies plus a constant charging en-
ergy to account for the Coulomb interaction. The theoretical
studies have therefore employed a full numerical diagonal-
ization, taking the Coulomb energy fully into account. These
studies have been numerically demanding and limited to just
a few electrons~Kumar, Laux, and Stern9 treated up to 10
electrons self-consistently within the Hartree approxima-
tion.!

Despite the complex energy structure of the parabolic

quantum dots, the far-infrared~FIR! absorption spectrum
turned out to be remarkably simple; dominated by only two
peaks and being essentially independent of the number of
electrons on the dot and the electron-electron interaction. It
was shown that this was a consequence of the parabolic con-
finement potential, which allows for the separation of the
center-of-mass and relative motion. As the dipole field only
couples to the center-of-mass motion, the FIR absorption ex-
periments see only features at the single-particle energies.
This is the generalized Kohn’s theorem to our
knowledge.6,7,10–12

In the present work we consider a parabolic quantum dot
containing holes rather than electrons. Although to our
knowledge no experimental work is yet reported for such
dots, it is expected that they will have more interesting fea-
tures as Kohn’s theorem is violated due to the strong mixing
between the valence bands13–15and the effect of interparticle
correlation on the energy levels can be probed experimen-
tally. In our work we study a GaAs quantum dot, prepared
from a GaAs/Al0.3Ga0.7As @001# quantum well. Whereas
disklike quantum dots containing electrons to a good ap-
proximation can be considered as two dimensional, this is
not the case if the dot is occupied by holes. The~relatively!
small splitting between the heavy- and light-hole bands
makes it necessary to include several subbands in the treat-
ment. ~The effect of the finite width of the quantum well is
further enhanced by the holes’ smaller Bohr radius compared
to electrons.! In our study we consequently take into account
several subbands. Furthermore, the effect of thefinite barrier
height is accounted for in an approximate way. Expanding
the wave function in a large basis we calculate variationally
the low-lying energy levels for a parabolic quantum dot con-
taining one or two holes. While the single-hole problem can
be treated using a standard numerical diagonalization tech-
nique, we use instead an iterative relaxation technique for the
two-hole problem because of the large number of basis func-
tions needed.

In Sec. II we present the model used and construct appro-

PHYSICAL REVIEW B 15 JANUARY 1996-IVOLUME 53, NUMBER 3

530163-1829/96/53~3!/1507~10!/$06.00 1507 © 1996 The American Physical Society



priate basis functions for the single- and two-hole problem. A
brief account of the calculation problem is given in Sec. III.
The numerical results are presented in Sec. IV for the single-
hole and two-hole cases separately. A short summary is fi-
nally left for Sec. V.

II. GENERAL THEORY

This section contains the theoretical background for the
problem and is divided into three parts. First we present the
Hamiltonian used, then we construct appropriate basis states
for the single-hole and two-hole problem.

A. Model

Bulk GaAs has the symmetry of the tetrahedral point
groupTd . In these zinc-blende crystals the valence states are
p like and transform as theG5 representation ofTd , whereas
thes5 1

2 spinor transforms likeG6 . The spin-orbit interaction
is diagonal in the direct-product space of these representa-
tions. Since group theory gives thatG53G65G71G8 we see
that the spin-orbit interaction splits the sixfold degenerate
valence-band edge into aG8 and aG7 state. TheG8 states are
fourfold degenerate atk50, while splitting into the twofold
Kramer’s degenerate heavy- and light-hole bands for non-
zerok. TheG7 states correspond to the split-off band, which
is twofold degenerate atk50. The direct-product basis~spin-
orbit coupled basis! is such that the angular momentum
J5L1Sand its projection along thez axis are diagonal. The
p-like valence states haveL51, giving J5 3

2 or J5 1
2. The

former is theG8 quadruplet, the latter theG7-like split-off
band. In GaAs the split-off band lies an energy 0.35 eV
below theG8 states atk50, and it is therefore a good ap-
proximation to assume that these states are completely de-
coupled from theG8 quadruplet. We will therefore ignore the
split-off band in our treatment of the hole states.

In the limit of decoupled split-off band, the hole is pic-
tured as a spin-32 particle with four componentsj z5( 32,

1
2,

2 1
2,2

3
2). In the effective-mass approximation the kinetic en-

ergy of the hole is then described in this basis by the 434
Kohn-Luttinger Hamiltonian16

HKL5
\2

2m0 FHh R S 0

R* Hl 0 S

S* 0 Hl 2R

0 S* 2R* Hh

G , ~1!

where17

Hh5~g11g2!~kx
21ky

2!1~g122g2!kz
2 ,

Hl5~g12g2!~kx
21ky

2!1~g112g2!kz
2 ,

R52A3g3ik2kz , ~2!

S5A3gk2
2 1A3mk1

2 ,

and

k52 i¹,

~3!

k65kx6 iky .

