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Transport through a quantum ring, dot, and barrier embedded in a nanowire in magnetic field
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We investigate the transport through a quantum ring, a dot, and a barrier embedded in a nanowire in a
homogeneous perpendicular magnetic field. To be able to treat scattering potentials of finite extent in a
magnetic field we use a mixed momentum-coordinate representation to obtain an integral equation for the
multiband scattering matrix. For a large embedded quantum ring we are able to obtain Aharonov-Bohm type of
oscillations with superimposed narrow resonances caused by interaction with quasibound states in the ring. We
also employ the scattering matrix approach to calculate the conductance through a semiextended barrier or well
in the wire. The numerical implementations we resort to in order to describe the cases of weak and intermediate
magnetic field allow us to produce high resolution maps of the “near field” scattering wave functions, which
are used to shed light on the underlying scattering processes.
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I. INTRODUCTION resemblance to the corresponding equations for the system in

The influence of a single impurity on the conductance of &1© €xternal magnetic fiekiwe exploit this fact to seek nu-
quasi-one-dimensional quantum channel has been invesfiierical solutions for the system in weak and intermediate
gated by several groups theoreticatand experimentall§. ~ Strength of the magnetic field where a two-mode approxima-
Commonly the impurities are considered to be short rangdOn 1S not always warranted. One benefit of the numerical
and represented by &function, though treatments of more aPProach is that it allows us to map out with high resolution
extended scatterers, like square barrfetan be found. Re- the probability density for the scattering states near the scat-
cently, the application to nanosized systems has spurred tarer. These “near field” solutions give us a good indication

use of general methods built on the Lippmann-Schwingeev itthhznsceartrt]%gg%e"'gocjgﬁu'}rsneIgo\{vﬁre;(prli?]re ?Nguggugﬂ,féwig
equation or the equivalent-matrix formalism to describe d 9

. e increase the size of the ring to the limit where we observe
the scattering of more general extended potentials in quar, - snov-Bohm type of oscillations
tum channefor curved wires. '

. : . In order to investigate the scattering of potentials that are
The inclusion of a constant homogeneous magnetic fielghomogeneous in the direction perpendicular to the wire rep-

perpendicular to the quasi-one-dimensional electron chann@bseniing a barrier or a well we employ an alternative faster
or wire drastically changes the properties of the systtMmethod based on mode matching. The smooth scattering po-
Without the magnetic field a centered symmetric scatteringential is sliced into a series of potentials. The scattering
potential leads to “selection rules” that restrict the possiblematrix is then constructed from repeated mode matching at
scattering processes. These are lifted by the magnetic fieléach slice. This mode matching approach is faster since the
resulting in a rich structure contrasted with the conductancéomogeneity of the scattering potential in the transverse di-
steps in an ideal wire as long as the magnetic length is natection is explicitly used in its numerical implementation, but
much shorter than the width of the wire and the range of thehe formalism built on the Lippmann-Schwinger approach is
scattering potentidl. kept general, applicable for any reasonable localized poten-
The character of the Lorentz force does not allow us tdial.
establish a simple multimode formulation of the scattering
process in configuration spateyut in a strong magnetic Il. MODELS
field Gurvitz used a scheme to develop a multimode formal- We consider electron transport along a parabolically con-
ism using a Fourier transform with respect to the transporfined quantum wire parallel to theaxis and perpendicular to
direction, and a truncation to a two-mode formalism allowed@ homogeneous magnetic fieREBz. In the center of the
him to seek analytical solutions for a short range scattereyire the electrons are scattered by a poterialr) to be

present in a wire with general confinemént. specified below. The system under investigation is described
Here we extend this formalism by noting that in the case?y the HamiltoniarH=Ho+V{(r) with

of a parabolic shape of the wire confinement we obtain 52 _ eB _|?

coupled Lippmann-Schwinger equations with a nonlocal Ho= gl i V- PR +Ve(y), 1)

scattering potential in Fourier space for the different modes.
A transformation of this system of equations to correspondwhere the wire is assumed to be parabolically confined,
ing equations for th@ matrix shows that it bears a strong namely, V(y)=m'Q3y?/2 with m" and Q, being, respec-
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E,=6.0meV, V,=-6 meV &2
"t QY T a)? [ (y.k) =Enx(y.ky),  (3)

which is a harmonic oscillator of frequenc§,, with a
shifted centeran=wckn/Q§V. These eigenmodes of the elec-
tron in a state described hx,y,k,) in a pure quantum wire
have the energy spectruB=E,+/(k,), composed of Lan-
dau levelsE,=(n+1/2)Q,, whereQ,,=\w2+Q3, shifted by
the confining potential, and the kinetic energy
K(ky)=k3(Qo/Q,)% The eigenfunctionsy*(y,k, of the
eigenmodes are given by

