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The existence and general properties of different kinds of defect vector gap solitons in one dimensional
optically induced photonic defect lattice with focusing saturable nonlinearity in photorefractive crystal
are analyzed. The defect is well localized in a single site with two existence forms, namely repulsive
and attractive defect. Propagation constants of two beams that compose defect vector gap solitons could
be from same gap or from different gaps. We show that some kinds of unstable scalar defect gap solitons
could be stabilized by their corresponding vector cases.
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Broadening effect of pulse induced by diffraction or dispersion
can be balanced by nonlinearity which results in solitons [1,2].
For light propagation in periodic media, the equilibrium between
diffraction or dispersion with nonlinearity leads to gap solitons
whose propagation constants lay in band gaps of corresponding
linear system [3]. The study of gap solitons has attracted consider-
ate attention. They have been investigated and observed in various
kinds of system, such as waveguide arrays [4–7], optically induced
photonic lattices [8,9] and in condensed matter physics due to the
realization of Bose-Einstein condensations [10–12]. While gap sol-
itons in two dimensional periodic structure have also been investi-
gated extensively [13–15]. The propagation properties of gap
solitons can be drastically changed if the light suffers from differ-
ent nonlinear media. There are mainly three kinds of media which
are intensively used to investigate the properties of gap solitons,
they are kerr-type media, photorefractive media and nonlinear
media with nonlocal effects [16]. The properties of gap solitons
can be managed by changing periodic structure into superlattices
[7,17].

If two beams that pass through the periodic system mutually
self-trap in nonlinear media, they may form vector gap solitons if
certain requirements are respected [1]. These self-localized states
survive only when two components coexist, if one of them absent,
these states are destroyed. The different kinds of vector gap soli-
tons have been observed experimentally [18–21] and analyzed
theoretically [22–25]. The stability of vector solitons in nonlocal
ll rights reserved.
nonlinear media has been investigated [26]. Even the surface vec-
tor gap solitons have been suggested [27].

On the other hand, the research about defect gap solitons has
become an interesting field [28–31]. In Ref. [31], Yang and Chen
have investigated the properties of defect gap solitons in an opti-
cally induced photonic lattices with focusing saturable nonlinear-
ity in photorefractive crystal. The defect can be introduced in one
period of periodic lattice through two forms, namely repulsive de-
fect (the light intensity at defect site is lower than that at other
sites) and attractive defect (light intensity at defect site is higher
than that at other sites). The existence and general properties of
defect gap solitons have been demonstrated in detail [31].

In this letter, we analyze the existence and stability properties
of defect vector gap solitons in optically induced photonic lattices
with a defect site and focusing saturable nonlinearity in photore-
fractive crystal. This system has been used to analysis defect gap
solitons in Ref. [31] due to its experimentally accessible ability.

The setting contains optically induced defect photonic lattices
and two mutually incoherent probe beams using two extraordi-
narily polarized beams. The propagation of probe beams can be de-
scribed by coupled nonlinear Schrödinger equations under the
slowly varying envelope approximation

i
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where W1 and W2 are the slowly varying envelopes of the probe
beams, and they are coupled each other through cross-phase modu-
lation. The probe beams propagate along z direction while periodic
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modulation of refractive index is in the transverse x direction. z is
normalized to diffraction length Ld ¼ 2k1D2=p2, and x is in the unit
of D=p. D is lattice spacing, k1 ¼ k0ne with k0 ¼ 2p=k0 is wave num-
ber, k0 is the wavelength in vacuum, ne is unperturbed refractive in-
dex. E0 labels the applied dc field and is normalized to p2=ðk2

0n4
e D2r33Þ

with r33 is the electro-optic coefficient of the crystal. IL represents the
intensity of photonic lattices with a single defect site at x ¼ 0 [31]

ILðxÞ ¼ I0 cos2ðxÞ½1þ heð�x8=128Þ� ð2Þ

I0 is the peak intensity of lattices, normalized by Id þ Ib, here, Id is
the dark irradiance of the crystal corresponding to thermal genera-
tion of electrons in crystal kept in dark and Ib is the background illu-
mination. h describes defect, when h < 0 the defect is repulsive one,
while h > 0 the defect is attractive one. In experiment [32], the de-
fect was introduced into uniform lattice by a specially designed
amplitude mask. After passing through the mask, a spatially modu-
lated partially coherent light beam became a periodic intensity pat-
tern with a single defect. A small extraordinary component in the
light beam maintained the defect during propagation of this pattern
along photorefractive SBN (strontium barium niobate) crystal.