As usualg1 ,g2 , and g3 are the Luttinger parameters and
g5 1

2(g21g3),m5 1
2(g22g3). We have neglected the small

linear terms in the Kohn-Luttinger Hamiltonian that are
present because GaAs lacks inversion symmetry.

The quantum-well potential in thez direction is due to the
offset between the valence-band edges in the well and barrier
materials. The presence of the quantum well lowers the sym-
metry of the problem fromTd to D2d . This symmetry-
reduction results in a splitting of the heavy- and light-hole
states atk50. We model this by a finite potential well of
width w:

V'~z!5H DEv, uzu>w/2

0, uzu,w/2.
~4!

The lateral confinement potential is parabolic, viz.,

Vi~r!5
1

2
Kr2 ~5!

in cylindrical coordinates. HereK is a constant measuring
the strength of the potential. The hole-hole interaction is
modeled by a statically screened Coulomb potential:

V~r1 ,r2!5
e2

4peur22r1u
. ~6!

To simplify the calculations without substantial loss of accu-
racy we will adopt the axial approximation,18 which in the
present model amounts to puttingm50. The axial approxi-
mation corresponds to ignoring the cubic terms that are not
axially symmetric about thez axis. The accuracy of the axial
model can be assessed by the smallness~relative to 1! of the
parameterd5(g32g2)/g1 . For GaAs d50.11. Since in
general the warping terms are second order ind, the axial
approximation should be well justified in GaAs. Other stud-
ies also confirm this conclusion.19 Having presented the
Hamiltonian for the problem we now go on to construct basis
states appropriate for the variational calculation.

B. Single-hole basis

With only one hole in the quantum dot the Hamiltonian is

H5HKL1Vi~r!1V'~z!. ~7!

In the Kohn-Luttinger representation the single-hole wave
function is expressed as

c~r !5(
j z

F j z~r !u 32 , j z&, ~8!

where j z56 3
2,6

1
2, u 32, j z& is the ~spin-orbit coupled! band-

edge Bloch function, andF(r ) is the envelope function.
Since the confinement potential has cylindrical symmetry the
envelopes will have a definite angular momentum. Define
therefore atotal angular momentumF as

F5J1L , ~9!

whereJ is the angular momentum of the Bloch function and
L the envelope angular momentum. In the axial approxima-
tion Fz is a constant of the motion and it is possible to find
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simultaneous eigenstates of the HamiltonianH andFz . We
label the eigenstates ofH by f z ~a good quantum number!
and states with differentf z will not be coupled by the
Hamiltonian.20 A general hole state can consequently be
written as

c~r !5(
j z

F j z~r,z!eif~ f z2 j z!u 32 , j z&. ~10!

Next we must find a suitable basis appropriate for the
expansion of the hole envelopes. If band mixing is neglected
(R5S50) the Kohn-Luttinger Hamiltonian becomes diago-
nal and the heavy- and light-hole states become uncoupled.
This diagonal problem is separable in an in-plane and a sub-
band part whose solution is of the form

fnls~r !5Fnl~r,f! f s~z!, ~11!

whereFnl(r,z) is the 2D harmonic oscillator andf s(z) the
sth subband function. Explicitly the eigenfunctions of the 2D
oscillator can be written in cylindrical coordinates as

Fnl~r,f!5Cnl~ ir! u l ue2r2/2a2eilfLn
u l u~r2/a2!. ~12!

HereLn
l is the generalized Laguerre polynomial and the nor-

malization constantCnl is given in Appendix A. We have
introduced the characteristic frequencyv5A(g11g2)K and
lengtha25\v/K of the harmonic potential, both defined in
terms of the heavy-hole mass. The energy levels of the 2D
oscillator are then

Enl5~2n1u l u11!\v. ~13!

As a convenient basis set for the subband states we choose
simple trigonometric functions,21 viz.,

f s~z!5A2

W
sinFspS z1

W

2 D YWG . ~14!

Strictly speaking this set is only complete on the interval
@2W,W# ~which would be the situation if we put hard walls
atz56W). But for relatively large offsets the wave function
will decay rapidly inside the barrier material. IfW is chosen
large enough to cover the dominant region of wave-function
penetration the errors in neglecting the tale of the wave func-
tion will be exponentially small. The expansion widthW
could furthermore be treated as another variational param-
eter. However, in most cases the dominant energy term is the
subband energy, and in this case a good first estimate ofW
can be obtained by minimizing the energy for the lowest
subband. This optimum value is given by the equation

w

W
5
VOff

2p2 @11cos~pw/W!#, ~15!

where VOff52mw2DEv /\
2, w is the actual width of the

quantum well, andm is the mass of the subband in question.
In the limit of strong confinement the optimum expansion
widthW is only slightly larger than the quantum well width
w, to first order given as

W5w~112/VOff
1/2!. ~16!

