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We investigate the transport through a quantum ring, a dot, and a barrier embedded in a nanowire in a
homogeneous perpendicular magnetic field. To be able to treat scattering potentials of finite extent in a
magnetic field we use a mixed momentum-coordinate representation to obtain an integral equation for the
multiband scattering matrix. For a large embedded quantum ring we are able to obtain Aharonov-Bohm type of
oscillations with superimposed narrow resonances caused by interaction with quasibound states in the ring. We
also employ the scattering matrix approach to calculate the conductance through a semiextended barrier or well
in the wire. The numerical implementations we resort to in order to describe the cases of weak and intermediate
magnetic field allow us to produce high resolution maps of the “near field” scattering wave functions, which
are used to shed light on the underlying scattering processes.
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I. INTRODUCTION

The influence of a single impurity on the conductance of a
quasi-one-dimensional quantum channel has been investi-
gated by several groups theoretically1–4 and experimentally.5

Commonly the impurities are considered to be short range
and represented by ad function, though treatments of more
extended scatterers, like square barriers,2 can be found. Re-
cently, the application to nanosized systems has spurred the
use of general methods built on the Lippmann-Schwinger
equation or the equivalentT-matrix formalism to describe
the scattering of more general extended potentials in quan-
tum channels6 or curved wires.7

The inclusion of a constant homogeneous magnetic field
perpendicular to the quasi-one-dimensional electron channel
or wire drastically changes the properties of the system.
Without the magnetic field a centered symmetric scattering
potential leads to “selection rules” that restrict the possible
scattering processes. These are lifted by the magnetic field,
resulting in a rich structure contrasted with the conductance
steps in an ideal wire as long as the magnetic length is not
much shorter than the width of the wire and the range of the
scattering potential.8

The character of the Lorentz force does not allow us to
establish a simple multimode formulation of the scattering
process in configuration space,4 but in a strong magnetic
field Gurvitz used a scheme to develop a multimode formal-
ism using a Fourier transform with respect to the transport
direction, and a truncation to a two-mode formalism allowed
him to seek analytical solutions for a short range scatterer
present in a wire with general confinement.9

Here we extend this formalism by noting that in the case
of a parabolic shape of the wire confinement we obtain
coupled Lippmann-Schwinger equations with a nonlocal
scattering potential in Fourier space for the different modes.
A transformation of this system of equations to correspond-
ing equations for theT matrix shows that it bears a strong

resemblance to the corresponding equations for the system in
no external magnetic field.6 We exploit this fact to seek nu-
merical solutions for the system in weak and intermediate
strength of the magnetic field where a two-mode approxima-
tion is not always warranted. One benefit of the numerical
approach is that it allows us to map out with high resolution
the probability density for the scattering states near the scat-
terer. These “near field” solutions give us a good indication
of the scattering process itself. We explore a quantum wire
with an embedded quantum dot or a ring. We are able to
increase the size of the ring to the limit where we observe
Aharonov-Bohm type of oscillations.

In order to investigate the scattering of potentials that are
homogeneous in the direction perpendicular to the wire rep-
resenting a barrier or a well we employ an alternative faster
method based on mode matching. The smooth scattering po-
tential is sliced into a series ofd potentials. The scattering
matrix is then constructed from repeated mode matching at
each slice. This mode matching approach is faster since the
homogeneity of the scattering potential in the transverse di-
rection is explicitly used in its numerical implementation, but
the formalism built on the Lippmann-Schwinger approach is
kept general, applicable for any reasonable localized poten-
tial.

II. MODELS

We consider electron transport along a parabolically con-
fined quantum wire parallel to thex axis and perpendicular to
a homogeneous magnetic fieldB=Bẑ. In the center of the
wire the electrons are scattered by a potentialVscsr d to be
specified below. The system under investigation is described
by the HamiltonianH=H0+Vscsr d with

H0 =
"2

2m* F− i = −
eB

"c
yx̂G2

+ Vcsyd, s1d

where the wire is assumed to be parabolically confined,
namely, Vcsyd=m*V0

2y2/2 with m* and V0 being, respec-
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tively, the effective mass of an electron in GaAs-based ma-
terial and the confinement parameter. Here −e is the charge
of an electron. We present two quite different approaches to
describe the scattering process of incoming electron states,
one using wave function matching appropriate to describe
scattering from a thin homogeneous barrier or well perpen-
dicular to the wire, and the other one using aT matrix for-
malism to calculate the scattering of an embedded quantum
dot or ring in the wire.