The Eq. (1) conserves powers P1 ¼
R1
�1 jW1j2 dx , P2¼

R1
�1 jW2j2 dx

and total power P ¼ P1 þ P2. The stationary solutions of the nonlin-
ear coupled Schrödinger equations are

W1;2ðz; xÞ ¼ U1;2ðxÞ expð�il1;2zÞ ð3Þ

with l1;2 are the propagation constants of each probe beams. U1;2

obey the following stationary coupled equations:

o2U1

ox2 �
E0U1

1þ ILðxÞ þ jU1j2 þ jU2j2
þ l1U1 ¼ 0

o2U2

ox2 �
E0U2

1þ ILðxÞ þ jU1j2 þ jU2j2
þ l2U2 ¼ 0

ð4Þ

In order to get defect vector gap solitons of Eq. (4), we must firstly
know the band-gap structure of corresponding linear system with-
out defect site. Then we will choose propagation constants of each
beams in gaps of corresponding linear system and simulate Eq. (4)
to get defect vector gap solitons numerically. The linear band-gap
structure of Eq. (4) without defect site is shown in Fig. 1. Propaga-
tion constants of defect vector gap solitons lay in the gaps of corre-
sponding linear system (blank areas in Fig. 1). The bottom blank
area is semi-infinite gap which is called as the first gap, while the
blank area nearest the first gap is called the second gap. The typical
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Fig. 1. Linear band-gap spectrum of corresponding linear system of Eq. (4) without
defect site for I0 ¼ 3. Shadow areas are bands, while blank areas are gaps. The
bottom blank area is semi-infinite gap called as the first gap. The blank area nearest
the first gap is called as the second gap.
experiment parameters are given in Ref. [31], i.e. D ¼ 20 lm;

k0 ¼ 0:5 lm; ne ¼ 2:3, and c33 ¼ 280 pm=V, then the unit of z corre-
sponds to 2.3 mm, the unit of x corresponds to 6.4 lm, and the nor-
malization of E0 corresponds to 20 V/mm. We choose I0 ¼ 3 and
E0 ¼ 6 through out the letter. In the following we derive defect vec-
tor gap solitons from same gap which means that propagation con-
stants of probe beams lay in the same gap and from multigap which
means that propagation constants of probe beams lay in different
gaps. Eq. (4) are treated numerically with a standard relaxation
method. After we deriving profiles of defect vector gap solitons,
we perform linear stability analysis of those solutions by adding
perturbation terms to the profiles

W1;2ðz; xÞ ¼ fU1;2ðxÞ þ ½v1;2ðxÞ �w1;2ðxÞ�eidz

þ ½v�1;2ðxÞ þw�1;2ðxÞ�e�idzge�il1;2z ð5Þ

where U1;2 are the profiles of defect vector gap solitons, v1;2ðxÞ and
w1;2ðxÞ relate to perturbations. Substituting Eq. (5) into Eq. (1) and
performing the standard linearization procedure around the sta-
tionary profiles U1;2, we derive the following linear eigenvalue
problem:
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here, d are the eigenvalue. Once there exists an eigenvalue d con-
taining imaginary part, perturbations will grow exponentially as
beams propagate along z direction, the corresponding stationary
solutions U1;2 are unstable against perturbations. Otherwise, these
stationary solutions are linear stable.

