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Energy levels of one and two holes in parabolic quantum dots
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Calculations of energy levels of single-hole and two-hole states in a Gaf\&8} -As parabolic quantum
dot have been performed with a multiband effective-mass method. Both the valence-band degeneracy and the
Coulomb interaction are taken into account using the axial approximation for the bulk band structure. The
variational problem is solved with an iterative relaxation technique which allows us to use a large number of
basis functions. The valence-band mixing is shown to be substantial and the Coulomb interaction between the
holes leads to a resonant tunneling energy thdiniggeneral nonlinear with respect to the strength of the
confinement potential. It is found that at sufficiently large confinement potentials, both the single-hole and
two-hole ground states are changed from primarily heavy-hole-like to light-hole-like.

[. INTRODUCTION quantum dots, the far-infrare@FIR) absorption spectrum
turned out to be remarkably simple; dominated by only two
Recent progress in nanofabrication technology has madeeaks and being essentially independent of the number of
it possible to make individual quantum ddtThese struc- electrons on the dot and the electron-electron interaction. It
tures confine electron®r holeg in all three spatial dimen- was shown that this was a consequence of the parabolic con-
sions and are sometimes referred to as artificial atoms. Quafinement potential, which allows for the separation of the
tum dots grown as nanocrystallites usually have a sphericalenter-of-mass and relative motion. As the dipole field only
shape and a steplike confinement potential. In such preparaeuples to the center-of-mass motion, the FIR absorption ex-
tion processes several dots are created and the interactiperiments see only features at the single-particle energies.
between individual dots may be important. This complicationThis is the generalized Kohn's theorem to our
can be circumvented with the use of modern lithographiknowledge®”:10-12
techniques. Through a series of masking and etching steps it In the present work we consider a parabolic quantum dot
is possible to make a single quantum dot starting with acontaining holes rather than electrons. Although to our
guantum-well heterostructure. The resulting dot then typiknowledge no experimental work is yet reported for such
cally has a disklike shape with a lateral confinement potentiatlots, it is expected that they will have more interesting fea-
(from band bending that to a good approximation is tures as Kohn's theorem is violated due to the strong mixing
parabolic? In such quantum dots the gate potential of the dotbetween the valence bartds®and the effect of interparticle
can be controlled at will, giving unprecedented control of thecorrelation on the energy levels can be probed experimen-
number of electrons on the dot. The spectroscopic study dally. In our work we study a GaAs quantum dot, prepared
these nanostructures has been facilitated by the recent devélem a GaAs/Al :Gay-As [001] quantum well. Whereas
opment of techniques that allow the measurement of energglisklike quantum dots containing electrons to a good ap-
levels of a single quantum dot containingN proximation can be considered as two dimensional, this is
(N=1,2,3,...) electrons** Few-electron systems in quan- not the case if the dot is occupied by holes. Tteatively)
tum dots have been considered theoretically by severaimall splitting between the heavy- and light-hole bands
authors>~® The early study by Bryant emphasized the impor-makes it necessary to include several subbands in the treat-
tance of electron-electron correlations, as the confinemenmhent.(The effect of the finite width of the quantum well is
energy and Coulomb energies are comparable in magnitud&rther enhanced by the holes’ smaller Bohr radius compared
As opposed to larger dots with many electrons, these smalb electrons. In our study we consequently take into account
dots can consequently not be described semiclassically iseveral subbands. Furthermore, the effect offithiee barrier
terms of single-particle energies plus a constant charging emeight is accounted for in an approximate way. Expanding
ergy to account for the Coulomb interaction. The theoreticathe wave function in a large basis we calculate variationally
studies have therefore employed a full numerical diagonalthe low-lying energy levels for a parabolic quantum dot con-
ization, taking the Coulomb energy fully into account. Thesetaining one or two holes. While the single-hole problem can
studies have been numerically demanding and limited to judbe treated using a standard numerical diagonalization tech-
a few electrongKumar, Laux, and Stefntreated up to 10 nique, we use instead an iterative relaxation technique for the
electrons self-consistently within the Hartree approxima-+two-hole problem because of the large number of basis func-
tion.) tions needed.
Despite the complex energy structure of the parabolic In Sec. Il we present the model used and construct appro-
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priate basis functions for the single- and two-hole problem. A k. =ketiky .
brief account of the calculation problem is given in Sec. Ill. .
The numerical results are presented in Sec. IV for the single®S Usualyi, vz, and y; are the Luttinger parameters and

1 _1,. "
hole and two-hole cases separately. A short summary is fiy=2(¥2F 7a),#=2(v2— v3). We have neglected the small
nally left for Sec. V. linear terms in the Kohn-Luttinger Hamiltonian that are

present because GaAs lacks inversion symmetry.
The gquantum-well potential in thedirection is due to the
offset between the valence-band edges in the well and barrier
This section contains the theoretical background for thenaterials. The presence of the quantum well lowers the sym-
problem and is divided into three parts. First we present thenetry of the problem fromTy to D,y. This symmetry-
Hamiltonian used, then we construct appropriate basis statggduction results in a splitting of the heavy- and light-hole