A. Scattering matrix via mode matching

In this section, we employ a mode matching approach to
the calculation of a coherent electronic transport in a quan-
tum wire in the presence of a Gaussian-profile scattering po-
tential. The potential under investigation can be realized as a
finger gate atop the wire and can be modeled by

Vscsr d = V0 exps− bx2d, s2d

as is shown in Fig. 1.
To obtain a dimensionless expression we employ the Bohr

radiusa0, and have thus the relevant units for the confine-
ment parameterV0

* =" / sm*a0
2d and the magnetic field

B* ="c/ sea0
2d. As such, by defining the unit of the cyclotron

frequency to bevc
* =V0

* , the cyclotron frequency simply has
the dimensionless formvc=B.

In the absence of scatterers the eigenfunctions ofH0 can
be written as9 c±sx,y,knd=e±iknxx±sy,knd with ±kn being the
wave vector along ±x̂ in the nth transverse subband, where
x±sy,knd satisfies the reduced dimensionless equation

F−
]2

]y2 + Vw
2sy 7 and2Gx±sy,knd = Enx±sy,knd, s3d

which is a harmonic oscillator of frequencyVw with a
shifted centeran=vckn/Vw

2. These eigenmodes of the elec-
tron in a state described bycsx,y,knd in a pure quantum wire
have the energy spectrumE=En+Ksknd, composed of Lan-
dau levelsEn=sn+1/2dVw, whereVw=Îvc

2+V0
2, shifted by

the confining potential, and the kinetic energy
Ksknd=kn

2sV0/Vwd2. The eigenfunctionsx±sy,knd of the
eigenmodes are given by

x±sy,knd = NnHnfÎVwsy 7 andgexpF−
Vw

2
sy 7 and2G ,

s4d

whereNn=sVw/pd1/4s2nn!d−1/2 is a normalization constant.
Using the scattering-matrix method and piecewise match-

ing ssee Appendix Ad,10,11one can obtain the transport equa-
tions

o
n8

Imn8
+ skn8dtn8n

i − o
n8

Imn8
− skn8drn8n

i = Imn
+ sknd s5d

and

o
n8

Jmn8
+ skn8dtn8n

i + o
n8

Kmn8
− skn8drn8n

i = knImn
+ sknd, s6d

where the matrix elements are related to the overlap integrals

Imn8
± =E xmsydxn8

± syddy, s7d

Jmn8
+ skn8d = kn8Imn8

+ skn8d + iV0Vmn8
+ s8d

with

Vmn8
+ =E xmsydVscsydxn8

± syddy s9d

and

Kmn8
− skn8d = kn8Imn8

− skn8d. s10d

Using Eqs.s5d and s6d and the corresponding equations
for r̃n8n

i and t̃n8n
i , one can establish the scattering matrix for

the Gaussian-shape potential.12 From the ratio of the trans-
mitted and the incident current we obtain the currents trans-
missionTba, in which a andb are, respectively, the incident
and the transmitting lead. In the following, we assume that
the scattering potential is located at the center of the wire and
the source-drain bias is sufficiently low. Then the zero-
temperature conductance can be expressed in terms of the
incident electron energyE of the form

GsEd =
2e2

h
o
n=0

N

TnsEd, s11d

whereN denotes the highest propagating mode incident from
the source electrode. The current transmission coefficient

FIG. 1. sColor onlined Well or barrier embedded in a quantum
wire with V0=sad −6 meV andsbd 6 meV, respectively. Other pa-
rameters are B=0 T, aw=33.7 nm, E0="V0=6.0 meV, and
baw

2 =1.897.
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TnsEd for an electron incident in thenth subband from the
source electrode is given by

TnsEd = o
n8smn8.0d

kn8

kn
utn8n

RL u2. s12d

The current reflection coefficientRnsEd can be calculated by
a similar form to get the current conservation condition for
checking the numerical accuracy.

B. Scattering matrix via Lippmann-Schwinger formalism

We consider a quantum dot or ring embedded in the wire
and parametrize the scattering potential accordingly, combin-
ing two Gaussian functions of different shapes

Vscsr d = V1 exps− b1r
2d + V2 exps− b2r

2d, s13d

as is shown in Fig. 2.
Together the magnetic field and the parabolic confinement

define a natural length scaleaw=Î" / sm*dVw, where
Vw=Îvc

2+V0
2, with the cyclotron frequencyvc=eB/ sm*cd,

is the natural frequency of the quantum wire in a magnetic
field.