When more subbands are included in the basis the optimum
expansion width should of course be increased. Having
found the appropriate basis set we expand the hole wave
function as

c f z
65 (

j z ,n,s
C~n,s, j z!fn, f z2 j z ,s

~r !u 32 , j z&, ~17!

for states with even~1! or odd (2) parity and total angular
momentum f z . The twofold Kramer’s degeneracy is still
present of course: States with6 f z have the same energy. We
will label the states~17! by the smallest in-plane angular
momentum (u l u) present in the expansion, indexed byf z .
Thus, states with ans-like envelope will be labeledSfz,

p-like asPfz
, etc.

Note that since we expand the in-plane solutions in terms
of the heavy-hole~HH! oscillator states the light-hole~LH!
block of the Kohn-Luttinger Hamiltonian is not diagonal in
this basis. We could have chosen to expand the heavy- and
light-hole states in two different oscillator sets, but such an
approach would have led to matrix elements between oscil-
lator sets of different masses. In the present formulationall
matrix elements can be calculated analytically. For the sub-
band states this is trivial due to the simple trigonometric
form of the basis set. For the in-plane contribution this is
accomplished by exploiting the fact that the off-diagonal
termsR and S in the Kohn-Luttinger Hamiltonian act as
raising and lowering operators for the 2D oscillator levels.
All off-diagonal matrix elements can consequently be found
by simple algebraic means. The same method is used to cal-
culate the light-hole matrix elements within the heavy-hole
basis. A complete account of the operator relations needed to
do this is given in Appendix A.

C. Two-hole basis

We now consider two holes in the quantum dot. The
Hamiltonian for this problem reads

H5HKL~1!1HKL~2!1Vi~r1!1Vi~r2!

1V'~z1!1V'~z2!1V~1,2!, ~18!

in obvious notation. The Coulombic hole-hole interaction
only affects the envelope part~in the effective-mass approxi-
mation! so a general state can be written,

C~r1 ,r2!5 (
j z , j z8

F jz , j z8~r1 ,r2!u
3
2 , j z&u

3
2 , j z8&. ~19!

Since the single-hole basis~11! allowed us to calculate all
single-hole matrix elements analytically, we choose to ex-
pand the two-hole envelopes in products of single-hole
states:

F~r1 ,r2!5 (
n,n8

C~n,n8!fn~r1!fn8~r2!. ~20!

Heren formally represents the set of quantum numbers for
the hole andf is the single-hole envelope.

The Coulomb interaction is invariant with respect to si-
multaneous rotations of both holes. Using again the axial
approximation in the single-hole Hamiltonians the two-hole
eigenstates will have a definite total angular momentum in
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the z direction. The Bloch part contributes now an angular
momentumJz5 j z1 j z8 so a state with total angular momen-
tum Fz has an orbital momentumLz5Fz2Jz . Since
Lz5 l z1 l z8 we have in general infinitely many single-hole
envelopes contributing. To keep the basis finite we must
therefore takeu l u< lmax.

To comply with the exclusion principle the expansion co-
efficientsC(n,n8) must be antisymmetrized with respect to
particle interchange. In the analogous electron problem,
where spin-orbit interaction is negligible, the two-electron
wave function can be classified as either singlet or triplet
since the spatial and spin part separate. In the two-hole prob-
lem, however, such a separation is in general no longer pos-
sible due to the strong spin-orbit coupling and the compli-
cated nature of the valence band.

By construction our product basis allows us to calculate
all single-hole matrix elements analytically. The Coulomb
potential is the only term that couples the two holes. With a
little algebra the matrix elements of the Coulomb interaction
can be related to a small number of one-dimensional inte-
grals that are easily done numerically.~See Appendix B.!
Furthermore, the Coulomb interaction is diagonal in both
spin and total orbital angular momentum space. Conse-
quently, it only couples states with the sameu 32, j z&u

3
2, j z8& and

Lz .

III. COMPUTATIONAL DETAILS

In this section we give a brief account of the computa-
tional methods used to solve the variational problem. It is
well known that the minimization of the energy with respect
to the expansion coefficients translates into a matrix eigen-
value problem. For the single-hole problem a standard diago-
nalization technique, which provides all eigenvectors and ei-
genvalues, is applicable. This is simply because the number
of basis functions needed is in general relatively small. In the
axial approximation it is more preciselyN 1543N3S,
whereN andS are the number of oscillator states and sub-
band states included in the basis. So for most practical pur-
poses a basis containing, say, 100 states is adequate.

The two-hole problem on the other hand is much more
computationally demanding and requires a different ap-
proach. With the two-hole basis in Eq.~20! we see that the
number of basis functions is nowN 2.(2lmax11)N 1

2 . To
account for important correlations we need to takelmax52,
which means thatN 2 very quickly becomes beyond both
computational and storage capacity of present-day computers
using a brute-force diagonalization technique. Insisting on a
method that is both simple to implement and still capable of
handling such a large basis we turn instead to an iterative
relaxation technique.