Il. GENERAL THEORY

for the single-hole and two-hole problem. states atkk=0. We model this by a finite potential well of
width w:
A. Model AE,, |Z=wi2
Bulk GaAs has the symmetry of the tetrahedral point Vi(2)= 4

. 0, zZ|<wi/2.
groupTy. In these zinc-blende crystals the valence states are 2

p like and transform as thE; representation of y, whereas The lateral confinement potential is parabolic, viz.,
thes= 3 spinor transforms liké' 5. The spin-orbit interaction

is diagonal in the direct-product space of these representa- Vi(p) = EK 2 (5)
tions. Since group theory gives tHat X T'g=1",+1"g we see IR0 =23 1P

that the spin-orbit interaction splits the sixfold degenerat

valence-band edge intolg; and al'; state. Thd's states are the strength of the potential. The hole-hole interaction is

fourfold degenerate &=0, while splitting into the twofold ; .
Kramer’s degenerate heavy- and light-hole bands for non'—ﬁnOdekad by a statically screened Coulomb potential

zerok. Thel; states correspond to the split-off band, which g2
is twofold degenerate &t=0. The direct-product basispin- V(ry,rp)=
orbit coupled basjsis such that the angular momentum

J=L+ Sand its projection along theaxis are diagonal. The To simplify the calculations without substantial loss of accu-
p-like valence states have=1, giving J=2 or J=1. The  racy we will adopt the axial approximatidf,which in the
former is thel'g quadruplet, the latter thE,-like split-off ~ present model amounts to putting=0. The axial approxi-
band. In GaAs the split-off band lies an energy 0.35 eVmation corresponds to ignoring the cubic terms that are not
below thel'g states ak=0, and it is therefore a good ap- axially symmetric about the axis. The accuracy of the axial
proximation to assume that these states are completely dgrodel can be assessed by the smallriedative to 1 of the
coupled from thd"g quadruplet. We will therefore ignore the parameterd=(yz— v,)/y,. For GaAs §=0.11. Since in

&n cylindrical coordinates. Her& is a constant measuring

(6)

4are|ry—rq|”

split-off band in our treatment of the hole states. general the warping terms are second ordeb,irthe axial
In the limit of decoupled split-off band, the hole is pic- approximation should be well justified in GaAs. Other stud-
tured as a spif- particle with four components,= (3,3,  ies also confirm this conclusidf. Having presented the

—1,—2). In the effective-mass approximation the kinetic en-Hamiltonian for the problem we now go on to construct basis

ergy of the hole is then described in this basis by the44  states appropriate for the variational calculation.
Kohn-Luttinger Hamiltoniaf?
B. Single-hole basis
H, R S 0

With only one hole in the quantum dot the Hamiltonian is
A2 | R* H, 0 S

HKL=2—mO s 0 H -R| 1) H=Hy.+V|(p)+ V. (2). 7)

0 S —R* H, In th_e Kphn-Luttinger representation the single-hole wave
function is expressed as
wheré’
= j 3
Hi= (1 72) (€ +K2) + (v~ 27)kZ, D=2 FHOI g2, ®
. 3 1 3 . . . .
H = (y1— v2) (K24 K2)+ (y,+ 27,)K2, where j,==*3,%=3, |3,j,) is the (spin-orbit coupleyl band-
= vtk nt2r)k edge Bloch function, andF(r) is the envelope function.
_ : Since the confinement potential has cylindrical symmetry the
R=23ysik_k,, @ envelopes will have a definite angular momentum. Define
S \/§yk2_+\/§,uki, therefore a@otal angular momentunk as

and F=J+L, (9)
. wherelJ is the angular momentum of the Bloch function and
k=-iV, L the envelope angular momentum. In the axial approxima-

3 tion F, is a constant of the motion and it is possible to find
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simultaneous eigenstates of the HamiltonkrandF,. We  When more subbands are included in the basis the optimum
label the eigenstates ¢f by f, (a good quantum number expansion width should of course be increased. Having
and states with differenf, will not be coupled by the found the appropriate basis set we expand the hole wave
Hamiltonian?® A general hole state can consequently befunction as

written as

yi= Ccnsi)dne i «Niin A7

lﬂ(f)ZE sz(pyz)eid’(fz_jz”%’jz>. (10) Jz.Ms
iz for states with everi+) or odd (—) parity and total angular
) ) _ . momentumf,. The twofold Kramer's degeneracy is still
Next we must find a suitable basis appropriate for theyresent of course: States withf, have the same energy. We
expansion of the hole envelopes. If band mixing is neglectedi|| |abel the states(17) by the smallest in-plane angular
(R=S=0) the Kohn-Luttinger Hamiltonian becomes diago- yjyomentum (1) present in the expansion, indexed by.