Along the lines of Gurvitz we choose to use the mixed
momentum-coordinate presentation of the wave functions9

CEsp,yd =E dx cEsx,yde−ipx s14d

and expand them in channel modes

CEsp,yd = o
n

wnspdfnsp,yd, s15d

i.e., in terms of the eigenfunctions for the pure parabolically
confined wire in a magnetic field

fnsp,yd =

expF−
1

2
Sy − y0

aw
D2G

Î2nÎpn!aw

HnSy − y0

aw
D , s16d

with the center coordinatey0=paw
2vc/Vw. These eigenmodes

of the pure quantum wire have the energy spectrum
Enp=En+knspd with En="Vwsn+1/2d and

knspd =
spawd2

2

s"V0d2

"Vw
. s17d

Using Eqs.s14d–s17d and performing a Fourier transform
with respect to the coordinatex transforms the Schrödinger
equation corresponding to the Hamiltonians1d into a system
of coupled nonlocal integral equations in momentum space,

knsqdwnsqd + o
n8
E dp

2p
Vnn8sq,pdwn8spd = sE − Endwnsqd,

s18d

where

Vnn8sq,pd =E dy fn
*sq,ydVsq − p,ydfn8sp,yd s19d

and

Vsq − p,yd =E dx e−isq−pdxVscsx,yd. s20d

The matrix elementss19d ands20d for the scattering potential
s13d can be evaluated analytically since they consist of Gaus-
sians and Hermite polynomialsssee Appendix Bd.

The special form of the part of the energy dispersion
knsqd for parabolic confinement allows us now to rewrite Eq.
s18d as

h− sqawd2 + fknsEdawg2jwnsqd

=
2"Vw

s"V0d2o
n8
E dp

2p
Vnn8sq,pdwn8spd, s21d

where we have defined the effective band momentumknsEd
as

sE − End =
fknsEdg2

2

s"V0d2

"Vw
. s22d

In the absence of a magnetic field it is possible to derive an
equivalent effective one-dimensional multiband Schrödinger
equation equivalent tos21d in coordination space.4 This
multiband equation is then usually transformed into a system

FIG. 2. sColor onlined Quantum ringsupperd or dot slowerd
embedded in a quantum wire,B=0 T, aw=33.7 nm,
E0="V0=1.0 meV,b1aw

2 =3.41, andb2aw
2 =11.37.
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of effective one-dimensional coupled Lippmann-Schwinger
integral equations that is convenient for numerical computa-
tion. Here we can proceed along these lines, but the magnetic
field forces us to do this in momentum space where we shall
see that the corresponding Lippmann-Schwinger equations
are better transformed into integral equations for theT matrix
in order to facilitate numerical evaluation. Considering Eq.
s21d it is clear that the incoming scattering states satisfy

h− sqawd2 + fknsEdawg2jwn
0sqd = 0, s23d

which implies a Green’s function

h− sqawd2 + fknsEdawg2jGE
nsqd = 1. s24d

The Green’s function can now be used to write down
coupled Lippmann-Schwinger equations in momentum space

wnsqd = wn
0sqd + GE

nsqdo
n8
E dp aw

2p
Ṽnn8sq,pdwn8spd,

s25d

where Ṽnn8sq,pd=Vnn8sq,pd2"Vw/ faws"V0d2g. These equa-
tions are inconvenient for numerical evaluation as the in-
statewn

0 is proportional to a Diracd function. Symbolically

Eq. s25d can be expressed asw=w0+GṼw, and an iteration of

the equation gives w=w0+GṼw0+GṼGṼw0+¯ =s1
+GT̃dw0, where we have introduced theT matrix satisfying

the symbolic equationT̃=Ṽ+ṼGT̃. Fully written, the equa-
tion determining theT matrix is

T̃nn8sq,pd = Ṽnn8sq,pd

+ o
m8
E dk aw

2p
Ṽnm8sq,kdGE

m8skdT̃nm8sk,pd.

s26d

This set of equations is easier to solve numerically than the
equivalent Lippmann-Schwinger Eqs.s25d after the singu-
larities of the Green’s function have been handled with spe-
cial care.13 We obtain analytically the contribution of the
poles of the Green’s function and perform the remaining
principal part integration by removing the singularity by sub-
traction of a zero.14,15

Comparison with the nonseparable two-dimensional
Lippmann-Schwinger equation in configuration space for the
extended scattering potential in a magnetic field gives the
connection between theT matrix and the probability ampli-
tude for transmission in moden with momentumkn if the
in-state is in modem with momentumkm,

tnmsEd = dnm−
iÎskm/knd
2skmawd

S "V0

"Vw
D2

T̃nmskn,kmd. s27d

The conductance is then according to the Landauer-Büttiker
formalism defined as

GsEd =
2e2

h
Trft†sEdtsEdg, s28d

wheret is evaluated at the Fermi energy.