At first, we notice that when l1 ¼ l2 there are kinds of defect
vector gap solitons with the form U1 ¼ U sin h and U2 ¼ U cos h,
where h is an arbitrary phase, and U just obey the scalar equation
in Ref. [31], which have been carefully analyzed. Here, we are
interested in the cases of l1 6¼ l2. In the following, we concentrate
on defect vector gap solitons with a twisted first component U1

[24]. Fig. 2 shows defect gap solitons whose propagation constants
lay in the first gap with attractive defect h ¼ 0:5 and second com-
ponent U2 is the nodeless mode having a single peak located at the
defect site (Fig. 2e). When fixing l1 there exist upper and lower
cutoffs on l2. As shown in Fig. 2a, the existence domain of defect
vector gap solitons enlarges with increasing l1, When l2 ap-
proaches lower cutoff, first twist component gradually vanishes
and meanwhile second nodeless component becomes maximum,
while as l2 approaches upper cutoff, second component gradually
disappears for the empty circle case in Fig. 2a, and during the
shrink, second nodeless component may evolve into a two obvious
peaks structure in Fig. 2f and three peaks structure in Fig. 2h typ-
ically. However, for the solid circle case, the developed two humps
structure from second component which locates around defect site
symmetrically is not ceased to exist. Oppositely, there is a small re-
gime near upper cutoff (the solid circles in Fig. 2a) where this two
humps structure becomes enlarging and broadening with increas-
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Fig. 2. Defect vector gap solitons with first twist and second nodeless modes from the first gap: (a) domain of existence of defect vector gap solitons at ðl1;l2Þ plane, (b) the
family of these vector gap solitons for l1 ¼ 0:7, thick line is stable while thin line is unstable, (c) and (d) dependence of energy sharing S1;2 ¼ P1;2=P on l2 for l1 ¼ 0:9 and
l1 ¼ 0:7, respectively, and (e)–(h) typical profiles of defect vector gap solitons at ðl1;l2Þ ¼ ð0:9;0:4Þ; ð0:9;0:74Þ; ð0:7;0:675Þ and (1.4,1.2), respectively. Other parameters are
I0 ¼ 3, E0 ¼ 6 and h ¼ 0:5.

Fig. 3. Propagation of defect vector gap solitons shown in Fig. 2 in presence of
Gaussian distributed random noise with variance r2

1;2 ¼ 0:01. Only second compo-
nent is shown: (a) corresponds to Fig. 2e, (b) second component of Fig. 2e as initial
profile, while first component is blocked, (c) and (d) correspond to Fig. 2f and h,
respectively.
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ing l2, at the same time, first component gradually vanishes. Fig.
2g shows this typical structure. This phenomenon is confirmed
again by plots of the energy sharing of two components as the
function of l2 for the empty circle case l1 ¼ 0:9 and the solid circle
case l1 ¼ 0:7 in Fig. 2c and d, respectively. The energy sharing are
defined as S1;2 ¼ P1;2=P. It is clearly shown that for the solid circle
case (Fig. 2d) with decreasing l2 to lower cutoff, first component
disappears, while with increasing l2 first component enlarges
and second component shrinks at first, continuously increase l2

to a certain value, first component starts to shrink while second
component which now develops into a two humps structure en-
larges, when l2 reaches upper cutoff, the first component vanishes.
Contrasting to Fig. 2d, for the empty circle case (Fig. 2c), second
component shrinks to disappear at upper cutoff. The family of de-
fect vector gap solitons shown in terms of the dependence of total
power P on l2 at a fixed value of l1 ¼ 0:7 is demonstrated in Fig.
2b. The total power P decreases with increasing l2. Linear stability
analysis shows that at the small l2 defect vector gap solitons are
stable (the thick line in Fig. 2b), while increasing l2 to a threshold
value, vector solitons become unstable (the thin line in Fig. 2b). Re-
sults of stability analysis are different from those of the nodeless
modes in Fig. 6 of Ref. [31]. We conclude that the coexistence of
twist and nodeless vector solitons could stabilize the nodeless
modes which are unstable in the scalar case. In other words, unsta-
ble scalar gap solitons could be stabilized through cross-phase
modulation in the vector case [24].

The propagation of defect vector gap solitons is performed by
numerical simulating Eq. (1) with the initial profiles that are exact
defect vector gap solitons in presence of random functions with
Gaussian distribution and variance r2

1;2 ¼ 0:01 in order to excite
perturbations. Fig. 3a illustrates the propagation of defect vector
gap soliton in Fig. 2e which are linear stable by linear stability
analysis. The only second nodeless mode is shown and stable prop-
agation confirms its stability. If we block first twist component,
then propagate second component alone with perturbations, we
find that second component is unstable in Fig. 3b. This verifies that
the stable defect vector gap solitons will be destroyed in absence of
one component. Defect vector gap solitons shown in Fig. 2f and h
are unstable.