In terms of the imaginary-time parametert5 i t , the
t-dependent Schro¨dinger equation can be written

2\
]C

]t
5HC. ~21!

In a variational approach we expandC(t) in the basisfn
for a given symmetry:

C~t!5(
n

cn~t!fn . ~22!

The solutions of~21! will now relax towards the lowest-
energy state such that whent→`,

C~t!.(
n

cn~t!fn.C0e
2E0t/\ ~23!

is the best variational estimate to the ground stateC0 .
The method gives the variational energy exactly only for

infinitely slow relaxation. With a small, but finite time step
Dt, the expansion coefficients follow the first-order dynam-
ics

cn~t1Dt!5cn~t!2
Dt

\ (
k

^nuHuk&ck~t!. ~24!

The relaxation technique is particularly useful in the present
case as the action of the Hamiltonian on the state vector can
be easily calculated. Because the Hamiltonian can be sepa-
rated into a sum of single-particle Hamiltonians plus the mu-
tual Coulomb interaction term that is block diagonalized by
the total angular-momentum states, the action of the Hamil-
tonian on the state vector involved becomes much simpler.
There is no need to store the entire Hamiltonian matrix. In
the actual calculation we only store the one-dimensional in-
tegrals that enter into the calculation of the matrix elements
of the Coulomb potential. The method is equivalent to the
Lanczos method for solving a sparse matrix. However, the
relaxation method is easier to implement.

From the dynamics of Eq.~24! we see that if the initial-
state vector is chosen with a symmetry that corresponds to an
irreducible representation ofH, the state vector retains this
symmetry during the relaxation process. Excited states with
different symmetry from the ground state can therefore be
found along the same lines as described above.

In the calculation the number of iterations varies with the
choice of the initial wave function. The program iterates until
the difference in energy between successive iterations is
smaller than a prescribed tolerance~say, 0.001 meV!. For the
very first value of\v it takes as many as 2000 iterations to
reach the tolerance. However, for the next value the previous
state vector is used as the initial guess, and typically 100
iterations will suffice. So the smaller the spacing of\v is
used, the smaller the number of iterations is needed.

IV. RESULTS AND DISCUSSION

In this section we present the results of the numerical
calculations. We use the material parameters for GaAs listed
in Ref. 22:

g156.85, g252.1, g352.9, e513.18. ~25!

As we have already tailored our subband basis to the case of
strong confinement in the growth direction we will ignore the
mismatch between the Luttinger parameters in the GaAs well
and the AlxGa12xAs barrier. The advantage of this approxi-
mation is that it avoids the cumbersome matching of the
multicomponent wave function at the interface between two
dissimilar materials. As long as the wave-function penetra-
tion into the barrier material is small, this approach should be
well justified.

The depth of the quantum well is determined by the offset
between the valence-band edges in the dot and the barrier
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materials. For the GaAs/AlxGa12xAs interface we use the
division 65/35 of the band-gap discontinuity between the
conduction band and the valence band. The valence-band
offset can then be estimated from the formula

DEv50.35DEg~x!, ~26!

whereDEg(x) is the difference in band gaps fork50 be-
tween GaAs and AlxGa12xAs. For x,0.45 we take
DEg(x)51247x meV. Focusing on alloys withx50.3 we
thus obtain a valence-band offsetDEv5130 meV.

In Fig. 1 the in-plane hole dispersion of a 100-Å-wide
GaAs/Al0.3Ga0.7As @001# quantum well is shown along the
@100# direction. The result with and without the axial ap-
proximation is plotted. We recognize the electronlike disper-
sion of the light-hole subband near the zone center and note
that the axial approximation works very well. In the figure
we also introduce the labeling of the states, viz., HH’s and
LH’s, wheres refers to thesth subband. A few of the lowest
subband edges are listed in Table I. A strict classification of
states as heavy hole or light hole should be done on the basis
of their in-plane dispersion, and not on the quantum number

f z being6 3
2 or 6 1

2.
23 However, here we still use the termi-

nology that HH~LH! refers to the subband whose wave func-
tion is dominated by the32 (

1
2! component near the zone cen-

ter. Away from the zone center, the dominant component for
a given subband may change as a result of band mixing. In
this and the other figures we use the hole picture in which the
energy scale is turned upside down, and we measure all en-
ergies relative to the valence band edge in bulk.

A. Single-hole energies

We want first to study the effect of the parabolic confine-
ment potential on the single-hole states. Experiments on few-

FIG. 1. The in-plane dispertion relation of a GaAs/
Al 0.3Ga0.7As @001# quantum well of thickness 100 Å and valence-
band offsetDEv5130 meV shown as a function of the wave vector
K100. The solid lines are the results based on the full Kohn-
Luttinger Hamiltonian, while the dashed lines are obtained using
the axial approximation.