Symbolically the wave function can be expressed as

w=s1+GT̃dw0 if the in-statew0 is given. Together with Eqs.
s14d and s15d this gives

cEsx,yd = eiknxfnskn,yd

+ o
m
E dq aw

2p
eiqxGE

msqdT̃mnsq,kndfmsq,yd

s29d

for an incident electron with energyE in moden with mo-
mentumkn. To calculate the wave function the same methods
are used to isolate the contribution from the poles of the

Green’s function as were used for the calculation ofT̃ with
Eq. s26d.

III. RESULTS

A. Embedded barrier

In this section, we present our numerical results of explor-
ing electronic transport properties using a Gaussian-shape
potential model described by Eq.s2d—the conductance ver-
sus the incident electron energyE. The parameters used to
obtain our numerical results are taken from the GaAs-
Al xGa1−xAs heterostructure system. The values that we
choose for our material parameters areERyd=5.93 meV and
a0=9.79 nm.

The conductance Eq.s11d of the wire is presented in Fig.
3 for several values of magnetic field. To explore the trans-
port properties it is convenient to show the conductance as a
function of energy of the incoming electron state scaled by
the subband energy level spacingX=E/"Vw+1/2 such that
the integral values ofX indicate the number of incident
modes. In Fig. 3, we present the conductance for magnetic
fields with strengths from 0 to 2.4 T for either weak
sV0=−6 meVd or strongsV0=−12meVd attractive potentials,
as shown in Figs. 3sad and 3sbd, respectively. For the case
of the weak attractive potential shown in Fig. 3sad, one
can see that the dip structures inGsEd are pinned at around
X.n+0.85, and the location is insensitive to the magnetic
field. It turns out that these structures correspond to the elec-
trons incident from subbandn scattered elastically into the
n+1 subband threshold forming quasibound states.6 It can be
demonstrated that these quasibound states are formed in the
leads out of the embedded Gaussian potential.16

For the case of the strong attractive potential shown in
Fig. 3sbd, one can see that there are two types of quasibound
state features. The mechanism of sharp dips below the sub-
band threshold is similar to the case of the weak attractive
potential. On the other hand, it is interesting to see the valley
structures in Fig. 3 forBÞ0. These valleys correspond to
quasibound states formed in the attractive Gaussian poten-
tial. When the applied magnetic field becomes stronger, the
blueshift of these valleys indicates that such quasibound
states are formed closer to the edge of the Gaussian potential
due to the cyclotron motion. The large width of these valley
structures implies the short lifetime of these quasibound
states. When increasing the strength of the magnetic field,
these valleys become wider. This indicates that the electrons
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in high magnetic field with short cyclotron radius easily es-
cape from the quasibound states formed in such a strong
attractive potential. We note in passing that in the absence of
magnetic field, the intersubband transition is forbidden since
the attractive potential is uniform in the transverse direction,
and we cannot see any dip structures inGsEd.

In Fig. 4, we study how the conductance can be
affected by changing the amplitude of the attractive potential
by fixing the strength of the magnetic fieldB=1 T, the con-
fining potential "vy=6 meV, and the Gaussian parameter
b2aw

2sB=0d=1.897. In the absence of the Gaussian potential
fsolid sredd curveg, the electron transport manifests an ideal
quantized conductance, the magnetic field plays no role.
When increasing the amplitude of the attractive potential, the
subband levels in the potential will decrease in energy.
Therefore, we can find a redshift of the quasibound states.
More precisely, for the cases ofV0=−3, −6, −12, and
−18 meV, the dip structures occur at aroundE/"Vw=1.95,
1.84, 1.54, and 1.17, respectively, in the attractive potential.
It is also interesting to note that when the attractive potential
is very strong, such asV0=−18 meV, one can see a second
dip structure appearing below the subband thresholds; both
are quasibound states of the attractive potential.

Figure 5 shows the conductance as a function of incident
electron energy for several values of magnetic field in the

presence of a repulsive potential. The magnetic fields are
tuned from 0 to 2.4 T for either weaksV0=6 meVd or strong
sV0=12 meVd repulsive potentials, as shown in Figs. 5sad
and 5sbd, respectively. For the case of the weak repulsive
potential shown in Fig. 5sad, one can see that the conduc-

FIG. 3. sColor onlined Conductance of a parabolically confined
wire as a function of the energy parameterX=E/"Vw+1/2 for
various applied perpendicular magnetic fields. The amplitudes of
the attractive impurity potential aresad −6 andsbd −12 meV. Other
parameters are"v0=6 meV andb2aw

2sB=0d=1.897.