We also depict the existence region of l2 as a function of h for
l1 ¼ 0:9 in Fig. 4. The profiles of defect vector gap solitons exist in
this region are same as solitons discussed above. The dash line is a
separator, in the left region of dash line, the behavior of vector gap
solitons should be similar to that of solid circles case in Fig. 2a, i.e.,
as l2 approaches upper cutoff, second nodeless component evolves
into a two humps structure and first twist component vanishes.
While in the right side of dash line, when l2 approaches upper cut-
off, second nodeless component ceases to exist. If l2 approaches
lower cutoff, first component disappears no matter what sides of
dash line. It is shown that lower cutoffs as well as upper cutoffs
at the left side of dash line are nearly not changed as varying h,
while the right area of dash line shrinks with increasing h. Defect
vector gap solitons in the shadow areas are linear stable. The nor-
mal lattice case h ¼ 0 belongs to left side of the dash line. Cutoff
values of vector solitons for repulsive defect lattice ðh < 0Þ are al-
most same as those for normal lattice. Compared with the normal
lattice case, the stability regions near lower cutoff for repulsive de-
fect lattice are nearly not changed. While the stability regions near
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upper cutoff are raised and then shrink into a point with decreas-
ing h. For attractive lattice case h > 0, the stability regions near
lower cutoff are enlarged, while stability regions near upper cutoff
are dropped with increasing h. However, when h is larger than 0.5,
there are no any stable defect vector solitons.

We find defect vector gap solitons consisted of first triple-mode
and second nodeless components [26]. The propagation constants
of these solitons lay in the first gap. Typical profiles are shown in
Fig. 5. The existence region of this kind of defect vector gap solitons
in (h;l2) plane for a fixed l1 ¼ 2 shrinks with increasing h as dem-
onstrated in Fig. 6a. For given l1 and h, as l2 approaches lower cut-
off, first triple-mode component ceases to exist, while as l2

reaches upper cutoff, second nodeless component vanishes leaving
only first component. Stability analysis result demonstrates the
stable region of this kind of defect vector solitons is a small island
shown in shadow area of Fig. 6a. The stability regions are enlarged
for attractive defect lattice cases ð0 < h < 0:5Þ compared with that
for normal lattice. Also the domain of existence of these solitons in
ðl1;l2Þ plane is depicted for h ¼ 0:5 in Fig. 6b. Similar to Fig. 6a, at
lower cutoff first triple-mode component disappears while at
upper cutoff second nodeless component vanishes. The existence
domain shrinks as decreasing l1. A typical family of these solitons
is shown in Fig. 6c in terms of the dependence of total power P on
l2 for l1 ¼ 2 and h ¼ 0:5. The profiles of labeled points in Fig. 6c
are demonstrated in Fig. 5. In Fig. 6d, the stability analysis result
Fig. 5. Typical profiles of defect vector gap solitons composed by first triple-mode
and second nodeless components corresponding to labeled points in Fig. 6c and
their propagation: (a) and (b) l1 ¼ 2 and l2 ¼ 1:75, (c) and (d) l1 ¼ 2 and l2 ¼ 0:7.
The perturbations are similar to these in Fig. 3 h ¼ 0:5.
of the family reveals that unstable and stable regions alternate.
This result is confirmed again by propagation of correspond soli-
tons with perturbations in Fig. 5.

We have analyzed the existence and general properties of de-
fect vector gap solitons whose propagation constants lay in the
first gap. In the following, we demonstrate defect vector gap soli-
tons from different gaps.