FIG. 2. ~a! Energy levels of the symmetry stateS3/2
1 as a function

of the confinement potential\v. The quantum-well thickness is
100 Å and the valence-band offsetDEv5130 meV. The axial ap-
proximation is used in this and all subsequent figures. Note that no
levels cross.~b! Energy levels~solid lines! as in ~a! with some
uncoupledlevels indicated by the dotted lines.

TABLE I. The lowest subband energies for a valence-band off-
setDEv5130 meV. The quantum-well widthw is given in Å, all
energies are in meV.

w HH1 LH1 HH2 HH3 LH2

100 6.52 20.36 25.87 57.27 76.99
150 3.20 10.89 12.76 28.58 42.78
200 1.89 6.75 7.57 16.99 26.79
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electron systems in parabolic quantum dots suggests that the
confinement potential\v typically lies in the range 1210
meV. However, as no experimental data on holes in parabolic
quantum dots are available, we allow the confinement poten-
tial to vary in a slightly larger interval. This will also allow
us to make some predictions about the energy levels in the
strong confinement regime.

Figure 2~a! shows some low-lying energy levels for the
S3/2

1 states. As the coupled levels of the same symmetry are
forbidden to cross we see that the intersubband couplings
result in strong anticrossing of the levels. In the weak con-
finement limit,\v→0, the levels approach the HH1, LH1,
HH2, and HH3 subband edges of the quantum well. When
the strength of the potential is increased and the confinement
energy becomes comparable to the subband splitting the lev-
els couple strongly, resulting in nonlinear dependence on
\v. Approaching the strong confinement limit the levels re-
gain a linear behavior, but they are still coupled. In the weak
~strong! confinement limit only theR (S) coupling term in
the Kohn-Luttinger Hamiltonian is relevant.24 Furthermore,
levels with the same linear slope will be parallel in the strong
confinement limit, only shifted by a subband energy. For
small confinement energy (\v,0.5 meV!, the energies of

the states derived from the LH1 and HH3 subbands are
found to first decrease and then increase as\v increases.
This is due to the fact that these hole subbands have negative
effective masses at the zone center and their subband mini-
mum is away from the zone center~see Fig. 1!, and we have
used a finite number of oscillator states in the expansion. If
an infinite number of oscillator states is used, we expect that
all energy levels will approach the subband minimum~rather
than the subband edge! as\v→0. Thus our results are con-
vergent only for\v.0.3 meV. Below that more oscillator
states are needed in the calculation. However, since the cor-
rect results are already known for\v50 ~which are exactly
the subband energies!, these results can be obtained simply
by interpolation between the\v50 and\v50.3 meV val-
ues.

Figure 2~b! is an enlarged version of Fig. 2~a! for
\v,10 meV and the energy levels obtained without the
off-diagonal coupling terms~dotted lines!. Comparing the
coupled and uncoupled levels in Fig. 2~b!, we find that the
effect of band coupling is quite evident. Without band cou-
pling, all energy levels increase linearly with\v, whereas
the inclusion of band coupling makes some of the low-lying
energy levels increase nonlinearly with\v. For the ground
state, although the energy appears to increase linearly, it has
a smaller slope than the corresponding uncoupled level as a
result of band coupling: According to the variational prin-
ciple the coupling terms always lower the energy, giving the
level aweakerdependence on the confinement potential than
the corresponding uncoupled level.

Figure 3 displays the lowest energy levels for five differ-
ent symmetries, viz.,S3/2

1 , S1/2
1 , P5/2

1 , D7/2
1 , andF9/2

1 . We
notice that theS3/2

1 ~and D7/2
1 ) state appears to be almost

linear in \v, whereas theS1/2
1 state crosses theS3/2

1 state at
\v.37.7 meV and it replaces theS3/2

1 state as the ground
state. The key to understanding the behavior in Fig. 3 is
given in Table II where we show how various states are
coupled in the axial approximation. From Table II we see
that in the strong-confinement limit theS3/2

1 state will be
~mostly! heavy-hole-like, whereas theS1/2

1 state will be light-
hole-like. The bulk heavy-~light-! hole state has a heavy
~light! effective mass in thez direction and a light~heavy!
effective mass in the in-plane direction. The confinement ef-
fect due to the quantum well causes a larger energy shift for
the light-hole state than for the heavy-hole state, while the
in-plane confinement effect due to the quantum dot parabolic
potential causes the opposite effect. The crossover from a
heavy-hole-like ground state to a light-hole-like ground state

FIG. 3. The lowest energy levels for the five different symme-
triesS3/2

1 , S1/2
1 , P5/2

1 , D7/2
1 , andF9/2

1 . The quantum well is the same
as in Fig. 2. The light-hole-likeS1/2

1 state replaces the heavy-hole-
like S3/2

1 state as the ground state for\v>37.7 meV.