E (meV)
I~ Qy
X k) = NaH VO ly = annexp[— Sy an>2],

(4)

whereN,=(Q,/m)Y42"!)"12 is a normalization constant.
Using the scattering-matrix method and piecewise match-
ing (see Appendix A%11one can obtain the transport equa-
tions
FIG. 1. (Color online Well or barrier embedded in a quantum . i ~ i .
wire with Vy=(a) -6 meV and(b) 6 meV, respectively. Other pa- 2 ket = 2 1 (KT = () ©)
rameters areB=0T, a,=33.7 nm, Ey=£y=6.0 meV, and n’ n’
Ba2,=1.897.

and

tively, the effective mass of an electron in GaAs-based ma- 20 k)t + 2K (ko) =kl b k), (6)
terial and the confinement parameter. Heeeis-the charge n' n’

of an electron. We present two quite different approaches to
describe the scattering process of incoming electron state¥’
one using wave function matching appropriate to describe . .

scattering from a thin homogeneous barrier or well perpen- L = f Xe(Y) x5 (Y)dy, (7)
dicular to the wire, and the other one usingd anatrix for-

malism to calculate the scattering of an embedded quantum . . o

dot or ring in the wire. I (Kn) =Kol (Ke) +iVoV (8)

here the matrix elements are related to the overlap integrals

with
A. Scattering matrix via mode matching
+ *
In this section, we employ a mode matching approach to Vit fxm(y)VSC(y)X“'(y)dy ®)
the calculation of a coherent electronic transport in a quan- d
tum wire in the presence of a Gaussian-profile scattering poFiln
?enual. The potential under investigation can be realized as a K (k) = Kyl (K ). (10)
inger gate atop the wire and can be modeled by
Using Egs.(5) and (6) and the corresponding equations
) for?'n,n and"'?n,n, one can establish the scattering matrix for
VsdI) = Vo exp(— Bx°), (2)  the Gaussian-shape potenfialFrom the ratio of the trans-
mitted and the incident current we obtain the currents trans-
_ o missionT g, in which @ and 8 are, respectively, the incident
as is shown in Fig. 1. ' and the transmitting lead. In the following, we assume that
To obtain a dimensionless expression we employ the Bohjhe scattering potential is located at the center of the wire and
radiusao, and have* thus tbe relevant units for the Conﬁne'the Source_drain bias is Suﬁicient'y IOW. Then the Zero-
ment parameter()y’ =fi/(m'a;’) and the magnetic field temperature conductance can be expressed in terms of the
B*=ﬁc/(eaoz). As such, by defining the unit of the cyclotron incident electron energi of the form
frequency to beu;:QB, the cyclotron frequency simply has
the dimensionless form.=B.
In the absence of scatterers the eigenfunctionsl ptan G(E) = TE To(E), (11)
be written a3 y*(x,y, k,) =e™y*(y k) with £k, being the =0
wave vector along % in the nth transverse subband, where whereN denotes the highest propagating mode incident from
x=(y,k,) satisfies the reduced dimensionless equation the source electrode. The current transmission coefficient

N
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Eg=1.0meV,V,; =-12meV, V, = 18 meV

Eq=1.0meV,V, =12meV, V, = -18 meV

FIG. 2. (Color online Quantum ring(uppey or dot (lower)
embedded in a quantum wire,B=0T, a,=33.7nm,
Eo=100=1.0 meV,B,a%=3.41, andB,a>=11.37.

T,(E) for an electron incident in thath subband from the
source electrode is given by

Ko/ RL
T(B)= > k—|tn,n|2. (12
n,(;/,nr>0) n
The current reflection coefficielR,(E) can be calculated by
a similar form to get the current conservation condition for
checking the numerical accuracy.