FIG. 4. sColor onlined Conductance of a parabolically confined
wire as a function of incident electron energy for various ampli-
tudes of attractive potential. The other parameters are taken to be
B=1 T, "v0=6 meV, andb2aw

2sB=0d=1.897.

FIG. 5. sColor onlined Conductance as a function of
incident electron energy with various applied magnetic fields.
The amplitudes of the repulsive potential barrier areV0=sad 6
and sbd 12 meV. Other parameters are"v0=6 meV. and
b2aw

2sB=0d=1.897.
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tance plateaus are suppressed from the ideal case. When in-
creasing the applied perpendicular magnetic field, the sup-
pressed conductance plateaus tend to be enhanced back to
the ideal case. For the case of a strong repulsive potential
fsee Fig. 5sbdg, the conductance curves are suppressed much
more than those for the weak repulsive potential. In the ab-
sence of magnetic field, the conductance increases linearly
with X; while increasing the external magnetic field, the
quantization behavior inG becomes slowly recognizable.

To conclude this section, we note in passing that when the
scattering potentialswell or barrierd is uniform in the trans-
verse direction it does not break the translational invariance
along the lateral confining direction. However, in the pres-
ence of a magnetic field, if such a scattering potential is a
well then one can find quasibound states due to elastic inter-
subband transitions to a higher subband threshold. However,
if the scattering potential is a barrier, one finds no quasi-
bound state features even in a magnetic field up to 2.4 T.

B. Embedded quantum ring and dot

To model an embedded quantum ring with the parametri-
zations13d we initially choose the parameters used in Fig. 2,
such that whenB=0 then b1aw

2 =3.41, b2aw
2 =11.37, and

"Vw=1.0 meV.fThe parameters of the potentials13d, b1 and
b2 do not depend onB, but aw does.g V1=−12 meV and
V2=18 meV. We are thus investigating a relatively broad
wire with a small embedded ring structure with diameter of
approximately 40 nm. We assume the wire to be a GaAs wire
as mentioned above. The conductances28d of the wire is
presented in Fig. 6 for several values of the magnetic field.
To compare the results for various values of the magnetic
field it is convenient to observe the conductance as a func-
tion of the energy of the incoming electron state scaled by
the distance of the energy subbands, i.e.,E/ s"Vwd=E/Ew,
and furthermore useX=E/"Vw+1/2 such that the integral
value ofX indicates the number of incident modes.

In Fig. 6sad we see that as soon as the magnetic field is
different from zero a strong Fano-like17,18 resonance dip ap-
pears in the first plateau just aboveX=1.5. As we argue
below the dip corresponds to a destructive quantum interfer-
ence between a quasibound state in the ring and an in-state of
the wire. Figure 7 displays the total probability to find an
electron in the wire close to the scattering center, the quan-
tum ring. The probability is calculated using the wave func-
tion s29d for two values of the energy of the incoming elec-
tron in the lowest transverse mode,n=0. Just below the
resonance atX=1.4, Fig. 7sad reveals to us a normal scatter-
ing process. The scattering only takes place very close to
x<0 and on the left-hand side we see the interference pat-
tern for the incoming and the reflected waves. On the right-
hand side the electrons only travel in one transverse mode
and only to the right so we have a constant probability al-
ready a short distance away from the scattering center. The
situation is quite different in Fig. 7sbd which displays the
probability density for the state exactly in the resonance dip.
Here no transmitted wave is present, but the probability close
to the quantum ring is high enough that the probability for
the incoming and the reflected waves is not visible on the
color scale used.

The symmetry of the quasibound state indicates that it is
an evanescent state belonging to the second subbandn=1.
Without a magnetic field the scattering via the evanescent
state in the second subband is forbidden in the case of a
symmetric potential placed in the middle of the wire. In that
case a dip occurs in the second band due to a scattering
through a evanescent state in the third subband.2,6,19

FIG. 6. sColor onlined The conductance of a parabolic wire with
an embedded ring in units ofG0=2e2/h. Ew="Vw, V1=−12 meV,
V2=18 meV, "V0=1.0 meV, b1aw

2sB=0d=3.412, b2aw
2sB=0d

=11.37, and nine subbands are included.
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In order to further support our view that the resonance is
due to a quasibound state of the quantum ring located in the
continuum of the first subbandsthe ring lowers a state in the
second subband into the first oned, we see in Fig. 8sad how
the broadening or narrowing of the wire has little effect on
the energy of the state. On the other hand, as seen in Fig.
8sbd the energy of the quasibound state changes linearly with
the depth of the ring potential. The Fano resonance is formed
when the in-wave is perturbed by the scattering potential and
since multiple scattering is inherent in the Lippmann-
Schwinger equation an attractive scattering potential can lead
to resonances that are remnants of the resonances of the po-
tential well in the energy continuum of the wire system.