TABLE II. Subband and angular momentum states that are coupled by the off-diagonal terms in the
Kohn-Luttinger Hamiltonian. We only list the lowest subband state; all higher subband states with the same
parity are also coupled.

S3/2
1 S1/2

1 P5/2
1 D7/2

1 F9/2
1

Subband l Subband l Subband l Subband l Subband l

HH1 0 HH2 -1 HH2 1 HH1 2 HH2 3
LH2 1 LH1 0 LH1 2 LH2 3 LH1 4
LH1 2 LH2 1 LH2 3 LH1 4 LH2 5
HH2 3 HH1 2 HH1 4 HH2 5 HH1 6
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is thus associated with a crossover from quasi-two-
dimensional~2D! to quasi-1D behavior. It is now also evi-
dent why theS3/2

1 level displays the most linear behavior.
This state is~mostly! HH1-like in both the weak- and strong-
confinement limits. The same almost linear behavior can be

found ~for the same reason! for all the statesLL13/2
(2)L , e.g.,

S3/2
1 ,P5/2

2 ,D7/2
1 , etc. This is exemplified in Fig. 4 where we

plot the odd-parity statesS3/2
2 , S1/2

2 , P5/2
2 , D7/2

2 , andF9/2
2 .

We see that the statesP5/2
2 and F9/2

2 are almost linear. The
S1/2

2 state is the lowest odd-parity state for sufficiently low
\v, it crosses theS3/2

2 state at\v.26 meV to become the
second lowest, and it eventually crosses theS3/2

2 state again
~at \v.214 meV, not shown in the figure!, so the lowest
odd-parity state also becomes light-hole-like in the strong-
confinement limit.

We end this section by concluding that the levels show in
general a nonlinear dependence on the confinement potential.
Even in the limit of weak and strong confinement, where the
levels are almost linear, the intersubband couplings cannot be
entirely neglected.

B. Two-hole energies

We now consider two holes in the quantum dot. Including
both the off-diagonal coupling terms in the Kohn-Luttinger
Hamiltonian and the Coulomb interaction we have a de-
manding numerical problem. To accurately describe the two-
hole system in the product basis~20! we include, for each
hole, the three lowest subbands with the correct parity. In the
lateral directions we use the 30 lowest oscillator states for
each hole, corresponding to the different angular states with
l50,61,62. The total basis then consists of 9792 different
functions with even parity and 9648 functions with odd par-
ity. This is sufficient to give the energy~relative to the com-
puted band edge! within less than 0.2 meV, except possibly

in the extreme weak-confinement limit where a larger num-
ber of oscillator states is needed. However, in this limit the
exact energy is already known; with no confinement poten-
tial the energy is simply twice the lowest subband energy. We
make therefore no attempt to numerically calculate the two-
hole energy for confinement energies below 0.5 meV and
focus instead on more confined states.

To test the flexibility of our basis we have performed two
mutually independent tests. First, we calculated the energy of
theS0

1 state without the Coulomb interaction and the particle
statistics. We then obtained twice the single-hole energy
found in Sec. IV A for theS3/2

1 state. Second, we calculated
the two-hole energy in the extreme 2D limit. In this limit a
single-band theory is applicable, and our results checked
with those of Merkt, Huser, and Wagner6 who calculated the
energy of two electrons in a 2D parabolic quantum dot.

In Fig. 5 we plot the lowest two-hole energy~thin solid
line! for theS0

1 state as a function of the confinement energy
for a 100-Å-wide quantum well. From the first-order esti-
mate in Eq.~16!, based on only one subband, the expansion
width follows asW5117 Å. Since we include three sub-
bands, the actual expansion width used in the calculation is
taken asW5123 Å. In the figure we have also included, for
comparison purposes, the results without the off-diagonal
terms in the Kohn-Luttinger Hamiltonian~dashed line!, as
well as the energy of two noninteracting holes~dotted line!.
The exact solution always lies within these two limits. The
importance of the coupling terms is evident as they lower the
energy substantially. This effect is even more prominent for
the other symmetries, since the dominant contribution to the
two-hole stateS0

1 comes from the~almost uncoupled! single-

FIG. 4. Same as Fig. 3, but for the lowest energy levels with
symmetryS3/2

2 , S1/2
2 , P5/2

2 , D7/2
2 , andF9/2

2 . The two lowest states,
S3/2

2 andS1/2
2 , which cross at\v.25.2 meV also cross at a higher

energy (\v.214 meV, not shown in the figure!. The lowest energy
level is thus light-hole-like in the strong-confinement limit.