B. Scattering matrix via Lippmann-Schwinger formalism

PHYSICAL REVIEW B 71, 235302(2005

Ve(py) = f dx e(x,y)e "™ (14
and expand them in channel modes
‘PE(piy) = E ¢n(p)¢n(p!y)i (15)

i.e., in terms of the eigenfunctions for the pure parabolically
confined wire in a magnetic field

1(y—Yo
o -

A
V2 i ay,

dn(p.y) = (16)

/]
Hﬂ( y- yo) |
ay
with the center coordinatg,= pafvwcl Q,,. These eigenmodes
of the pure quantum wire have the energy spectrum
Enp=En+* n(p) with E,=%{,(n+1/2) and

(pay)? (i)
2 hQ,

Using Egs.(14)—(17) and performing a Fourier transform
with respect to the coordinatetransforms the Schrodinger
equation corresponding to the Hamiltonidr) into a system

of coupled nonlocal integral equations in momentum space,

Kn(p) = 17

d
k(@ en(@) + 2 f Z?_Vnn’(q! P)en (p) = (E-Epen(a),

(18

where

Vo (Q,p) = f dy (@, V(@-p,Y)dn(py) (19

and

V(a-py) = f dx € TPHV(x,y). (20
The matrix element&l9) and(20) for the scattering potential
(13) can be evaluated analytically since they consist of Gaus-
sians and Hermite polynomialsee Appendix B

The special form of the part of the energy dispersion
kq(q) for parabolic confinement allows us now to rewrite Eq.
(18) as

{- (qa,)* + [kn(B)aw]en(a)

We consider a quantum dot or ring embedded in the wire

and parametrize the scattering potential accordingly, combin-

ing two Gaussian functions of different shapes

Vedr) = Vg exp(= B1r?) + V, exp(— Bar?),

as is shown in Fig. 2.
Together the magnetic field and the p
define a natural length scale,=\%/(m)Q,, where

Q= \J’wc+Q§, with the cyclotron frequency,=eB/(m'c),

(13

e parabolic confinement

_2hQ,
(1Qp)?

d
2 J zpvnn’(Q-p)(Pn’(p): (21)
n’ ™

where we have defined the effective band momenig(&)
as

[ka(E)]? (A Q0)°

E-Ey)= .
(E-En 2 n0,

(22)

is the natural frequency of the quantum wire in a magnetidn the absence of a magnetic field it is possible to derive an

field.
Along the lines of Gurvitz we choose to use the mixed
momentum-coordinate presentation of the wave funclions

equivalent effective one-dimensional multiband Schrddinger
equation equivalent tq21) in coordination spac®.This
multiband equation is then usually transformed into a system
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of effective one-dimensional coupled Lippmann-Schwinger Symbolically the wave function can be expressed as
integral equations that is convenient for numerical computag,=(1+GT)¢? if the in-state¢? is given. Together with Egs.
tion. Here we can proceed along these lines, but the magnettlg4) and (15) this gives

field forces us to do this in momentum space where we shal _

see that the corresponding Lippmann-Schwinger equations  #&(x,y) = €“*¢ (K, y)

are better transformed into integral equations forTthmeatrix

in order to facilitate numerical evaluation. Considering Eq. + fm—aNeinGg‘(q)?l'mn(q,kn)¢m(q,y)
(21) it is clear that the incoming scattering states satisfy m 2m
{~ (qa)? + [ky(E)au [P} ep(a) = 0, (29 (29)
which implies a Green’s function for an incident electron with enerdy in_ moden with mo-
X - mentumk,. To calculate the wave function the same methods
{- (qa)” + [k\(B)a,J}Ge(g) = 1. (24)  are used to isolate the contribution from the poles of the

The Green’s function can now be used to write downGreen’s function as were used for the calculatiorT aith
coupled Lippmann-Schwinger equations in momentum spacgd- (26).

dp avy
en(0) = (@) + GRA) > f = Vo (@, D) (P), lll. RESULTS
n’ A. Embedded barrier

(29) In this section, we present our numerical results of explor-

Y _ i lectronic transport properties using a Gaussian-shape
where V., (9, ) =V, (9, p)25Q,,/[a,(5Q0)?]. These equa- M9 €€ _
tions are inconvenient for numerical evaluation as the inlPotential model described by E()—the conductance ver-

; . . - : the incident electron ener@y The parameters used to
state¢? is proportional to a Dirad function. Symbolicall Sus 1 .
n 1S PTOp 04 7 y_ ) y obtain our numerical results are taken from the GaAs-
Eq.(25) can be expressed as-¢"+GVgp, and an iteration of 5| G5 As heterostructure system. The values that we

the equation gives ¢=¢°+GVe?+GVGVe®+--=(1  choose for our material parameters &¢,="5.93 meV and
+GT)¢? where we have introduced tAematrix satisfying a0=9.79 nm.

