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Models of dynamical supersymmetry breaking and quintessence
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We study several models of relevance for the dynamical breaking of supersymmetry which could provide a
scalar component with an equation of stptewp,—1<w<0. Such models would provide a natural expla-
nation for recent data on the cosmological paramef&8556-282(199)02710-1

PACS numbgs): 98.80.Cq, 11.30.Na, 12.60.Jv, 98.70.Vc

INTRODUCTION order to account for a vanishing cosmological congtemnit
the initial conditions and the subsequent cosmological evo-
There are increasing indications that the energy density dfition may lead to a situation where the field misses the
matter in the Universe is smaller than the critical dengify ~ ground state and evolves to infinite values.
If one sticks to the inflation prediction dbr=1, then the Dynamical supersymmetry breaking is often favored be-
natural question is the origin of the extra component provid-cause it can more easily account for large mass scale hierar-
ing the missing energy density. An obvious candidate is £hies such asl,,/Mp through some powers df/Mp where
cosmological constant, whose equation of stat@ds—p. A is the dynamical scale of breaking. It is thus a natural
This presents particle physics with the unpleasant task dfuestion to ask whether the corresponding models may ac-
explaining why the energy of the vacuum should be of ordecount for quintessence. Indeed, in this case, there is a funda-

(0.003 eV, a task possibly even harder than the one Ofmental reason why the scalar potential vanishes at infinity:

explaining why the cosmological constant is zero. In particu—thIS is related to the old result that global supersymmetry

lar, it seems to require new interactions with a typical scal
much lower than the electroweak scale, long range intera
tions that would have remained undetected. owers ofA/Mp).

It has recently been proposed to consider instead a dy- | the following, we will discuss two models of dynami-

namical time-dependent and spatially inhomogeneous comgy| sypersymmetry breaking which may be considered as
ponent, with an equation of stape=wp, —1<w<0.Sucha representative of semirealistic models for high energy phys-
component has been named “quintessence” by Caldwellics. One is based on gaugino condensation coupled to the
Dave, and Steinhard®]. Indeed, present cosmological data dynamics of a dilaton field; the other uses the condensation
seem to prefef3], in the context of cold dark matter models, of N; flavors in a SUN.) gauge theory.
a value forw of the order of—0.6. Several candidates have
been proposed for this component: tangled cosmic stfidigs
and pseudo Goldstone bosdig. Of particular relevance to
some issues at stake in the search for a unified theory of We start with a class of models, reminiscent of many
fundamental interactions is a scalar field with a scalar pOtensuperstring models, where supersymmetry is broken through
tial decreasing to zero for infinite field valug,6]. gaugino condensatidi7] along the flat direction correspond-

It has been noted that such a behavior appears naturally g to the dilaton field. Indeed, in many superstring models,
models of dynamical supersymmetry breakifi@SB) [6].  the dilaton fields does not appear in the superpotential and
Typically, the scalar potential of supersymmetric models hashus corresponds to a flat direction in the scalar potential. It

many flat directions, i.e., directions in field space where thesouples to the gauge fields in a model-independent way:
scalar potential vanishes. Once supersymmetry is broken dy-

namically, the degeneracy corresponding to the flat direction 1

is lifted but generally the flat direction is restored at infinite L=——-SF"F,,, 1)

values of the scalar fieflWe are thus precisely in the situ- 4

ation of a potential smoothly decreasing to zero at infinity.

This is usually considered as a drawback of spontaneous sthereF ,, is the field strength corresponding to a generic

persymmetry breaking models from the point of view of cos-gauge symmetry grou@ and, throughout this articles is

mology: in the standard approach, the potential has a stabRXpressed in Planck mass units. Thus the vacuum expecta-

ground state, where the potential is fine tuned to z@mo tion value(s) can be interpreted as the inverse of the gauge
coupling 14 at the string scale. Indeed, it is directly related
to the inverse of the string coupling constaeee belowy

) . . The interaction corresponding to the gauge gr@upecomes
YIn some cases, the field value may be interpreted as the mvers,S(?rong at a scale P 9 gauge g

coupling constant associated with the dynamics responsible for su-
persymmetry breaking. An infinite field value means a vanishing )
gauge coupling and thus restoration of supersymmetry. A=Mpe Y29 =Mpe 2o, (2)

ields a vanishing ground state energy. And there may be
easons as to why once it dominates, the contribution of the
Scalar field to the energy density is very smabljain through