nal and the heavy- and light-hole states become uncoupleei-.hus, states with ars-like envelope will be labeleds; ,
This diagonal problem is separable in an in-plane and a sub- z

band part whose solution is of the form p-like asPy,, gtc. ) ) .
Note that since we expand the in-plane solutions in terms

D1 =D (p,d)f«(2), (11)  of the heavy-holgHH) oscillator states the light-hole.H)
block of the Kohn-Luttinger Hamiltonian is not diagonal in
where®,(p,2) is the 2D harmonic oscillator anti(z) the  this basis. We could have chosen to expand the heavy- and
sth subband function. Explicitly the eigenfunctions of the 2D |ight-hole states in two different oscillator sets, but such an
oscillator can be written in cylindrical coordinates as approach would have led to matrix elements between oscil-
9o lator sets of different masses. In the present formulagibn
D(p,d)=Cnlip)lle 772! l(p2/a%). (12  matrix elements can be calculated analytically. For the sub-
. i i band states this is trivial due to the simple trigonometric
HereL, is the generalized Laguerre polynomial and the noro of the basis set. For the in-plane contribution this is
malization constanCy, is given in Appendix A. We have accomplished by exploiting the fact that the off-diagonal
introduced the characteristic frequenoy= V(y;+ y2)K and  termsR and S in the Kohn-Luttinger Hamiltonian act as
lengtha®=7 w/K of the harmonic potential, both defined in raising and lowering operators for the 2D oscillator levels.
terms of the heavy-hole mass. The energy levels of the 2[A|| off-diagonal matrix elements can consequently be found

oscillator are then by simple algebraic means. The same method is used to cal-
culate the light-hole matrix elements within the heavy-hole
En=02n+[l[+Dfw. (13 pasis. A complete account of the operator relations needed to

As a convenient basis set for the subband states we choogg this is given in Appendix A.

simple trigonometric function%: viz.,

2
fo(z2)= \/V:V SII’{S?T

Strictly speaking this set is only complete on the interval H=Hg (1) +Hk(2)+V(p1) +V|(p2)

[ —W,W] (which would be the situation if we put hard walls

atz==*=W). But for relatively large offsets the wave function +Vi(z) +V.(2) +V(1.2), (18)
will decay rapidly inside the barrier material. ¥ is chosen in obvious notation. The Coulombic hole-hole interaction
large enough to cover the dominant region of wave-functioronly affects the envelope pdih the effective-mass approxi-
penetration the errors in neglecting the tale of the wave funcmation so a general state can be written,

tion will be exponentially small. The expansion widW

could furthermore be treated as another variational param- W(r r)= Eizdz' (r, r ) 20020, 19
eter. However, in most cases the dominant energy term is the (f1.r2) ,—g‘z, (rural2ilziz). (19
subband energy, and in this case a good first estimawW of _. .

can be obtained by minimizing the energy for the Iowests.mce the single-hole basid1) allowed us to calculate all

subband. This optimum value is given by the equation single-hole matrix elements ana_lytically, we choo.se to ex-
P 9 y q pand the two-hole envelopes in products of single-hole

states:

C. Two-hole basis

We now consider two holes in the quantum dot. The

W
zr 2 /W} (14 Hamiltonian for this problem reads

W Vo
W=2—77_2[1+COS(7TW/W)], (15
F(rir)=2 Cn)éa(r)de(r). (20

where Vog=2mw?AE, /%2, w is the actual width of the n.n’

quantum well, andn is the mass of the subband in question.Heren formally represents the set of quantum numbers for

In the limit of strong confinement the optimum expansionthe hole andp is the single-hole envelope.

width W is only slightly larger than the quantum well width  The Coulomb interaction is invariant with respect to si-

w, to first order given as multaneous rotations of both holes. Using again the axial

o approximation in the single-hole Hamiltonians the two-hole

W=w(1+2Ngg). (16) eigenstates will have a definite total angular momentum in
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the z direction. The Bloch part contributes now an angularThe solutions of(21) will now relax towards the lowest-
momentumJ,=j,+j, SO a state with total angular momen- energy state such that when- oo,
tum F, has an orbital momentuniL,=F,—J,. Since
L,=I,+1,, we have in general infinitely many single-hole P —Eqrlh

oo S =2,C =P,e o 23
envelopes contributing. To keep the basis finite we must (7) 2 (M) 0 @3
therefore takel|<I jax-

To comply with the exclusion principle the expansion co-'° the best variational estimate to the ground stge
efficientsC(n,n’) must be antisymmetrized with respect to . The method gives the variational energy exactly only for

particle interchange. In the analogous electron problemmfinitely slow relaxation. With a small, but finite time step

where spin-orbit interaction is negligible, the two-electron.AT’ the expansion coefficients follow the first-order dynam-

wave function can be classified as either singlet or triplefCS
since the spatial and spin part separate. In the two-hole prob-

At
lem, however, such a separation is in general no longer pos- c(t+A7)=cy(7)— 72 (n[H|k)cy (7). (29
sible due to the strong spin-orbit coupling and the compli- K
cated nature of the valence band. The relaxation technique is particularly useful in the present