e symbolc equatiofi =V VG, Fuly witen, the equa- 5 [ SOTUUEAN QLY of o wre = presetean P
tion determining theél' matrix is 9 ' P

port properties it is convenient to show the conductance as a
T (a,0) = Vo (0, p) function of energy of the incoming electron state scaled by
the subband energy level spaciKgE/#(,,+1/2 such that
dk a,~ m o the integral values o indicate the number of incident
+ 2 J_Zw Vo (4, KGE (K Tony (K, p). modes. In Fig. 3, we present the conductance for magnetic
m fields with strengths from 0to 2.4 T for either weak
(26)  (Vo=-6 meV) or strong(Vo=-12me\} attractive potentials,
&s shown in Figs. @) and 3b), respectively. For the case
of the weak attractive potential shown in Fig(aB one
can see that the dip structures@{E) are pinned at around

This set of equations is easier to solve humerically than th
equivalent Lippmann-Schwinger Eq&5) after the singu-

larities of the Green’s function have been handled with spe e | )
cial care!® We obtain analytically the contribution of the X=Nn+0.85, and the location is insensitive to the magnetic
poles of the Green's function and perform the remainingf'eld- It turns out that these structures correspond to the elec-

principal part integration by removing the singularity by sub-trons incident from subband_ scattergd elastically into the
traction of a zerd415 n+1 subband threshold forming quasibound stét¢san be
Comparison with the nonseparable two-dimensionadémonstrated that these quasibound states are formed in the

Lippmann-Schwinger equation in configuration space for thd€@ds out of the embedded Gaussian potetftial. _
extended scattering potential in a magnetic field gives the FOr the case of the strong attractive potential shown in
connection between tHE matrix and the probability ampli- F19- 3b), one can see that there are two types of quasibound
tude for transmission in mode with momentumk, if the state features. The mechanism of sharp dips below the sub-

in-state is in moden with momentunk,, band threshold is similar to the case of the weak attractive
— potential. On the other hand, it is interesting to see the valley
i\(km/kn)(ﬁ_ﬂo 2.~r K ) structures in Fig. 3 foB+0. These valleys correspond to
2(knay) \7Q, Kk (27) quasibound states formed in the attractive Gaussian poten-
. ) _ . tial. When the applied magnetic field becomes stronger, the
The conductance is then according to the Landauer-BUttikgs,eshift of these valleys indicates that such quasibound

tnm(E) = 5nm -

formalism defined as states are formed closer to the edge of the Gaussian potential
262 due to the cyclotron motion. The large width of these valley
G(E) = TTf[tT(E)t(E)], (28)  structures implies the short lifetime of these quasibound
states. When increasing the strength of the magnetic field,
wheret is evaluated at the Fermi energy. these valleys become wider. This indicates that the electrons
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FIG. 3. (Color onling Conductance of a parabolically confined
wire as a function of the energy paramedrE/AQ,,+1/2 for
various applied perpendicular magnetic fields. The amplitudes of
the attractive impurity potential af@ -6 and(b) —12 meV. Other
parameters arBwy=6 meV andﬁzaﬁ,(B:O):l.897.

in high magnetic field with short cyclotron radius easily es-
cape from the quasibound states formed in such a strong
attractive potential. We note in passing that in the absence of
magnetic field, the intersubband transition is forbidden since
the attractive potential is uniform in the transverse direction,
and we cannot see any dip structuresS(E).

In Fig. 4, we study how the conductance can be
affected by changing the amplitude of the attractive potential
by fixing the strength of the magnetic fieRE=1 T, the con-
fining potentialiw,=6 meV, and the Gaussian parameter
B,82(B=0)=1.897. In the absence of the Gaussian potential
[solid (red) curve], the electron transport manifests an ideal
quantized conductance, the magnetic field plays no role.
When increasing the amplitude of the attractive potential, the
subband levels in the potential will decrease in energy.
Therefore, we can find a redshift of the quasibound states.
More precisely, for the cases of,=-3, -6, -12, and
-18 meV, the dip structures occur at arouati(),=1.95,
1.84, 1.54, and 1.17, respectively, in the attractive potential.
It is also interesting to note that when the attractive potential
is very strong, such ag,=-18 meV, one can see a second

are quasibound states of the attractive potential.

G(E)/G

G(E)/G,

G(E)/G,

4
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Vo= 0 meV

0
3 meV

Vo= -
Vo=-6meV e

VO= -12 meV
Vo= - 18 meV

FIG. 4. (Color online Conductance of a parabolically confined
wire as a function of incident electron energy for various ampli-
tudes of attractive potential. The other parameters are taken to be
B=1T, hwy=6 meV, andB,a3(B=0)=1.897.

presence of a repulsive potential. The magnetic fields are
tuned from O to 2.4 T for either wedk/,=6 meV) or strong
(Vo=12 meV) repulsive potentials, as shown in Figqab
and 3b), respectively. For the case of the weak repulsive
potential shown in Fig. &), one can see that the conduc-

T
[osRusHusRuslus)
| L [ |
PREOO

T
[seuslusRuslue)
I mn
PR2OO

FIG. 5.

