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We propose an implementation of a quantum computer to solve Deutsch’s problem, which requires expo-
nential time on a classical computer but only linear time with quantum parallelism. By using a dual-rail
quantum-bit representation as a simple form of error correction, our machine can tolerate some amount of
decoherence and still give the correct result with high probability. The design that we employ also demon-
strates a signature for quantum parallelism which unambiguously distinguishes the desired quantum behavior
from the merely classical. The experimental demonstration of our proposal using quantum optical components
calls for the development of several key technologies common to single photonics.

PACS number(s): 42.50.Ar, 89.80.+h, 42.79.Ta, 03.65.Bz

L. INTRODUCTION

The field of quantum computation has received tremen-
dous interest since the recent result of Shor [1], which shows
the possibility of using the nonlocal behavior of quantum
mechanics to factor integers in random polynomial time.
This is exponentially better than is achievable on a compa-
rable classical machine, with any algorithm known today.

However, there is a catch. Quantum computing (like
quantum cryptography) relies fundamentally on the process-
ing of bits of information which can be superpositions of
logical 1 and 0. As long as the mutual coherence among a set
of quantum bits (qubits) [2] is preserved, they can simulta-
neously take on more than one value, giving rise to a useful
effect known as quantum parallelism. With sufficient clever-
ness, algorithms can be devised which take advantage of this
effect to solve some problems faster than is possible with a
classical computer.

The catch is that these qubits are ‘“‘Schrodinger cat”
states, which are normally highly susceptible to collapse.
Whenever a qubit is observed by an external agent (such as
the environment [3]), coherence with other qubits in the sys-
tem is partially lost due to the collapse of its wave function.
This loss of coherence is accompanied by a loss of informa-
tion [4], which is likely to cause a malfunction of the quan-
tum computer. Thus, simply put, the practicality of using
quantum parallelism is crucially dependent on our ability to
build a machine which is sufficiently perfect and isolated
from its environment so as to preserve quantum coherence
throughout a calculation [6].

The key question upon which the feasibility of quantum
computing hinges is how difficult it is to maintain quantum
coherence in a real implementation. This is very much a
system issue, because to succeed, not only must the logic
devices be perfect, but also the scheme for their interconnec-
tion, and the method for preparing and extracting the inputs
and outputs of the computer. Although implementations of
several quantum-mechanical logic gates [5,7] and general ar-
chitectures [8,9] have been proposed, no designs for a spe-
cific machine have yet appeared in the literature, and there-
fore it is unclear what the minimum requirement is for
realizing a complete system. As a result, it is also difficult to
pin down what noise issues limit the feasibility of maintain-
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ing quantum coherence in a complete quantum computer.

The purpose of this article is to remedy this problem by
proposing a specific realization of a quantum computer
which solves Deutsch’s problem [10]. Although the machine
which we envision has little practical use, it is a simple sys-
tem which (1) demonstrates the concept of quantum parallel-
ism, and (2) distinguishes the desired quantum behavior from
the merely classical by using simple error correction. The
approach which we outline also describes several techniques
which we believe will be useful in constructing a more gen-
eral purpose machine.

We note in relation to the literature that many issues
which arise in the course of our discussion remain open
questions. In particular, we do not attempt to address the
problem of synthesizing a universal quantum computer from
some minimal set of logic gates [11,9,12]. Neither are we
particularly interested in solving the full problem of quantum
error correction [13,14]. Instead, our concern is the reality of
quantum computing. By focusing on the complete design of
a specific machine, we learn about realizability, operation,
and robustness—system issues which are of principle con-
cern in understanding the impact of decoherence. Our design
of a simple quantum computer using error correction pro-
vides a concrete framework for analyzing the role of deco-
herence in quantum computing.

We begin by summarizing Deutsch’s problem. We then
compare the classical and quantum solutions to a simplified
version of the problem, and discuss how the required com-
ponents may be realized. This leads us to a design for a
machine, which we present in Sec. IV, which is followed by
an analysis of its error correcting ability in Sec. V. We con-
clude with a discussion of the experimental possibilities.