For some intermediate values of the magnetic field we see
other minima occurring in the conductance closer to the end
of the first step. For example, forB=0.8 T this is visible in
Fig. 6sbd at X=1.933 and 1.991. The corresponding probabil-
ity densities are seen in Fig. 9.

The symmetry of both densities indicates that the dips are
caused by scattering via evanescent states of the second sub-
band just like the dip in the middle of the first conductance
step. These states are quasibound states of the ring further in
the continuum of the first subband. The higher state, Fig.
9sbd, has acquired more of the character of the geometry of
the wire than the ring, and it extends far beyond the ring. The
presence of Fano line shapes in the conductance is not sur-
prising as the mesoscopic Fano effect was already experi-

mentally reported for both a single electron transistor20 and
an Aharonov-Bohm interferometer with an embedded quan-
tum dot.21,22Nevertheless, in these two experiments the wire
was much smaller than the mesoscopic system that caused
the Fano interference. The results presented here suggest that
this may be observed also in the case of a broad wire.

At still higher magnetic fieldfsee Fig. 6scdg, the conduc-
tance has approached the ideal case as the magnetic field has
now squeezed the wave functions together and closer to the
edge as soon as the momentum is different from zero. The
wave function thus bypasses the scattering potential. We
shall see this effect clearer below.

The conductance of a wire with an embedded dot is pre-
sented in Fig. 10.

The effects of an increasing magnetic field become very
clear if we compare the probability density for the dip at
X=1.679 whenB=0.6 T, and the one atX=1.557 when
B=1.2 T ssee Fig. 11d. Both cases show a partial blocking of
the channel due to backscattering caused by a quasibound
state created by an evanescent state of the second subband,
but the main difference is the total separation of the incom-
ing and the reflected channel at the higher magnetic field. At

FIG. 7. sColor onlined The probability density of the scattering
statecEsx,yd in the parabolic quantum wire in the presence of an
embedded quantum ringsFig. 2d, corresponding to the conductance
in Fig. 6sad at B=0.1 T. The incident energyX=1.4 sad and 1.538
sbd, corresponding to the dip in the conductance. FIG. 8. sColor onlined The conductance of a parabolic wire with

an embedded ring in units ofG0=2e2/h as a function of the wire
confinement E0="V0 sad and depth of the ring V1 sbd.
V2=18 meV,b1aw

2sB=0d=3.412,b2aw
2sB=0d=11.37, and nine sub-

bands are included.B=0.8 T and V1=−12 meV in sad. E0

=1.0 meV andB=0.1 T in sbd.
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the lower magnetic field we still see a interference pattern
between these channels.

To explore further the scattering from the embedded dot
when there is not a complete separation between the edge
and bulk channels we show the probability density for
X=2.235 atB=0.6 in Fig. 12. This energy corresponds to a
dip seen in Fig. 10sad.

Due to the magnetic field and the scattering potential
there is always a scattering between these two channels irre-
spective of whether the in state belongs to then=0 fFig.
12sadg or the n=1 fFig. 12sbdg mode. This is visible in the
probability density with interference pattern in all channels.

The situation is completely different at the higher mag-
netic field B=1.2 T seen in Fig. 13. Here the same scaled
energy as before,X=2.235, corresponds to a peak in the
conductance displayed in Fig. 10sbd.

The value of the conductance peak indicates that there is
very little backscattering. The edge channelsn=0d is almost
entirely tranmitted as Fig. 13sad shows, but a quasibound
state is seen in Fig. 13sbd belonging to the same subband as
the instate.

The small quantum ring embedded in the broad wiresFig.
2d is to small to show any indication of Aharonov-Bohm
oscillations, and as the magnetic length gets smaller with
increasing field strength the edge states bypass the ring. To
change this situation we also did calculations for a larger ring

shown in Fig. 14 compared to the smaller ring used in the
preceding calculations.