. ; (Color online Conductance as a function of
dip structure appearing below the subband thresholds; botfcident electron energy with various applied magnetic fields.

The amplitudes of the repulsive potential barrier &g=(a) 6

Figure 5 shows the conductance as a function of incidenand (b) 12 meV. Other parameters arédwy=6 meV. and
electron energy for several values of magnetic field in thes,a2(B=0)=1.897.
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tance plateaus are suppressed from the ideal case. When i
creasing the applied perpendicular magnetic field, the sup 3| B
pressed conductance plateaus tend to be enhanced back g
the ideal case. For the case of a strong repulsive potentia g
[see Fig. B)], the conductance curves are suppressed mucl ' P .
more than those for the weak repulsive potential. In the ab-o 2 - /
sence of magnetic field, the conductance increases linearls i *
with X; while increasing the external magnetic field, the &
guantization behavior i becomes slowly recognizable.

To conclude this section, we note in passing that when the
scattering potentialwell or barried is uniform in the trans- 1 —
verse direction it does not break the translational invariance (a)
along the lateral confining direction. However, in the pres- §
ence of a magnetic field, if such a scattering potential is a 1 2 3 4
well then one can find quasibound states due to elastic inter X
subband transitions to a higher subband threshold. Howevel
if the scattering potential is a barrier, one finds no quasi-
bound state features even in a magnetic field up to 2.4 T.

n
1

oo
[
=220
nNO oo
———

B. Embedded quantum ring and dot

To model an embedded quantum ring with the parametri-
zation(13) we initially choose the parameters used in Fig. 2,
such that whenB=0 then B,a2=3.41, B,a2=11.37, and
#Q,=1.0 meV.[The parameters of the potential3), 8; and ot ol
B, do not depend orB, but a, does] V;=-12 meV and .| B
V,=18 meV. We are thus investigating a relatively broad s
wire with a small embedded ring structure with diameter of
approximately 40 nm. We assume the wire to be a GaAs wire N (b)
as mentioned above. The conductari28) of the wire is :
presented in Fig. 6 for several values of the magnetic field.
To compare the results for various values of the magnetic
field it is convenient to observe the conductance as a func
tion of the energy of the incoming electron state scaled by
the distance of the energy subbands, i#.(2Q,)=E/E,,
and furthermore usX=E/#(,,+1/2 such that the integral a0
value of X indicates the number of incident modes. 8T [

In Fig. 6(@ we see that as soon as the magnetic field isg
different from zero a strong Fano-like'® resonance dip ap-
pears in the first plateau just abowe=1.5. As we argue
below the dip corresponds to a destructive quantum interfer- 3
ence between a quasibound state in the ring and an in-state« ¢}, .. | j
the wire. Figure 7 displays the total probability to find an 3

G(E)Gq

o

G(EY/
[\V]

electron in the wire close to the scattering center, the quan: ! (c)
tum ring. The probability is calculated using the wave func- o , , ,
tion (29) for two values of the energy of the incoming elec- 1 2 3 4

tron in the lowest transverse modes=0. Just below the X
resonance aX=1.4, Fig. 1a) reveals to us a normal scatter-
ing process. The scattering only takes place very close to
x=0 and on the left-hand side we see the interference paf;
tern for_ the incoming and the reﬂectgd waves. On the rlght-:11_37’ and nine subbands are ineluded.
hand side the electrons only travel in one transverse mode
and only to the right so we have a constant probability al-

ready a short distance away from the scattering center. The The symmetry of the quasibound state indicates that it is
situation is quite different in Fig. (B) which displays the an evanescent state belonging to the second subivarid
probability density for the state exactly in the resonance dipWithout a magnetic field the scattering via the evanescent
Here no transmitted wave is present, but the probability closstate in the second subband is forbidden in the case of a
to the quantum ring is high enough that the probability forsymmetric potential placed in the middle of the wire. In that
the incoming and the reflected waves is not visible on thecase a dip occurs in the second band due to a scattering
color scale used. through a evanescent state in the third subliehd.