FIG. 5. The two-hole ground-state energy~thin solid line! for
the stateS0

1 for a 100-Å-wide quantum well with a valence-band
offsetDEv5130 meV. The energy is calculated using the relaxation
method and the axial approximation. The dashed line is obtained
ignoring all off-diagonal terms in the Kohn-Luttinger Hamiltonian,
hence using a one-band model. Ths dotted line is the energy of two
noninteracting holes~including the off-diagonal couplings in the
Kohn-Luttinger Hamiltonian!. The thick solid line is the resonant
tunneling energyER as defined in Eq.~27!.

53 1513ENERGY LEVELS OF ONE AND TWO HOLES IN PARABOLIC . . .



hole statesS63/2
1 for these values of the confinement poten-

tial. As we know from the single-hole treatment, the effect of
the coupling terms increases with increasing confinement,
and the same trend is seen for the two-hole energy. From the
figure we also notice that the effect of the Coulomb interac-
tion is in general nonlinear with respect to the confinement
potential. Consequently, the total energy cannot be written as
a sum of single-particle energies plus aconstantCoulomb
charging energy. To see this more clearly we define the reso-
nant tunneling energy for the dotER as

ER5E~N52!2E~N51!, ~27!

i.e., the energy difference with one and two holes in the dot.
Figure 5 also includes a plot ofER as a function of the
confinement energy~thick solid line!. The second hole can
tunnel into the dot when the Fermi energy of the reservoir
coincides with the two-hole energy level of the dot. The reso-
nant tunneling energy is thus a measure of the gate potential
needed to accomplish this. As expectedER increases mono-
tonically with the confinement potential, and is almost linear
in the strong confinement limit~where the Coulomb potential
can be considered as a perturbation!.

For completeness we end this section by presenting in
Fig. 6 the lowest two-hole states corresponding to the sym-
metriesS0 andS1 for states of even and odd parity~see Table
III !. All states correspond to the ground state~lowest energy
state! for the selected symmetry. The ordering of the two-
hole levels in Fig. 6 can be understood qualitatively on the
basis of the single-hole analysis in the previous subsection.
For sufficiently weak-confinement potential we see from
Figs. 3 and 4 that the ordering~increasing in energy! of the
single-hole levels isS3/2

1 andS1/2
2 . In this limit the two lowest

two-hole states would thus beS0
1 and S1

2 , respectively.

However, in the strong-confinement regime of Figs. 3 and 4
the ordering of the single-hole levels is changed toS1/2

1 and
S3/2

1 . The lowest two-hole states would now beS0
1 and

S1
1 . The crossing of the statesS1

2 andS1
1 is seen in Fig. 6 at

\v.21.5 meV. We also notice that althoughS0
1 is always

the ground state, the stateS1
1 is close in energy around

\v.41 meV. This is not surprising since the primary com-
ponents of these two-hole states,S3/2

1 andS1/2
1 , are degener-

ate in energy at\v.37.7 meV, where the corresponding
one-hole states cross~see Fig. 3!. We note that the two-hole
stateS0

1 is changed from a product of primarily heavy-hole
like states in the weak-confinement limit to a product of
primarily light-hole like states in the strong confinement
limit.

V. SUMMARY

We have studied in this work single- and two-hole states
in a parabolic quantum dot. The effect of the off-diagonal
terms in the Kohn-Luttinger Hamiltonian has been clarified
and shown to be non-negligible. The Coulomb interaction
between the holes leads in general to a resonant tunneling
energy that is nonlinear with respect to the dots confinement
potential. Similar nonlinear behavior was also found for elec-
trons in the calculations by Johnson and Payne.26

The quantum dots studied in this paper were taken to be
100 Å wide. The dots considered experimentally in Ref. 3
were slightly wider, typically in the range 150–200 Å. From
Table I we see that for such quantum dots the heavy-and
light-hole splitting atk50 is drastically lowered, and the
importance of the off-diagonal coupling terms is even greater
than in the present case. Furthermore, the confinement po-
tential required to change the symmetry of the ground state is
substantially reduced.
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APPENDIX A: OPERATOR RELATIONS FOR THE 2D
HARMONIC OSCILLATOR

The wave functionsun,l & of the 2D harmonic oscillator
can be written in cylindrical coordinates as

FIG. 6. The lowest two-hole energies for the four different sym-
metriesS0

1 , S0
2 , S1

1 , andS1
2 . The quantum well is the same as in

Fig. 5. As explained in the text the levelsS1
2 and S1

1 cross at
\v.21.5 meV due to the inverted ordering of the single-hole states
S3/2

1 andS1/2
1 . For the same reason the two statesS0

1 andS1
1 are

energetically close at\v;41 meV, butS0
1 is always the ground

state.

TABLE III. The various single-hole product states that couple to
form the two-hole states in Fig. 6. Only the contribution from the
S-like ~i.e., l50! single-hole envelopes is listed.