By construction our product basis allows us to calculatease as the action of the Hamiltonian on the state vector can
all single-hole matrix elements analytically. The Coulombpe easily calculated. Because the Hamiltonian can be sepa-
potential is the only term that couples the two holes. With arated into a sum of single-particle Hamiltonians plus the mu-
little algebra the matrix elements of the Coulomb interactionya] Coulomb interaction term that is block diagonalized by
can be related to a small number of one-dimensional integhe total angular-momentum states, the action of the Hamil-
grals that are easily done numericallsee AppendiX B.  tonian on the state vector involved becomes much simpler.
Furthermore, the Coulomb interaction is diagonal in bothThere is no need to store the entire Hamiltonian matrix. In
spin and total orbital angular momentum space. Consete actual calculation we only store the one-dimensional in-
quently, it only couples states with the saf8g,)|3,j,/) and  tegrals that enter into the calculation of the matrix elements
L. of the Coulomb potential. The method is equivalent to the

Lanczos method for solving a sparse matrix. However, the
Ill. COMPUTATIONAL DETAILS relaxation method is easier to implement.
. . . . From the dynamics of Eq24) we see that if the initial-
. In this section we give a brief aCC‘?“Ft of the CompUt"’."state vector is chosen with a symmetry that corresponds to an
tional methods used to S(_)Ive_ the variational prqblem. It Sirreducible representation ¢i, the state vector retains this
well known th"f‘t the minimization of the energy with r eSPeCtsymmetry during the relaxation process. Excited states with
to the expansion coefficients translates into a matrix eigeNgitterent symmetry from the ground state can therefore be

value problem. For the single-hole problem a standard diag%und along the same lines as described above

nalization technique, which provides all eigenvectors and ei- In the calculation the number of iterations varies with the

genva_lues, IS applicable. Th!s is simply be(_:ause the numIDEE:rhoice of the initial wave function. The program iterates until
of pa5|s func’qons_ nee_de_d ISin generall relatl‘vely small. In th‘?he difference in energy between successive iterations is
axial approximation it is more precisely/;=4xNXS, smaller than a prescribed tolerar(say, 0.001 meY For the

whereN and S are the number of oscillator states and SUb'very first value off w it takes as many as 2000 iterations to

band states included in the basis. So for most practical pufacy the tolerance. However, for the next value the previous
poses a basis containing, say, 100 states is adequate.

The two-hol bl the other hand i h state vector is used as the initial guess, and typically 100
compitavt\gg;lacl)lj z:eomaenn(;ir?gn ar? dorezruireasn als d?;fgfenpqg:)elterations will suffice. So the smaller the spacing#ab is

. o used, the smaller the number of iterations is needed.
proach. With the two-hole basis in ER0) we see that the

number of basis functions is now 5= (2l jaxt 1)./1/'%. To
account for important correlations we need to take =2,
which means that/", very quickly becomes beyond both In this section we present the results of the numerical
computational and storage capacity of present-day computetalculations. We use the material parameters for GaAs listed
using a brute-force diagonalization technique. Insisting on gn Ref. 22:
method that is both simple to implement and still capable of
handling such a large basis we turn instead to an iterative y1=6.85, y,=2.1, y3=29, €=13.18. (25
relaxation technique.

In terms of the imaginary-time parameter=it, the
7-dependent Schdinger equation can be written

IV. RESULTS AND DISCUSSION

As we have already tailored our subband basis to the case of
strong confinement in the growth direction we will ignore the
mismatch between the Luttinger parameters in the GaAs well
A and the AlGa,; _,As barrier. The advantage of this approxi-
E:H\I’- (21) mation is that it avoids the cumbersome matching of the
multicomponent wave function at the interface between two
In a variational approach we expand(7) in the basis¢,  dissimilar materials. As long as the wave-function penetra-

for a given symmetry: tion into the barrier material is small, this approach should be
well justified.
W (7)= E () br. (22) The depth of the quantum well is determined by the offset

n between the valence-band edges in the dot and the barrier
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f, being = 2 or +1.22 However, here we still use the termi-
nology that HH(LH) refers to the subband whose wave func-
tion is dominated by thé (3) component near the zone cen-
ter. Away from the zone center, the dominant component for
a given subband may change as a result of band mixing. In
this and the other figures we use the hole picture in which the
energy scale is turned upside down, and we measure all en-
ergies relative to the valence band edge in bulk.

A. Single-hole energies

We want first to study the effect of the parabolic confine-
ment potential on the single-hole states. Experiments on few-

Energy (meV)

100

80

()
[=]

Kygo (10°cm™)

FIG. 1. The in-plane dispertion relation of a GaAs/
Al 4 Gay -As [001] quantum well of thickness 100 A and valence-
band offseAE, =130 meV shown as a function of the wave vector
Ki00- The solid lines are the results based on the full Kohn-
Luttinger Hamiltonian, while the dashed lines are obtained using
the axial approximation. =0

Energy (meV)
=
o

materials. For the GaAs/AGa;_,As interface we use the
division 65/35 of the band-gap discontinuity between the 0 ) s s .
conduction band and the valence band. The valence-band 0 10 20 30 40 50
offset can then be estimated from the formula hw (meV)

AE,=0.38AE (x), (26) 40

where AEy(x) is the difference in band gaps fé&r=0 be-
tween GaAs and AlGa; ,As. For x<0.45 we take
AE4(x)=124K& meV. Focusing on alloys witx=0.3 we
thus obtain a valence-band offseE, =130 meV.