FIG. 6. (Color online The conductance of a parabolic wire with
n embedded ring in units @,=2¢e?/h. E,=4Q,, V;=-12 meV,
,=18 meV, #%0,=1.0 meV, pB,a3(B=0)=3.412, B,a(B=0)
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2.0 T T T

E,=6.0 meV
Eq=5.0 meV jazeed 5
Eq=4.0meV .. P
E,;=3.0meV - r T
15} Ey=2.0 meV / i
Eq=1.0 meV
<) %
(\D :
g 10 -
G
05} - 1
(a)
0.0 —=
1.0 25
10} /i 1
pr—ssnie p EoA It
i - ~——
S PR s B I
© o5f | : V;=-10 meV .
I i | Vy=-11 meV
li i Vi=-12meV -
j ; V4=-13 meV
l V,=-14 meV
FIG. 7. (Color onling The probability density of the scattering (b)
state =(x,y) in the parabolic quantum wire in the presence of an 0.0 L
embedded quantum ringig. 2), corresponding to the conductance 1.0 1.5 « 20 25
in Fig. 6(a@) atB=0.1 T. The incident energ¥=1.4 (a) and 1.538
(b), corresponding to the dip in the conductance. FIG. 8. (Color onling The conductance of a parabolic wire with

In order to further support our view that the resonance i e.mbedded fing in units @,=2¢"/h as a funCtion of the wire
. - . confinement Eg=%(, (a) and depth of the ringV, (b).

due to a quasibound state of the quantum ring located in th92:18 meV, ;a3(B=0)=3.412,8,a(B=0)=11.37, and nine sub-
continuum of the flrst subbfar{dhe ring Iowc_ars a state in the pands are includedB=08 T and Vy=-12 meV in (@. E,
second subband into the first oneve see in Fig. &) how -1 5 mev andB=0.1 T in (b).
the broadening or narrowing of the wire has little effect on
the energy of the state. On the other hand, as seen in Figaentally reported for both a single electron transftand
8(b) the energy of the quasibound state changes linearly witlin Aharonov-Bohm interferometer with an embedded quan-
the depth of the ring potential. The Fano resonance is formetim dot?%:22Nevertheless, in these two experiments the wire
when the in-wave is perturbed by the scattering potential andvas much smaller than the mesoscopic system that caused
since multiple scattering is inherent in the Lippmann-the Fano interference. The results presented here suggest that
Schwinger equation an attractive scattering potential can leaithis may be observed also in the case of a broad wire.
to resonances that are remnants of the resonances of the po-At still higher magnetic fieldsee Fig. €c)], the conduc-
tential well in the energy continuum of the wire system.  tance has approached the ideal case as the magnetic field has

For some intermediate values of the magnetic field we seaow squeezed the wave functions together and closer to the
other minima occurring in the conductance closer to the engdge as soon as the momentum is different from zero. The
of the first step. For example, f@=0.8 T this is visible in  wave function thus bypasses the scattering potential. We
Fig. 6(b) at X=1.933 and 1.991. The corresponding probabil-shall see this effect clearer below.
ity densities are seen in Fig. 9. The conductance of a wire with an embedded dot is pre-

The symmetry of both densities indicates that the dips argented in Fig. 10.
caused by scattering via evanescent states of the second sub-The effects of an increasing magnetic field become very
band just like the dip in the middle of the first conductanceclear if we compare the probability density for the dip at
step. These states are quasibound states of the ring further¥+=1.679 whenB=0.6 T, and the one aK=1.557 when
the continuum of the first subband. The higher state, FigB=1.2 T (see Fig. 11 Both cases show a partial blocking of
9(b), has acquired more of the character of the geometry ofhe channel due to backscattering caused by a quasibound
the wire than the ring, and it extends far beyond the ring. Thestate created by an evanescent state of the second subband,
presence of Fano line shapes in the conductance is not susut the main difference is the total separation of the incom-
prising as the mesoscopic Fano effect was already expering and the reflected channel at the higher magnetic field. At
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FIG. 9. (Color onling The probability density of the scattering (b)
state =(x,y) in the parabolic quantum wire in the presence of an ) \ .
embedded quantum ringrig. 2), corresponding to the conductance 1 2 3 4
in Fig. 6(b) atB=0.8 T. The incident energ§=1.933(a) and 1.991 X