II. DEUTSCH’S PROBLEM

Deutsch’s problem may be described as the following
game. Alice, in Amsterdam, selects a number x from O to
2L —1, and mails it in a letter to Bob, in Boston. Bob calcu-
lates some function f(x) and replies with the result, which is
either O or 1. Now, Bob has agreed to use one of only two
kinds of functions, either type 1, which are constant for all
values of x, or type 2, which are equal to 1 for exactly half of
all the possible x. Alice’s mission is to determine with cer-
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FIG. 1. Algorithm for solving Deutsch’s problem using a quan-
tum computer.

tainty which type of function Bob has chosen by correspond-
ing with him the fewest number of times. How fast can she
succeed?

In the classical case, Alice may only send Bob one value
of x in each letter. At worst, Alice will need to query Bob at
least L+ 1 times, since she may receive, e.g., L zeros before
finally getting a 1, telling her that Bob’s function is type 2.
The best deterministic classical algorithm she can use there-
fore requires L+ 1 queries. Note that in each letter, Alice
sends Bob N bits of information, where N=1o0g,(2L).

Now add a new twist to the problem. Suppose that Bob
and Alice can exchange quantum bits (instead of just classi-
cal bits), and furthermore, Bob calculates f(x) using a uni-
tary transformation U;. Alice can now get back more than
one value of f(x) from Bob in a single query, while still
exchanging only about N bits. For example, Alice may send
Bob an atom trap containing N+ 1 two-level atoms. The first
N atoms, representing x, are prepared in an equal superpo-
sition of their excited and ground states, while the last atom,
a scratch pad for the result y=f(x), is put in its ground state.
In Boston, Bob uses a sequence of electromagnetic pulses to
unitarily put atom y in the state f(x). Note that x is in a
superposition of all values [0,2Y— 1], and therefore y is left
a superposition of all possible values of f(x). However,
when Alice receives the reply, she cannot achieve her mis-
sion simply by measuring atom y, since that would collapse
the superposition state and give her only one result.

Instead, Alice must be more clever. She gives y a 7 phase
shift relative to x, then sends the qubits once more to Bob.
This time, Bob agrees to calculate U} instead of Uy, ie., he
inverts what he did before, leaving y in its ground state.
Since y and x are entangled, this procedure also leaves the N
qubits of x with a special relative phase, such that those
values of x for which f(x) is even are 180° out of phase with
the others. When Alice receives the result back from Bob,
she can perform an interference experiment to determine the
type of Bob’s function, with certainty. This is accomplished
using only two queries.

The quantum algorithm followed by Alice in the latter
case was devised by Deutsch and Jozsa, and a more math-
ematical description can be found in their article [10]. A
schematic of the algorithm is shown in Fig. 1. This drawing
and our description above highlight the two principle differ-
ences between classical and quantum computing: (1) infor-
mation is represented as quantum bits, and (2) information
interactions are performed using unitary transformations.
These two changes allow Deutsch’s problem to be solved in
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O(N), rather than in O(expN) time. In our example, physi-
cal distance was used to artificially elevate the cost of calcu-
lating f(x); this is not needed in general, where f(x) may be
inherently difficult to calculate. We shall study next how qu-
bits can be generated, manipulated, interacted, and measured.

III. COMPONENTS OF A QUANTUM COMPUTER

The nature of the physical realization of the algorithm of
Fig. 1 depends mostly on the representation chosen for the
quantum bit. As we mentioned, two-level atoms are one pos-
sibility. Single electrons, solitons, magnetic flux quanta,
nuclear spins, and quantum dots are other possibilities which
have been considered. We have chosen to represent qubits as
single photons, primarily because almost all the required
components (for a single photon quantum computer) exist
today, but also because quantum optics is a well-developed
field in which noise is a thoroughly understood subject.
However, we believe that there are some general limitations
governing all qubit representations, and our goal is to try to
elucidate those, so despite our use of quantum optics termi-
nology, it should be kept in mind that many of our conclu-
sions are applicable to other systems as well.

Given that we are using |0) (the vacuum state) and |1)
(the single photon state) to represent logical O and 1, respec-
tively, we must answer the following three questions to con-
struct our quantum computer to solve Deutsch’s problem.

(1) How is a superposition state prepared?

(2) What unitary transform is used to calculate f(x)?

(3) What interference experiment is performed to deter-
mine the final result?

That is, we need devices to perform the unitary operations
M, U £ and S, and an architecture which provides a definite
phase reference so as to allow the final interference experi-
ment to be performed. We now show how the traditional
tools of optics can be used to fulfill our needs. We shall use
beam splitters, mirrors, phase shifters, and Kerr media.