Of course the parabolic confinement of the wire always
leads to the situation that at a high enough magnetic field the
edge states will not be scattered by the quantum ring poten-
tial, but now at an intermediate field strength the magnetic
length compares more favorably with the size scale of the
ring as can be seen in the conductance displayed in Fig. 15
for both B=0 and 1 T.

At B=1 T we see oscillations growing in wavelength with
E or knsEd both for moden=0 and 1.

The oscillations in the conductance atB=1 T are caused
by a simple geometrical resonance where the wavelength of
the scattering state in the ring has to compare appropriately
with the circumference of the ring to build constructive or
destructive interference, i.e., an Aharonov-Bohm-like effect.
This also explains the growing wavelength of the oscillation
with sE−E0d. Even though the same condition lies at the root
of the energy spectrum of stationary states in a ring in equi-
librium we are not probing here the energy spectrum of the
ring. We would like to mention that a similar oscillatory
behavior of the conductance as a function of the energy was
reported by Sivanet al.23 in the case of a quantum dot in

FIG. 9. sColor onlined The probability density of the scattering
statecEsx,yd in the parabolic quantum wire in the presence of an
embedded quantum ringsFig. 2d, corresponding to the conductance
in Fig. 6sbd at B=0.8 T. The incident energyX=1.933sad and 1.991
sbd, corresponding to two minima in the conductance at the end of
the first step. FIG. 10. sColor onlined The conductance of a parabolic wire

with an embedded dot in units ofG0=2e2/h. V1=12 meV,
V2=−18 meV, "V0=1.0 meV, b1aw

2sB=0d=3.412, b2aw
2sB=0d

=11.37, and nine subbands are included.
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high magnetic field. Since in high magnetic field the cyclo-
tron radius is smaller than the ring radius one expects the
electrons to travel within the ring along skipping orbits be-
fore they leave through the wire.

The large size of the embedded ring in this case and its
finite depth mean that quasibound states will not be of the
same simple structure as seen for the smaller ring. This can
be verified by the probability densities shown in Fig. 16 for
the two dips atX=1.319 and 1.347, and for the maximum at
1.425.

The total transmission of the only mode,n=0, in Fig.
16scd causes the perfect left-right symmetry, but the prob-
ability density in Fig. 16sad corresponding to the dip
at X=1.319 reflects the asymmetry caused by the confining
parabolic potential to the ring seen in Fig. 14sbd. The struc-
ture of the evanescent states in Figs. 16sad and 16sbd indi-
cates that they are caused by states in the third and fifth
energy bands and probably also states in higher bands. This
persistence of eigenstates or scarring of wave functions in
open systems has been discussed by Akiset al.24 for quan-
tum dots, and here we confirm it for an open quantum ring.

Superimposed on the Aharonov-Bohm-like oscillations in
the conductance in Fig. 15 we have narrow resonances that
are caused by interaction with quasibound states of the ring.
In Fig. 17sad we show the probability density for the scatter-
ing state for a Aharonov-Bohm peak atX=1.46. The density

FIG. 12. sColor onlined The probability density of the scattering
statecEsx,yd in the parabolic quantum wire in the presence of an
embedded quantum dotsFig. 2d, corresponding to the conductance
in Fig. 10sad at B=0.6 T for a state with incident energyX=2.235,
in moden=0 sad andn=1 sbd.

FIG. 13. sColor onlined The probability density of the scattering
statecEsx,yd in the parabolic quantum wire in the presence of an
embedded quantum dotsFig. 2d, corresponding to the conductance
in Fig. 10sbd at B=1.2 T for a state with incident energyX=2.235,
in moden=0 sad andn=1 sbd.

FIG. 11. sColor onlined The probability density of the scattering
statecEsx,yd in the parabolic quantum wire in the presence of an
embedded quantum dotsFig. 2d, corresponding to the conductance
in Fig. 10. The incident energyX=1.679 at B=0.6 T sad and
X=1.557 atB=1.2 T sbd, corresponding to two minima in the con-
ductance at the end of the first step.
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for a minimum in the oscillation is similar except for the
addition of the reflected wave. In Fig. 17sbd we display the
probability density for the first narrow resonance seen, at
X=1.135. Here we can identify a long lived evanescent state
in the second subband.

IV. SUMMARY

We have successfully extended a multiband transport for-
malism build on the Lippmann-Schwinger equation in a
magnetic field to be able to describe an unbiased transport
through a broad wire with embedded small or large quantum
dots and rings defined by a smooth potential. The calculation
of the probability density for the scattering states allows us
to shed light on internal processes and resonances that in
some cases reflect interaction between states in several sub-
bands of the wire. We observe well known evanescent states
and Fano resonances produced by these interactions. In the
case of a large ring with finite width we observe Aharonov-
Bohm type of oscillations superimposed with narrow reso-
nances reflecting its energy spectrum.