(b), corresponding to two minima in the conductance at the end of

the first step. FIG. 10. (Color onling The conductance of a parabolic wire

with an embedded dot in units 06y=2€?/h. V;=12 meV,
the lower magnetic field we still see a interference pattern/,=-18 meV, #0,=1.0 meV, B,a2(B=0)=3.412, B,a2(B=0)
between these channels. =11.37, and nine subbands are included.
To explore further the scattering from the embedded dot
when there is not a complete separation between the edgdown in Fig. 14 compared to the smaller ring used in the
and bulk channels we show the probability density forpreceding calculations.
X=2.235 atB=0.6 in Fig. 12. This energy corresponds to a  Of course the parabolic confinement of the wire always
dip seen in Fig. 1®). leads to the situation that at a high enough magnetic field the
Due to the magnetic field and the scattering potentialedge states will not be scattered by the quantum ring poten-
there is always a scattering between these two channels irrgial, but now at an intermediate field strength the magnetic
spective of whether the in state belongs to tiwe0 [Fig. length compares more favorably with the size scale of the
12(a)] or then=1 [Fig. 12b)] mode. This is visible in the ring as can be seen in the conductance displayed in Fig. 15
probability density with interference pattern in all channels.for bothB=0 and 1 T.
The situation is completely different at the higher mag- At B=1 T we see oscillations growing in wavelength with
netic fieldB=1.2 T seen in Fig. 13. Here the same scalecE or k,(E) both for moden=0 and 1.
energy as beforeX=2.235, corresponds to a peak in the The oscillations in the conductanceBt1 T are caused
conductance displayed in Fig. (). by a simple geometrical resonance where the wavelength of
The value of the conductance peak indicates that there ithe scattering state in the ring has to compare appropriately
very little backscattering. The edge chanfiet0) is almost ~ with the circumference of the ring to build constructive or
entirely tranmitted as Fig. 18 shows, but a quasibound destructive interference, i.e., an Aharonov-Bohm-like effect.
state is seen in Fig. 18) belonging to the same subband as This also explains the growing wavelength of the oscillation
the instate. with (E-Ep). Even though the same condition lies at the root
The small quantum ring embedded in the broad Wiig.  of the energy spectrum of stationary states in a ring in equi-
2) is to small to show any indication of Aharonov-Bohm librium we are not probing here the energy spectrum of the
oscillations, and as the magnetic length gets smaller witliing. We would like to mention that a similar oscillatory
increasing field strength the edge states bypass the ring. Teehavior of the conductance as a function of the energy was
change this situation we also did calculations for a larger ringeported by Sivaret al?® in the case of a quantum dot in
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FIG. 12. (Color onling The probability density of the scattering
-20 -10 0 10 20 stateye(X,y) in the parabolic quantum wire in the presence of an
x/a embedded quantum défig. 2), corresponding to the conductance
w in Fig. 10(a) at B=0.6 T for a state with incident energ¢§=2.235,

FIG. 11. (Color onling The probability density of the scattering N Moden=0 (&) andn=1 (b).
state =(x,y) in the parabolic quantum wire in the presence of an
embedded quantum défig. 2), corresponding to the conductance
in Fig. 10. The incident energX=1.679 atB=0.6 T (a) and
X=1.557 atB=1.2 T (b), corresponding to two minima in the con-
ductance at the end of the first step.

high magnetic field. Since in high magnetic field the cyclo-
tron radius is smaller than the ring radius one expects the
electrons to travel within the ring along skipping orbits be-
fore they leave through the wire.

The large size of the embedded ring in this case and its
finite depth mean that quasibound states will not be of the
same simple structure as seen for the smaller ring. This can
be verified by the probability densities shown in Fig. 16 for
the two dips aX=1.319 and 1.347, and for the maximum at
1.425.

The total transmission of the only mode=0, in Fig.
16(c) causes the perfect left-right symmetry, but the prob-
ability density in Fig. 16a) corresponding to the dip
at X=1.319 reflects the asymmetry caused by the confining
parabolic potential to the ring seen in Fig.(i4 The struc-
ture of the evanescent states in Figs(al@&nd 1&b) indi-
cates that they are caused by states in the third and fifth
energy bands and probably also states in higher bands. This
persistence of eigenstates or scarring of wave functions in
open systems has been discussed by &kial2* for quan-
tum dots, and here we confirm it for an open quantum ring.

Superimposed on the Aharonov-Bohm-like oscillations in  FIG. 13. (Color onling The probability density of the scattering
the conductance in Fig. 15 we have narrow resonances thafate y(x,y) in the parabolic quantum wire in the presence of an
are caused by interaction with quasibound states of the ringmbedded quantum d¢Eig. 2), corresponding to the conductance
In Fig. 17a) we show the probability density for the scatter- in Fig. 1Qb) atB=1.2 T for a state with incident energg=2.235,
ing state for a Aharonov-Bohm peakt1.46. The density in moden=0 (a) andn=1 (b).
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FIG. 14. (Color online A contour plot of the potential of an
embedded quantum ring in wiréa) a ring with ﬁla%,=3.41 and
,Bzafv= 11.37, corresponding to the ring in the upper panel of Fig. 2.
(b) A large ring with 8,a%(B=0)=0.0682 andB,a:(B=0)=0.682.
Ey=70,,=1.0 meV,a,=33.7 nm atB=0 T.