MODELS WITH A DILATON
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where b, is the one-loop beta function coefficient of the there exists a scaling solution with the following behavior:
gauge groupG. The corresponding gaugino fields are ex-the fields evolves down the exponentially decreasing poten-

pected to condense, tial as ¢/t;)*~"e/(1*We) 35 long ass remains smaller than
$1=(2bo/3)(1+wg)/(1—wg), reached at=t,; for larger
<f)\>:A3: MEe 3520, (3)  values, there exists a scaling solut{di-13 where the field

evolves logarithmically as=s;+ (2by/3)In(t/t;). The ratio

and they lead to a potential energy, quadratic in the gaugings/pror Starts at 3(+wg)?/16 for t<t; and from then on
condensates, that scales l#e3s/%. In the limit of infinites,  slopes down to zero ad§/6s?)(1+wg) for large values of
that is, of vanishing gauge coupling, the dynamics is inops. Finally, we=ps/ps starts at a value of 1 and decreases
erative and one recovers the flat direction associated with theonotonically towardsvg ass increases. There is therefore
dilaton. no hope of using the dilaton for the dynamical component of

We have followed a very crude approach and there are, afuintessence sinc&g never reaches a negative value. Power
course, many possible refinements: one may include supelaw correctiong Vy(s)«s*] do not change this conclusion.
gravity corrections, the effect of other scalar fields such as This might be in some sense a welcome conclusion since
moduli, as well as corrections which may be needed to stathe vacuum expectation valys) provides, after renormal-
bilize the potential for small values sf(that is, in the regime ization down to low energy, the fine structure constat. 1/
of strongly coupled strind8]). For example, in a given A sliding dilaton would make the fine structure constant vary
model[9], the potential reads, in terms of the fidldvhich  with time at an unacceptable rdt&4].

precisely describes the string gauge coupling, Similar conclusions can be reached with other types of
weakly coupled scalar particles, such as the moduli of string
M‘F‘, df 2 2 theories. For example, in a model with several gaugino con-
V()= m{ 1+f-1 a) ( 1+ §bo|> densates and a modulus fildlescribing the radius of the
six-dimensional compact manifold, the scalar potential scales
B %bgﬂ] 6931+ )12yl @ for large values of as[9]

. I _ b+by) /bym—7[(b—bga)/(3bg)]ta—2(s)/b
wheref(l) andg(l) appear as nonperturbative contributions V—Ea t(0+Pa) fbag™ 7l(b=ba)/ (30t~ 2(s)/bg, (8)

to the Kéahler potential. The dilatos is related to the field

ass=(1+f)/2l. One recovers, in the limit of large(small _
string couplingl), a leading behavior i~ 3%Po, where the sum runs over the different condenséates for

Since there are obvious power law corrections to this be€ach group3,, with corresponding beta function coefficient

havior, we will consider a toy model of a dilaton fiedwith ~ Pa)- We have fixed the dilaton field at its ground state
a Lagrangian value. Let us note that, although the modutudefinitely

cannot be used for quintessensince, as above, the corre-
1 spondingw, reaches asymptoticallyg), a large value ofs)
L=————=0d"sd,s—V(S), (5) may contribute to giving a small contribution frotrto the
4s m
vacuum energy.

where
MODEL OF FERMION CONDENSATES

V(s)=Vq(s)e 3%Po, 6 L .
(8)=Vo(s) © We now turn to a model which yields inverse powers of

fields in the potential, a welcome situation for quintessence
models[6]. It is based on the gauge group $NYj and has
N;<N, flavors: quarkQ',i=1,- - -,N¢, in fundamentals of

The noncanonical kinetic term faris characteristic of the
string dilaton and accounts for the nonflaitder metric.
The cosmological evolution of thefield is described by

the following set of equations«(=1): SU(N,) and antiquark®; ,i=1,- - -,N; in antifundamentals
of SU(N,).
52 s dv Below the scale of dynamical breaking of the gauge sym-
S —3+3H E"‘ EIO’ metry A, the effective degrees of freedom are the fermion
2s° 2s condensate(“pion” ) fields II;=Q'Q;. The dynamically
L generated superpotential redds]
H2=3 (ps+ps), )
A BNe=Ng/(Ne—Ny)
W=(N.~Nj)———— . (9)
where pg is the background energy density associated with © 1 (deffT)HMNe N
matter (vz=0) or radiation g=1/3) and ps=s%/(4s?)