In Fig. 1 the in-plane hole dispersion of a 100-A-wide
GaAs/Aly sGa, 7As [001] quantum well is shown along the
[100] direction. The result with and without the axial ap-
proximation is plotted. We recognize the electronlike disper-
sion of the light-hole subband near the zone center and note
that the axial approximation works very well. In the figure
we also introduce the labeling of the states, viz., HH's and
LH'’s, wheres refers to thesth subband. A few of the lowest
subband edges are listed in Table I. A strict classification of
states as heavy hole or light hole should be done on the basis
of their in-plane dispersion, and not on the quantum number (b)

Energy (meV)
[\ w
o o

—
=}
T

TABLE I. The lowest subband energies for a valence-band off- 0 ‘ ' : :
setAE,=130 meV. The quantum-well widttv is given in A, all 0 2 4 6 8 10
energies are in meV. hw (meV)

w HH1 LH1 HH2 HH3 LH2 FIG. 2. (a) Energy levels of the symmetry st#8§, as a function

of the confinement potentidl w. The quantum-well thickness is
100 6.52 20.36 25.87 57.27 76.99 " 100 A and the valence-band offséE, =130 meV. The axial ap-
150 3.20 10.89 12.76 28.58 42.78 proximation is used in this and all subsequent figures. Note that no
200 1.89 6.75 7.57 16.99 26.79  Jlevels cross.b) Energy levels(solid line as in () with some
uncoupledevels indicated by the dotted lines.
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the states derived from the LH1 and HH3 subbands are
found to first decrease and then increaseiasincreases.
This is due to the fact that these hole subbands have negative
effective masses at the zone center and their subband mini-
mum is away from the zone centgee Fig. ], and we have
used a finite number of oscillator states in the expansion. If
an infinite number of oscillator states is used, we expect that
all energy levels will approach the subband minim@ather
than the subband edgas# «—0. Thus our results are con-
vergent only forhw>0.3 meV. Below that more oscillator
states are needed in the calculation. However, since the cor-
rect results are already known fbiw =0 (which are exactly
the subband energigshese results can be obtained simply
by interpolation between thkw=0 and#»v=0.3 meV val-
ues.
Figure 2b) is an enlarged version of Fig.(@ for
0 10 20 30 40 50 hw<10 meV and the energy levels obtained without the
ho (meV) off-diagonal coupling termgdotted line$. Comparing the
coupled and uncoupled levels in Figb? we find that the
FIG. 3. The lowest energy levels for the five different symme- ef_fect of band coupling _'S quite e\_/ldent' W!thOUt band cou-
trieSSyy, Sips P, Dy, andFy,. The quantum well is the same pImg, all energy levels increase linearly withw, Whereas_
as in Fig. 2. The light-hole-liké;,, state replaces the heavy-hole- the inclusion Qf band COUpI”_]g makeg some of the low-lying
like S, state as the ground state fbow=37.7 meV. energy levels increase nonlinearly withw. For the ground
state, although the energy appears to increase linearly, it has

electron systems in parabolic quantum dots suggests that tifeSmaller slope than the corresponding uncoupled level as a
confinement potentiakw typically lies in the range * 10 result of band coupling: According to the variational prin-

meV. However, as no experimental data on holes in paraboligiP/e the coupling terms always lower the energy, giving the
quantum dots are available, we allow the confinement poterf€Ve! aweakerdependence on the confinement potential than
tial to vary in a slightly larger interval. This will also allow the corresponding uncoupled level. o
us to make some predictions about the energy levels in the Figure 3 displays the lowest energy levels for five differ-
strong confinement regime. ent symmetries, Viz.S3;,, Sy, Pspp, D72, andFg,. We
Figure 2a) shows some low-lying energy levels for the notice that theS;, (and D7) state appears to be almost
S}, states. As the coupled levels of the same symmetry arbnear infiw, whereas thes;, state crosses thg;, state at
forbidden to cross we see that the intersubband couplingéw=37.7 meV and it replaces t®;;, state as the ground
result in strong anticrossing of the levels. In the weak constate. The key to understanding the behavior in Fig. 3 is
finement limit,zw— 0, the levels approach the HH1, LH1, given in Table Il where we show how various states are
HH2, and HH3 subband edges of the quantum well. Whergoupled in the axial approximation. From Table Il we see
the strength of the potential is increased and the confinemetitat in the strong-confinement limit th®;, state will be
energy becomes comparable to the subband splitting the leymostly) heavy-hole-like, whereas tI%), state will be light-
els couple strongly, resulting in nonlinear dependence omole-like. The bulk heavy{light-) hole state has a heavy
fhw. Approaching the strong confinement limit the levels re-(light) effective mass in the direction and a lighiheavy
gain a linear behavior, but they are still coupled. In the wealeffective mass in the in-plane direction. The confinement ef-
(strong confinement limit only theR (S) coupling term in  fect due to the quantum well causes a larger energy shift for
the Kohn-Luttinger Hamiltonian is relevafft.Furthermore, the light-hole state than for the heavy-hole state, while the
levels with the same linear slope will be parallel in the strongin-plane confinement effect due to the quantum dot parabolic
confinement limit, only shifted by a subband energy. Forpotential causes the opposite effect. The crossover from a
small confinement energyi(w<<0.5 me\j, the energies of heavy-hole-like ground state to a light-hole-like ground state