-10 0 10
for a minimum in the oscillation is similar except for the X2y
addition of the reflected wave. In Fig. ®f we display the
probability density for the first narrow resonance seen, aki,
X=1.135. Here we can identify a long lived evanescent statg o qqed large quantum rif§ig. 14b)], corresponding to the

FIG. 16. (Color onling The probability density of the scattering
teye(X,y) in the parabolic quantum wire in the presence of an
in the second subband. conductance in Fig. 15 &=0 T for a state with incident energy
X=1.319 corresponding to a di@), X=1.347 in a dip(b), and
X=1.425 at a maximunfc). The incoming mode is=0.

15 | IV. SUMMARY

We have successfully extended a multiband transport for-
malism build on the Lippmann-Schwinger equation in a
magnetic field to be able to describe an unbiased transport
through a broad wire with embedded small or large quantum
dots and rings defined by a smooth potential. The calculation

1.0 -

G(E)/G,

05 of the probability density for the scattering states allows us
to shed light on internal processes and resonances that in
some cases reflect interaction between states in several sub-

0.0 bands of the wire. We observe well known evanescent states

and Fano resonances produced by these interactions. In the
case of a large ring with finite width we observe Aharonov-

FIG. 15. (Color onling The conductance of a parabolic wire Bohm type of oscillations superimposed with narrow reso-
with a large embedded ringorresponding to Fig. 18)] in units ~ hances reflecting its energy spectrum.

of Gg=2€*/h. V,;=-12meV, V,=18 meV, #Qy=1.0 meV, Due to the wide range of system parameters used we had
B122(B=0)=0.0682, 3,a2(B=0)=0.682, and 13 subbands are to pay extra attention to the accuracy of the numerical meth-
included. ods employed.
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Py k) = €90y, ke) + 2 1 e (k)

(A2)

for x<x;, and

Uy k) = S e N0 k) (A3)

for x>x;. Following a similar procedure we can also obtain
the reflection and transmission coefficieﬁﬁ1 andf'n,n for a

8 left-going incident wave. Performing the piecewise matching
at x=x; and multiplying these boundary conditions by the
eigenfunctiony,(y) of the ordinary unshifted harmonic os-
cillator with confining frequency),,, and integrating ovey,
one obtains Eq95) and (6).

N

ylay
o

APPENDIX B: MATRIX ELEMENTS OF THE
SCATTERING POTENTIAL

The matrix elements of the potential represented by a
single Gaussian functiow'=V, exp(-B,x*-B,y?) is accord-
ing to Egs.(19) and(20)

FIG. 17. (Color online The probability density of the scattering 2
state =(x,y) in the parabolic quantum wire in the presence of an Vo (G,p) =V, aw\/zexp{— M] a,p)
embedded large quantum rifj§rig. 14b)], corresponding to the nn 0 nn
conductance in Fig. 15 &=1T for a state with incident energy (B1)
X=1.46 corresponding to a pe&), andX=1.135 in a narrow dip

(b). The incoming mode is=0. where

’ = y Y y2 ’
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APPENDIX A: PIECEWISE MATCHING OF MODES (q )Hp( V25)H,(= V25y)

To utilize the mode matching method, we divide the min(n-p,n’-q) n-p\/n'-q
Gaussian scattering potential into a series of slices of width X > 2I'( )( | )
oL, each of them is described bydprofile potential 1=0
- _ 22 _ 2
Vsd X)) = Vool exp(= Bx) (X = ;). (A1) X bN/Z_'HN_z(Z\ / E)’ (B3)

As such, the Gaussian potenti@l) can be described by

Vedr)= E,NLlVSC(x) For a right-going incident wave where N=n+n'-p-q, $,=Yg=Kjawoc/Quw, z=(S*+Sy)/
#(x,y,k,) from thenth mode of the left reservoir, the corre- (2\C) C—(1+,8yafv) and b=(1-2/C). When the
sponding scattering wave function can be expressed in theariable b assumes negative values the combination
form (Vb)N AHpg (- /\rb) still supplies the correct real value.
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