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Refraction in the fixed direction at the surface of dielectric/silver superlattice
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Abstract

We report a novel abnormal refraction, called as refraction in the fixed direction, that occurs for certain dielectric/silver superlattices, in which
the ray direction of the refracted wave is perpendicular to the surface of dielectric/silver superlattices, independent on the angle of incidence.
© 2006 Elsevier B.V. All rights reserved.
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Since the experimental demonstration of the negative refrac-
tion [1,2] of microwaves in a two-dimensional array of repeated
unit cells of copper stripes and split ring resonators by Shelby,
Smith and Schultz [3], propagating properties of electromag-
netic and optical waves in dielectric/metal periodic structures
[4] received a great attention from many researchers [5–11].

In this Letter, we report a novel abnormal refraction of op-
tical waves at surfaces of dielectric/silver periodic multilayer
structures or superlattices, that we called refraction in the fixed
direction, in which the ray direction of the refracted wave is per-
pendicular to the surface of the superlattice, independent of the
incident angle.

The structure of the superlattice under consideration is
schematically illustrated in Fig. 1. The superlattice placed in
the region with z > 0 is formed by adjacent layers of a dielec-
tric with the relative permittivity ε1 and the thickness d1, and
silver with the relative permittivity ε2 and the thickness d2.

We consider transverse magnetically (TM) polarized plane
waves that refract at the surface of the superlattice at z = 0.
It is convenient to describe a TM polarized wave by using the
magnetic field

(1)�H(x,y, z, t) = u(z)eikxxe−iωt �ey.
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Fig. 1. The structure of a dielectric/silver superlattice.

The wave equation for the magnetic field �H can be solved by
using the transfer matrix method [12–14]. We have

(2)u(z) =
⎧⎨
⎩

eikz0z + re−ikz0z, for z < 0

Al cos[kzl(z − zl)] + Bl
εl

kzl
sin[kzl(z − zl)],

for zl � z < zl+1,

with A0 = 1 + r , B0 = ik0(1 − r), k2
z0 = k2

0 − k2
x , k2

z(2m+1) =
ε1k

2 − k2
x , k2 = ε2k

2 − k2
x , and k0 = ω/c. The following
0 z(2m) 0
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recursion relations hold for coefficients Al and Bl :(
A2m+1
B2m+1

)
= T1

(
A2m

B2m

)
,

(3)

(
A2m+2
B2m+2

)
= T2

(
A2m+1
B2m+1

)
,

where

T1 =
(

cos θ1
ε1
kz1

sin θ1

− kz1
ε1

sin θ1 cos θ1

)
,

(4)T2 =
(

cos θ2
ε2
kz2

sin θ2

− kz2
ε2

sin θ2 cos θ2

)
,

with θ1 = kz1d1, θ2 = kz2d2. The periodicity of the superlattice
and the condition at infinity imply that (A0,B0)

T must be an
eigen vector of the transfer matrix T = T2T1, corresponding to
an eigen value with a modulus less or equal to 1.

The eigenvalue μ of the transfer matrix T satisfies the fol-
lowing equation

μ2 −
[

2 cos θ1 cos θ2 −
(

ε1kz2

ε2kz1
+ ε2kz1

ε1kz2

)
sin θ1 sin θ2

]
μ + 1

(5)= 0.

For a superlattice, the period d = d1 + d2 is much smaller
than the wavelength. So for a large range of angle of incidence,
we have θ1 � 1 and θ2 � 1. Thus Eq. (5) can be approximately
written as

(6)μ2 − 2 cos θμ + 1 = 0,

where, to the second order of k0d ,

(7)θ =
[
k2
z1d

2
1 + k2

z2d
2
2 +

(
ε1

ε2
k2
z2 + ε2

ε1
k2
z1

)
d1d2

]1/2

.

The solutions of Eq. (6) are μ1,2 = e±iθ . To obtain propa-
gating wave in the superlattice, we must have

(8)T

(
A0
B0

)
= eiθ

(
A0
B0

)
,

that implies

(9)

(
A0
B0

)
= t̃

(
1
iθ

ε1d1+ε2d2

)
,

where t̃ is the amplitude transmittance. Let kz = θ/d , we may
write, for z > 0

(10)�H(x,y, z, t) = ei(kxx+kzz)e−iωt �eyũ(z),

where ũ(z) = u(z)e−ikzz is a periodic function. According to
this expression, kz can interpreted as the z component of an
effective wave vector. In conformity with the expression (7),
we have the following relation between kx and kz

(11)k2
x

(
η1

ε1
+ η2

ε2

)
+ k2

z

ε1η1 + ε2η2
= k2

0,

with η1 = d1/d and η2 = d2/d .
The direction of the refracted ray in the superlattice is de-

termined by the Poynting’s vector averaged over two adjacent
layers. By direct calculation, we found

(12)
〈Sz〉 = 1

2 |t̃ |2(ε1η1 + ε2η2)
−1 kz

ω

〈Sx〉 = 1
2 |t̃ |2( η1

ε1
+ η2

ε2
) kx

ω

}
.