Due to the wide range of system parameters used we had
to pay extra attention to the accuracy of the numerical meth-
ods employed.

FIG. 14. sColor onlined A contour plot of the potential of an
embedded quantum ring in wire.sad a ring with b1aw

2 =3.41 and
b2aw

2 =11.37, corresponding to the ring in the upper panel of Fig. 2.
sbd A large ring with b1aw

2sB=0d=0.0682 andb2aw
2sB=0d=0.682.

E0="Vw=1.0 meV,aw=33.7 nm atB=0 T.

FIG. 15. sColor onlined The conductance of a parabolic wire
with a large embedded ringfcorresponding to Fig. 14sbdg in units
of G0=2e2/h. V1=−12 meV, V2=18 meV, "V0=1.0 meV,
b1aw

2sB=0d=0.0682, b2aw
2sB=0d=0.682, and 13 subbands are

included.

FIG. 16. sColor onlined The probability density of the scattering
statecEsx,yd in the parabolic quantum wire in the presence of an
embedded large quantum ringfFig. 14sbdg, corresponding to the
conductance in Fig. 15 atB=0 T for a state with incident energy
X=1.319 corresponding to a dipsad, X=1.347 in a dipsbd, and
X=1.425 at a maximumscd. The incoming mode isn=0.
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APPENDIX A: PIECEWISE MATCHING OF MODES

To utilize the mode matching method, we divide the
Gaussian scattering potential into a series of slices of width
dL, each of them is described by ad-profile potential

Vscsxid = V0dL exps− bxi
2ddsx − xid. sA1d

As such, the Gaussian potentials2d can be described by
Vscsr d=oi=1

NL Vscsxid. For a right-going incident wave
csx,y,knd from thenth mode of the left reservoir, the corre-
sponding scattering wave function can be expressed in the
form

cn
sidsx,y,knd = eiknxxn

+sy,knd + o
n8

rn8n
i e−ikn8xxn8

− sy,kn8d

sA2d

for x,xi, and

cn
sidsx,y,knd = o

n8

tn8n
i e−ikn8xxn8

+ sy,kn8d sA3d

for x.xi. Following a similar procedure we can also obtain
the reflection and transmission coefficientsr̃n8n

i and t̃n8n
i for a

left-going incident wave. Performing the piecewise matching
at x=xi and multiplying these boundary conditions by the
eigenfunctionxmsyd of the ordinary unshifted harmonic os-
cillator with confining frequencyVw, and integrating overy,
one obtains Eqs.s5d and s6d.

APPENDIX B: MATRIX ELEMENTS OF THE
SCATTERING POTENTIAL

The matrix elements of the potential represented by a
single Gaussian functionV=V0 exps−bxx

2−byy
2d is accord-

ing to Eqs.s19d and s20d

Vnn8sq,pd = V0awÎ p

bx
expF−

sq − pd2

4bx
GInn8sq,pd,

sB1d

where

Inn8sq,pd =E dy fn
*sq,yde−byy2

fn8sp,yd. sB2d

Insertion of the expressions for the eigenfunctionss16d
yields

Inn8sq,pd =
expfssn + sn8d

2/4C − ssn
2 + sn8

2 d/2g

2n+n8ÎCn!n8!
3 o

p=0

n

o
q=0

n8 Sn

p
D

3Sn8

q
DHps− Î2sndHps− Î2sn8d

3 o
l=0

minsn−p,n8−qd

2ll!Sn − p

l
DSn8 − q

l
D

3 bN/2−lHN−2lSzÎ 2

bC
D , sB3d

where N=n+n8−p−q, sn=y0
n=knawvc/Vw, z=ssn+sn8d /

s2ÎCd, C=s1+byaw
2d, and b=s1−2/Cd. When the

variable b assumes negative values the combination
sÎbdN−2lHN−2ls¯ /Îbd still supplies the correct real value.

FIG. 17. sColor onlined The probability density of the scattering
statecEsx,yd in the parabolic quantum wire in the presence of an
embedded large quantum ringfFig. 14sbdg, corresponding to the
conductance in Fig. 15 atB=1 T for a state with incident energy
X=1.46 corresponding to a peaksad, andX=1.135 in a narrow dip
sbd. The incoming mode isn=0.
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