+V(s).
If we first consider thatvy(s) is a constant and solve  2For a similar analysis, although in a different context, see Ref.
these equations assuming thet dominates for some time, [10].
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Usually, one allows a term linear i in the superpotential Thus, in a matter-dominated universeg=0),wg=—1/2
in order to stabilize this field. We will instead assume here+2N; /N, which is between-1/2 and 0 forN;<N,. This
that a discrete symmetry ensures that no linear term is aprovides a candidate for the dynamics of quintessence.
lowed by the Abelian symmetry. Let us note that this sym- Once®/Mp has reached the valugn(2+ a)/3(1+wpg),
metry cannot be a continuous gauge symmetry since thige enter a different regime whepg, dominates the energy

would yield in the scalar potentidd terms with positive
powers ofIT which would stabilize the field.
The effective Lagrangian reads

1
L=— ETr[(H*H)‘”Z(?MH(?”H*]

(AAT)BNe=ND/(Ne=Nyp)

t —12
i U et

, (10

where the potential originates from tiketerm for the field
I1. For simplicity, we will takel'[} to be diagonal and write
II}=®?§; with ® real. One obtains

4iNf£= - %aﬂcpaﬂchrV(cb), (19)
where
V(cp):x“ia, (12
with = (AAT)¥2 and
am2 13

The corresponding potential has been studied in Rdf. in
the case wherpg dominates over the energy densijty of
the ® field. One obtains

a | 8(1+wg)/(2+a)

Po_[ 2
aq

PB

(14

Hencepq, decreases less rapidly thag until it dominates it
for values of the cosmic scale factor larger thag.
Throughout this periodwhich must obviously include nu-
cleosynthesis one has
2(2+a) al2

Po= 4  a(1—wp)

3(1+wpg)
a(2+ a)

A+a

M
M3

B [ a(2+ @)
©=Me 3(1+wp)

The equation of state for thé field has[6]

a | 6(1+wp)/(2+a)

X\ —
aq

a | 3(1+we)/(2+a)

aq

(19

a(l+WB)

2+« (16)

Wq):_

density. The fieldd slows down and one may solve for it

neglecting the termé in its equation of motion and?2/2 in
po - One obtains

2/(4+ a)

P=dy 1+ %a(4+a)V(q>o)(t—to) ., (17

2\3

where®, is the present value fob, and one obtains

2

We~—1+ W

(18)

If pp atag is already close to the present valilieis occurs
typically for u~10 12730/(4*a) GeV), this second period
is short @g~a,) andw, will be given approximately by
Eq. (16). For simplicity, we will suppose from now on that
this is so. In this case, the valuew§, might prove to be too
small to account for the dafd 6].

However, larger values fong may be obtained by com-
plicating slightly the model and introducing other fields. As
an example, we will assume the presence of a dilaton field,
much in the spirit of the models of the previous sectiah
though the dilaton is this time not sliding but fixed at its
ground state valye The dynamical scalé is expressed in
terms of the dilaton through EQq(2) with bg= (3N,
—N;)/(1672). This induces a new term in the scalar poten-
tial:

SV =4s?|F4?, (19
with
dw A (BNe=Np) /(Ng=Np)
Fom s = 87 ol T (20)
that is, an extra term of the form**#/®# with
4N;
B= N._N;° (21)

SinceB< «, this term dominates for large values of the con-
densated and, forwg=0,

2N;
N+ N;’

Wo=—1+ (22)

which precisely lies between 1 and 0: taking, for example,
N.=5 andN;=1 yieldswg= —2/3.

There could be other contributions to tReerm auxiliary
field for S say,F, (which will contribute to supersymmetry
breaking. If so, the leading term insV for large @ is
FIFo+FsF) and B=2N./(N.—Nj), in which casew,
=—1+N;/N.. This time, one may even obtaiwg=
—2/3 withN.=3 (N;=1).
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Strictly speaking, the leading term|i§,|? and thus of the amount of supersymmetry breaking observed in nature.
cosmological constant type. But this is an artifact of globalThere must be other sourcésg.,F in our examplg¢ which
supersymmetry and it is well known that, by going to super-may produce unwanted amounts of cosmological constant if
gravity, we may cancel this cosmological constant termgcare is not taken.
while keeping a nonvanishing contributiét, to theF term In other words, there is still a “cosmological constant
of the Sfield. Such a study goes beyond the framework ofproblem” in the models studied hefthat is to say, from the
this paper. This stresses, however, an important fact: even foint of view of the quantum theoryut the interest of such
we deal here with a dynamical componedt)(which may  models lies in the fact that they can successfully account for
account for a cosmological-constant-type behavior of théhe recent cosmological data on supernovas of type la, if
cosmological parameters, it is important that theenergy  confirmed.
density eventually dominate over all other forms and thus

that thgse other components do not produce a signif_icant cos- ACKNOWLEDGMENTS
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