We first consider defect vector gap solitons composed by first
twist component from the first gap and second component from
the second gap. Though second component has a main peak lo-
cated at the center of defect site symmetrically, it has an oscillatory
tail structure which means it possesses an infinite number of
nodes. This component is completely different from nodeless mode
discussed above. The typical profiles are shown in Fig. 7c and f. The
domain of existence of this kind of vector solitons in ðl1;l2Þ plane
(Fig. 7a) enlarges with increasing l1 for h ¼ �0:5. Lower cutoff is
not changed as varying l1, the value of lower cutoff corresponds
to band edge ðl2 ¼ 2:9493Þ. For h ¼ �0:5 and a fixed value l1, as
l2 approaches upper cutoff, second component vanishes, while
as it reaches lower cutoff (band edge), second nodeless mode be-
comes highest and less localized with obvious quasiperiodic oscil-
latory tail structure. However, first twist component does not
changed obviously, which means that the profile of first twist
mode has no distinct change as varying l2 from lower cutoff to
upper cutoff. We also show the existence region of this kind vector
solitons in ðh;l2Þ plane in Fig. 7b. It is clearly demonstrated that
this kind of defect vector solitons only exist for repulsive defect
case, and there are no the corresponding vector solitons in normal
lattice and attractive defect lattice cases. The existence region
shrinks quickly as increasing h and for l1 ¼ 1:8 it shrinks into a
point at h ¼ �0:187. The properties of vector solitons of Fig. 7b
are resemblance to those in Fig. 7a, i.e., lower cutoff corresponds
to band edge and when l2 reaches upper cutoff, second mode
ceases to exist, while first twist component has no obvious change
as varying of l2 from lower cutoff to upper cutoff. A family of these
defect vector solitons and corresponding linear stability are de-
picted in Fig. 7d and e, respectively. The stability result of second
component as scalar defect gap soliton reveals that the whole fam-
ily is linear stable [31]. While, when it is bound with first twist
component to form vector gap soliton, it becomes unstable in the
middle of family as shown in Fig. 7e.
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Another kinds of defect vector gap solitons are shown in Fig. 8.
These vector solitons consist of first twist component from the first
gap and complex second component from the second gap (in Fig.
8d). The complex second component has been analyzed as scalar
defect mode in Fig. 9 of Ref. [31]. We show the existence domain
of this kind of vector solitons in Fig. 8a with h ¼ 0:5 in ðl1;l2Þ
plane. It is clearly demonstrated that there is a critical value of
l1, when l1 is smaller than the critical value, lower cutoff of l2

is just band edge, while l2 larger than the critical value, lower cut-
off of l2 increases with increasing of l1. As l2 approaches upper
cutoff, complex second component vanishes leaving only first com-
ponent. If l1 is larger than the critical value, as l2 approaches low-
er cutoff, first twist component ceases to exist. While if l1 is
smaller than the critical value, as l2 reaches lower cutoff (band
edge), first component is still present. The domain existence area
of these vector solitons in ðh;l2Þ with l1 ¼ 2 is shown in Fig. 8b.
The area shrinks as increasing h. Compared with the normal lattice
case h ¼ 0, the existence regions for repulsive defect lattice cases
are enlarged with decreasing h, while the existence regions for
attractive lattice are reduced with increasing h. When l2 reaches
upper cutoff first twist component vanishes and as l2 accesses
lower cutoff second component disappears. Fig. 8c presents a fam-
ily of this kind of vector solitons. Linear stability analysis shows
that the whole family in Fig. 8c are unstable. However, as scalar
gap solitons , some second components are stable in Ref. [31].

In conclusion, we have demonstrated the existence and general
properties of different kinds of defect vector gap solitons in one
dimensional optically induced photonic lattice with a well local-
ized defect site in photorefractive crystal. We consider the focusing
saturable nonlinearity case. There are two ways that the defect ex-
ists, namely, repulsive and attractive defect [31]. Two beams are
bound together incoherently to form the vector gap solitons. Prop-
agation constants of these two beams could be from same gap (the
first gap as an example) and from different gaps (the first and sec-
ond gaps) [22,23]. The behaviors of defect vector gap solitons
might be completely different from their scalar corresponding
case. We show that some unstable scalar defect gap solitons could
be stabilized by binding them with other kinds of gap solitons to
form vector gap solitons. This would make the observation of these
unstable scalar defect gap solitons becoming possible in experi-
ment. While some stable scalar defect gap solitons could be unsta-
ble in their corresponding vector cases.
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