100

80

=3
(=}

Energy (meV)
>
o

20

TABLE Il. Subband and angular momentum states that are coupled by the off-diagonal terms in the
Kohn-Luttinger Hamiltonian. We only list the lowest subband state; all higher subband states with the same
parity are also coupled.

S3+/2 1+/2 P5+/2 D7+/2 F$,2
Subband | Subband | Subband | Subband | Subband |
HH1 0 HH2 -1 HH2 1 HH1 2 HH2 3
LH2 1 LH1 0 LH1 2 LH2 3 LH1 4
LH1 2 LH2 1 LH2 3 LH1 4 LH2 5
HH2 3 HH1 2 HH1 4 HH2 5 HH1 6
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100 50

80 40
& >
QO Q

60 30 |
g £
:
T 40 220
= =]
= =

20 10}

0 O 1 1 1 1
0 10 20 30 40 50 0 2 4 6 8 10
ho (meV) ho (meV)

FIG. 4. Same as Fig. 3, but for the lowest energy levels with FIG. 5. The two-hole ground-state energ@hin solid ling for
symmetryS;,, S5, P, D7, andFg,. The two lowest states, the stateS; for a 100-A-wide quantum well with a valence-band
S5, andSy;,, which cross atiw=25.2 meV also cross at a higher OffsetAE, =130 meV. The energy is calculated using the relaxation
energy (i w=214 meV, not shown in the figureThe lowest energy Method and the axial approximation. The dashed line is obtained
level is thus light-hole-like in the strong-confinement limit. ignoring all off-diagonal terms in the Kohn-Luttinger Hamiltonian,

hence using a one-band model. Ths dotted line is the energy of two
is thus associated with a crossover from quasi-twoXoninteracting holegincluding the off-diagonal couplings in the
dent why theS], level displays the most linear behavior, Unneling energiE as defined in Eq(27).
This state igmostly) HH1-like in both the weak- and strong-
confinement limits. The same almost linear behavior can bén the extreme weak-confinement limit where a larger num-
found (for the same reasorfor all the statesL(L]);,z, e.g., ber of oscillator states is needed. However, in this limit the

S!,.Pan.D3,, etc. This is exemplified in Fig. 4 where we €Xact energy is already known; with no confinement poten-

plot the odd-parity stateSs,, S;,, Pgp, D3, andFg,. tial the energy is simply twice the Iowgstsubband energy. We

We see that the statd®;,, and Fo, are almost linear. The make therefore no attempt to numerically calculate the two-
/2 912 . - i

S,), state is the lowest odd-parity state for sufficiently low hole energy for confinement energies below 0.5 meV and

P he o b h focus instead on more confined states.
w, It crosses thes,, state athw=26 meV to become the 14 o5t the flexibility of our basis we have performed two

second lowest, and it eventually crosses $jg state again - mytually independent tests. First, we calculated the energy of
(at Aw=214 meV, not shown in the figureso the lowest {he St state without the Coulomb interaction and the particle
odd-parity state also becomes light-hole-like in the strongyiagistics. We then obtained twice the single-hole energy

confinement limit, _found in Sec. IV A for theS;,, state. Second, we calculated

We end this section by concluding that the levels show Mhe two-hole energy in the extreme 2D limit. In this limit a

general a nonlinear dependence on the confinement pOtemi%ngIe—band theory is applicable, and our results checked

Even in the limit of weak and strong confinement, where tthith those of Merkt, Huser, and Wagfiavho calculated the

levels are almost linear, the intersubband couplings cannot b@nergy of two electrons in a 2D parabolic quantum dot
entirely neglected. ]

In Fig. 5 we plot the lowest two-hole energthin solid
line) for the S§ state as a function of the confinement energy
for a 100-A-wide quantum well. From the first-order esti-