S0
1 S0

2 S1
1 S1

2

S3/2
1 S23/2

1 S3/2
1 S23/2

2 S3/2
1 S21/2

1 S3/2
1 S21/2

2

S3/2
2 S23/2

2 S3/2
2 S23/2

1 S3/2
2 S21/2

2 S3/2
2 S21/2

1

S1/2
1 S21/2

1 S1/2
1 S21/2

2 S1/2
1 S1/2

1 S1/2
1 S1/2

2

S1/2
2 S21/2

2 S1/2
2 S21/2

1 S1/2
2 S1/2

2 S1/2
2 S1/2

1
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Fnl~r,f!5Cnl~ ir! u l ue2r2/2a2eilfLn
u l u~r2/a2!, ~A1!

with the normalization constant

Cnl5A n!

p~n1u l u!! S 1aD
u l u11

. ~A2!

We have chosen a specific phase to simplify the operator
relations. In cylindrical coordinates the operator
k65kx6 iky takes the form

k652 ie6 ifS ]

]r
6
i

r

]

]f D . ~A3!

Using the properties of the Laguerre polynomial it can be
shown that whenl.0

ak1un,l &5Anun21,l11&1An1 l11un,l11&,

ak2un,l &5An11un11,l21&1An1 l un,l21&.

For l,0 we have

ak1un,l &5An2 l un,l11&1An11un11,l11&,

ak2un,l &5An2 l11un,l21&1Anun21,l21&,

and finally for l50

ak1un,0&5Anun21,1&1An11un,1&,

ak2un,0&5An11un,21&1Anun21,21&.

These are the relations needed to calculate the off-diagonal
terms in the Kohn-Luttinger Hamiltonian.

To calculate the matrix elements of the light-hole diagonal
elements we use that

Hl
i5Hh

i 2
\2

m0
g2k1k2 , ~A4!

whereH i refers to the in-plane part only. The effect of the
operatork1k2 now follows directly, and its matrix elements
can be calculated analytically.

APPENDIX B: COULOMB MATRIX ELEMENTS

A convenient way to calculate the Coulomb matrix ele-
ments

I5 K n18l 18s18n28l 28s28U e2

4peur22r1u
Un1l 1s1n2l 2s2L ~B1!

starts by first representing everything in terms of their Fou-
rier transforms. Equation~B1! can then be written

I5
1

~2p!3
E F̃1~k!F̃2~2k!

4p

k2
dk, ~B2!

where F̃(k) is the Fourier transform of̂r un8l 8s8&^nlsur &.
With separable wave functions the Fourier transforms also
separate, so we can write

F̃~k!5F̃~p! f̃ ~q!, ~B3!

wherek5(p,q).

Consider first the Fourier transform of the in-plane wave
function. Expanding the Laguerre polynomials as

Ln
u l u~r2!Ln8

u l 8u
~r2!5 (

j50

n1n8

Ajr
2 j ~B4!

the Fourier transform is readily obtained as

F̃~p!52p i l2 l 8ei ~ l2 l 8!fp
pu l2 l 8u

2u l2 l 8u

3 (
j50

n1n8

Aja j !e
2

1
4 p2La j

u l2 l 8uS p24 D . ~B5!

Here

a j5 j1
u l u1u l 8u2u l2 l 8u

2
~B6!

is a positive integer andp is given in units of 1/a.
The Fourier transform of the subband functions is

straightforward and yields

f̃ ~q!5
4iqss8p2@eiq/2~21!s2s82e2 iq/2#

@~s2s8!2p22q2#@~s1s8!2p22q2#
~B7!

for q in units of 1/W.
By inserting the found Fourier transforms into the inver-

sion formula~33! the angular integral immediately gives the
condition for conservation of angular momentum, viz.,

E
0

2p

ei ~ l12 l18!fpei ~ l22 l28!fpdfp52pd l11 l25 l
181 l

28
. ~B8!

Next we do thedq integral in ~B2!. We note first that the
integral vanishes unless

~21!s12s185~21!s22s28 ~B9!

which, together with~B8!, expresses parity conservation.
The integral is most easily done using contour integration in
the complexq plane. The pole structure of the integrand can
be classified into 8 groups. Using the residue theorem the
integration yields an algebraic function ofp, henceforth de-
notedQ(pW/a). Finally, we are left with one integration,
which must be done numerically. Defining

J~a j ,ak!5
1

4u l2 l 8u E0
`

p2u l2 l 8u11e2
1
2 p2La j

u l2 l 8u~ 1
4p

2!

3Lak
u l2 l 8u~ 1

4p
2!Q~pW/a!dp

the Coulomb matrix element can be expressed as

I5 (
j50

n11n18

(
k50

n21n28

AjAka j !ak!J~a j ,ak!, ~B10!

apart from a trivial constant.
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