Then the angle of refraction is given by

(13)r = tan−1 〈Sx〉
〈Sz〉 = tan−1

[(
η1

ε1
+ η2

ε2

)
(ε1η1 + ε2η2)

kx

kz

]
.

For a dielectric/silver superlattice, we have ε1ε2 < 0. Thus
by suitably choosing η1 and η2, we may have η1/ε1 + η2/ε2 =
0. In this case, indifferent to the angle of incidence, the angle
of refraction always equals to zero. We call this phenomenon as
refraction in the fixed direction.

As a demonstration of the refraction in the fixed direction,
we carried out numerical calculations for refraction of optical
beams with finite widths at the surface of a superlattice with
ε1 = 4.8, d1 = 24 nm, ε2 = −4 and d2 = 20 nm, and presented
numerical results in Fig. 2. The condition of η1/ε1 + η2/ε2 = 0
is satisfied for this superlattice. The following form for incident
beam, in the free space, was used

�Hi(x, y, z)

=
∫

dkx exp

{
−σ 2

2

[
(kx0 − kx)

2 +
(
kz0 −

√
k2

0 − k2
x

)2
]}

(14)× exp
[
i
(
kxx +

√
k2

0 − k2
xz

)]
�ey.

The parameter σ is set to 200 nm, corresponding approximately
to a beam width of 1 µm. The wavelength of the incident optical
beam is 400 nm. The incident beam can be treated as a super-
position of plane waves with different wave vectors, and the
magnetic field inside the superlattice is calculated as a super-
position of refracted plane waves, by using the relations (2)–(4)
and (9). Moduli of real parts of the magnetic field are presented
in grey scale in Fig. 2. The darker color corresponds to the
higher value. Two different angles of incidence, i = 30◦ and
i = 60◦ were considered. We found that the ray direction of re-
fracted wave is perpendicular to the surface of the superlattice
in both cases. In other words, the refracted ray propagates in the
fixed direction. The phase distribution can also be determined
from the variation of the real part of the magnetic field. We also
observe that, unlike the case of propagation in free space, the
width of the Gaussian beam is unchanged along the direction of
propagation.

The phenomenon of refraction in fixed direction can be ex-
plained in the following way: as the thickness of each layer of
the superlattice is much smaller then a wavelength, the super-
lattice behaves as an effective homogeneous uniaxial medium
at optical frequencies [15]. According to the symmetry of the
superlattice, the optical axis is in the z direction. In conformity
with the expression (11), we have for this effective medium,

(15)n2
o = ε1η1 + ε2η2, n2

e =
(

η1

ε1
+ η2

ε2

)−1

.

The condition for refraction in the fixed direction η1/ε1 +
η2/ε2 = 0 is equivalent to the condition ne = ∞, and in this
case the ray velocity [16] is always in the direction of optical
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Fig. 2. Moduli of real parts of the magnetic field intensity of TM polarized waves refracted by a superlattice with ε1 = 4.8, ε2 = −4, d1 = 24 nm, d2 = 20 nm,
σ = 200 nm, wavelength λ = 400 nm. Left: the angle of incidence i = 30◦ . Right: i = 60◦ .

Fig. 3. Moduli of real parts of the magnetic field intensity of TM polarized waves refracted by a superlattice with d1 = 24 nm, d2 = 20 nm, σ = 200 nm, wavelength
λ = 400 nm, and an angle of incidence i = 30◦ . Left: with losses ε1 = 4.8, ε2 = −4 + 0.4i. Right: with losses and an optical gain ε1 = 4.8 − 0.3i, ε2 = −4 + 0.4i.
axis, that is perpendicular to the surface of the superlattice in
the present case.

So far we have treated the relative permittivities ε1 and ε2
as real numbers. But in reality, the relative permittivity of sil-
ver has a imaginary part in the order of 0.4 at wavelengths
near 400 nm. To include imaginary parts of relative permittivi-
ties into consideration, we need just to replace η1ε1 + η2ε2 by
Re(η1ε1 + η2ε2), and η1/ε1 + η2/ε2 by Re(η1/ε1 + η2/ε2) in
expressions (12) and (13). The phenomenon of refraction in the
fixed direction can still take place, but the condition becomes
Re(η1/ε1 + η2/ε2) = 0. When the imaginary part of permittiv-
ity of (or the optical losses in) silver is considered, the intensity
of optical wave in the superlattice decreases along the z direc-
tion. This attenuation can be compensated if the dielectric is an
optical gain medium [17]. Numerical results for the refraction
in the fixed direction in the presence of optical losses and opti-
cal gain compensation are presented in Fig. 3. The impact of the
losses in silver and the effect of the optical gain compensation
can be easily observed from these numerical data.

In conclusion, we showed that the refraction in the fixed di-
rection may take place at the surface of certain dielectric/silver
superlattices. In the case of the refraction in the fixed direction,
the ray direction of the refracted wave becomes independent on
the angle of incidence, and is always perpendicular to the sur-
face of dielectric/silver superlattice. By carrying out numerical
calculations, we also observed that the width of optical beam
remain unchanged within this kind of superlattice. The impact
of the losses in silver and the effect of the optical gain compen-
sation are also discussed.
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