We now consider two holes in the quantum dot. Includingmate in Eq.(16), based on only one subband, the expansion
both the off-diagonal coupling terms in the Kohn-Luttinger width follows asW=117 A. Since we include three sub-
Hamiltonian and the Coulomb interaction we have a de-bands, the actual expansion width used in the calculation is
manding numerical problem. To accurately describe the twotaken asW=123 A. In the figure we have also included, for
hole system in the product bagig0) we include, for each comparison purposes, the results without the off-diagonal
hole, the three lowest subbands with the correct parity. In théerms in the Kohn-Luttinger Hamiltoniatdashed ling as
lateral directions we use the 30 lowest oscillator states fowell as the energy of two noninteracting holgwtted ling.
each hole, corresponding to the different angular states witfihe exact solution always lies within these two limits. The
|=0,+1,+2. The total basis then consists of 9792 differentimportance of the coupling terms is evident as they lower the
functions with even parity and 9648 functions with odd par-energy substantially. This effect is even more prominent for
ity. This is sufficient to give the energyelative to the com- the other symmetries, since the dominant contribution to the
puted band edgewithin less than 0.2 meV, except possibly two-hole stateS; comes from théalmost uncoupledsingle-

B. Two-hole energies
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TABLE Ill. The various single-hole product states that couple to

120 form the two-hole states in Fig. 6. Only the contribution from the
S-ike (i.e., 1=0) single-hole envelopes is listed.
100
S Sy S/ St
% 80 331723;3/2 53?/2%3/2 S?E/zsé 12 Sstlzsi 12
a S?J;/ZS; 3/2 Sfi/ZS: 3/2 SS/Jrzstrl/Z SS/JrZSf }/2
~ 60 51_/23: 1/2 31_/281 12 S1_/251_/2 51_/25%!2
gB S1/28— 1/2 S1/2S— 1/2 S:L/2S:L/2 Sl/ZSlIZ
o
S 40

However, in the strong-confinement regime of Figs. 3 and 4
the ordering of the single-hole levels is change®ig and
S;,- The lowest two-hole states would now 8§ and
S, . The crossing of the stat& andS; is seen in Fig. 6 at
: : . hw=21.5 meV. We also notice that althou§y is always
0 10 20 30 40 50 the ground state, the sta® is close in energy around
hw (meV) hw=41 meV. This is not surprising since the primary com-
ponents of these two-hole stat&,, andS;),, are degener-
FIG. 6. The lowest two-hole energies for the four different sym-ate in energy atiw=37.7 meV, where the corresponding
metriesSy , Sy , Sy, andS; . The quantum well is the same as in one-hole states crogsee Fig. 3 We note that the two-hole
Fig. 5. As explained in the text the leve and S, cross at  stateS] is changed from a product of primarily heavy-hole

fiw=21.5 meV due to the inverted ordering of the single-hole stategike states in the weak-confinement limit to a product of

+ + + +
Sy @NdS;,. For the same reason the two staBgsandS; are — primarily light-hole like states in the strong confinement
energetically close at w~41 meV, butS; is always the ground limit.

state.

20 [y

hole statesS: 5, for these values of the confinement poten- V. SUMMARY
tial. As we know from the single-hole treatment, the effect of We have studied in this work single- and two-hole states

the coupling terms increases with increasing confinemen§ ; :
. h a parabolic quantum dot. The effect of the off-diagonal
and the same trend is seen for the two-hole energy. From th[ b g g

' ) . 8rms in the Kohn-Luttinger Hamiltonian has been clarified
figure we also notice that the effect of the Coulomb interacny sponn 1o be non-negligible. The Coulomb interaction
tion is in general nonlinear with respect to the confinemen

tential. C tlv. the total tb it etween the holes leads in general to a resonant tunneling
potential. Lonsequently, In€ fotal energy cannot be written aénergy that is nonlinear with respect to the dots confinement
a sum of single-particle energies pluscanstantCoulomb

harai T thi learl define th otential. Similar nonlinear behavior was also found for elec-
charging energy. 1o see this more clearly we define the reSqr, < iy the calculations by Johnson and Pae.
nant tunneling energy for the d&y as

Tk}{: quantum dots studied in this paper were taken to be
_ oy _ 100 A wide. The dots considered experimentally in Ref. 3
Er=E(N=2)—E(N=1), @7 were slightly wider, typically in the range 150—-200 A. From
i.e., the energy difference with one and two holes in the dotTable | we see that for such quantum dots the heavy-and
Figure 5 also includes a plot dig as a function of the light-hole splitting atk=0 is drastically lowered, and the
confinement energythick solid ling. The second hole can importance of the off-diagonal coupling terms is even greater
tunnel into the dot when the Fermi energy of the reservoithan in the present case. Furthermore, the confinement po-
coincides with the two-hole energy level of the dot. The resotential required to change the symmetry of the ground state is
nant tunneling energy is thus a measure of the gate potentialbstantially reduced.
needed to accomplish this. As expecteg increases mono-
tonically with the confinement potential, and is almost linear
in the strong confinement lim{tvhere the Coulomb potential
can be considered as a perturbation One of us(F.B.P) is grateful to Norges Forskningstdor
For completeness we end this section by presenting ifinancial support. He would also like to thank Y.-C. Chang’s
Fig. 6 the lowest two-hole states corresponding to the symgroup for its hospitality during his visit. The authors ac-
metriesSy andS; for states of even and odd paritsee Table knowledge the use of computing facilities provided by the
[11). All states correspond to the ground stdtavest energy  University of lllinois, Materials Research Laboratory under
statg for the selected symmetry. The ordering of the two-Contract No. NSF/DMR-89-20538.
hole levels in Fig. 6 can be understood qualitatively on the
basis of the single-hole analysis in the previous subsection.
For sufficiently weak-confinement potential we see from
Figs. 3 and 4 that the orderir@creasing in energyof the
single-hole levels iS5, andSy,. In this limit the two lowest The wave functiongn,l) of the 2D harmonic oscillator
two-hole states would thus b8, and S;, respectively. can be written in cylindrical coordinates as

ACKNOWLEDGMENTS

APPENDIX A: OPERATOR RELATIONS FOR THE 2D
HARMONIC OSCILLATOR



53 ENERGY LEVELS OF ONE AND TWO HOLES IN PARABOLIC ... 1515

<I>n|(p,¢)=Cn|(ip)|'|e”’2’2a2e”‘f’LH‘(pzlaz), (A1) ansider first Fhe Fourier transform of the in-plane wave
function. Expanding the Laguerre polynomials as
with the normalization constant

n!
Coi= N mtn

We have chosen a specific phase to simplify the operatahe Fourier transform is readily obtained as

relations. In cylindrical coordinates the operator

k. =k, ik, takes the form . ;oL ptr
F(p)= — il el-1"dp

n+n’

[1]+1 (A2) LHI(PZ)L!:‘(P2)= ;0 A]_p2j (B4)

1
a

g i d NEN
= _jetid| —+-
- - ((3”’ T ﬁd)) ") n+n’ 1 2
! i ial i —zp2y 11" P
Using the properties of the Laguerre polynomial it can be X ZO Aja;le” 7P Laj =l (B5)
shown that wher>0 i<
ak,|n,l)=njn—1J+ 1)+ yn+1+1|n,1+1), Here
ak_|n,ly=yn+1|n+1]—1)+ yn+I|n,I - 1), a:j+w (B6)

) 2
For <0 we have

is a positive integer ang is given in units of 14.

aki[n,ly=vn=I[nI+ 1)+ yn+1n+1]+1), The Fourier transform of the subband functions is
straightforward and yields
ak_|n,)=yn—1+1|n,1-1)+yn|n—1)-1),
and finally forl=0 - 4iqss [ —1)5s —e71912)
f(q)= (B7)

- _o’\2,2__ N2 + N2, 2__ ~2

ak,|n,0)=n|n—1,1+ yn+1|n,1), [(s=s") A ll(s+sT) =]
for g in units of 1MWV.

ak_|n,0)=n+1|n,— 1)+ Jnjn—1,-1). By inserting the found Fourier transforms into the inver-

These are the relations needed to calculate the off-diagond|on formula(33) the angular integral immediately gives the
terms in the Kohn-Luttinger Hamiltonian. condition for conservation of angular momentum, viz.,

To calculate the matrix elements of the light-hole diagonal

27 , . ,
elements we use that ) e|(|17|1)¢pe|<|27|2>¢pd¢p:2775I1+|2:|i+|é_ (B8)
2

f
=yl — =
Hi=Hhj Mo YaKik-, (Ad) Next we do thedq integral in(B2). We note first that the

. integral vanishes unless
whereH! refers to the in-plane part only. The effect of the

operatork, k_ now follows directly, and its matrix elements

1\S1—S1—( _ 1)\S2—S»
can be calculated analytically. (=) =(—1)%"% (B9)

which, together with(B8), expresses parity conservation.
APPENDIX B: COULOMB MATRIX ELEMENTS The integral is most easily done using contour integration in
the complexg plane. The pole structure of the integrand can
be classified into 8 groups. Using the residue theorem the
integration yields an algebraic function pf henceforth de-
noted Q(pW/a). Finally, we are left with one integration,
n1|131n2|252> (B1)  which must be done numerically. Defining

A convenient way to calculate the Coulomb matrix ele-
ments

2
Il !

— ! Il
I—<nlllsln2I2$2

47T€|r2_r1|
starts by first representing everything in terms of their Fou- 1 141 _% 2 11— 1 2
rier transforms. EquatiofB1) can then be written ey, a)= 4|—|,f0 p e *P Lo, (2P
1 = = Am =", 1,2
|=—3(277) f F1(k)Fo(—k) 17 dk, (B2) XLg, (7P9)Q(pWa)dp

where F(k) is the Fourier transform ofr|n’l’s')(nls|r).  the Coulomb matrix element can be expressed as
With separable wave functions the Fourier transforms also

. ! ’
separate, so we can write nytng Nptny

. L 1= > > AAQ'ald(e),a), (B10)
F(k)=F(p)f(a), (B3) =0 k=0

wherek=(p,q). apart from a trivial constant.
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