The first task is to create a superposition state. It is pos-
sible in principle to create the state
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TABLE I. All possible functions fy_; ¢ (%) for 0=<x<4. fyg0
and fo; are type 1, while the rest are type 2.

TABLE II. All possible functions S k() for O=x<2. f, and
for are type 1, while the rest are type 2.

X1 X0 fOOO fOOl fOlO fOl] flOO flOl fllO flll X fOO fOl fl() fll
0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
o 1 0 1 1 0 0 1 1 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0
1 1 0 1 1 0 1 0 0 1

but we have a simpler alternative. The ordinary 50-50 optical
beam splitter [15,16] acting on modes a and b is described
by the quantum operator B, shown in Fig. 2. Let us label
states as |ab). A beamsplitter with input |01) gives the out-
put

1
2

Let us represent a single qubit by a pair of modes, such that
|01) and |10} are logical 0 and 1, respectively. This dual-rail
representation of a logical state embeds an elementary form
of error correction, which will be useful later. With this rep-
resentation, we see that a simple beam splitter can be used to
generate the desired superposition state of logical 0 and 1.

Next, we must calculate f(x) using a unitary transform.
Since f(x) is a mapping from Z— Z,, we may consider it
to be calculable by an acyclic boolean circuit. It is therefore
possible to implement it using a cascade of reversible logic
gates, such as the Fredkin gate [17]. For example, consider
the two-bit Deutsch problem. Here, 0<x<4, and there exist
eight possible functions which Bob may choose (Table I).
Two circuits which can be used to implement f(x) are shown
in Fig. 3(B). Also shown are circuits for the one-bit problem,
where 0=<x<2 (Table II). The reversible logic circuits cor-
respond directly to unitary operators which may be imple-
mented as quantum-mechanical transforms. This is done sim-
ply by using a quantum Fredkin gate in place of the classical
one.

Note that this technique, of utilizing a reversible logic
implementation to determine the unitary operator necessary
to implement a classical function, is valid in the general case.

B|01)= —[|01)+]10)]. (32)

For example, Shor’s algorithm requires the calculation of
x® mod N, for which the proper unitary transform may be
arrived at through analysis of the required reversible logic
circuit. Also note that we have chosen the Fredkin gate in
favor of the Toffoli gate, because conservative invertible
logic gates conserve the number of “ones” and therefore are
possibly more amicable to qubit representations, whereas a
logical one implies existence of some energy packet (as will
be the case for our system) [18].

An optical realization of the quantum Fredkin gate (Fig.
2) has been proposed [5], and is understood well. It is simply
a nonlinear Mach-Zehnder interferometer, with an external
control signal which causes the exchange of a and b by
inducing a relative 7 phase shift in one arm via cross-phase
modulation in the Kerr medium. This device may be viewed
as a “controlled beam splitter,”” where the ¢ input determines
the angle of a beam splitter with inputs a and b. We shall let
x =, such that when c¢fe=1, the Fredkin operator F' acts
on a and b just like a beam splitter with angle 7/2, ie.,
F|101)=—|011) and F|011)=]|101), where the state is
|abc). Note that when ¢c=0, the Fredkin operator is the
identity F=1.

Note that each of the components of our quantum com-
puter, which operate on dual-rail qubit representations, have
a corresponding description in the traditional picture of
single-rail qubit functions. A two-input beam splitter operat-
ing on modes a and a is equivalent to Deutsch’s one-input
VNOT gate [19] acting on the qubit represented by the pair
{a,a}. Similarly, three three-input Fredkin gates acting on
modes a, a, b, b, ¢, and ¢ can perform any three-input
Toffoli gate transform on the three qubits represented by the
pairs {a,a}, {b,b}, and {c,¢} [20]; in this sense, the Fredkin
gate is close to DiVincenzo’s “controlled-rotation” gate [9].
Incidentally, since it has been shown that these traditional
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FIG. 4. Complete quantum computer system used to solve the one-bit Deutsch problem. The apparatus in the dashed box is used by Bob
to calculate f;(x), and everything else belongs to Alice. In principle, it is not necessary to send mode d to Bob, although it may simplify the

implementation in practice.

gates are “‘universal,” in the sense that they can be cascaded
to synthesize any arbitrary quantum computing device, it fol-
lows that our component set is also universal.

One more unitary operator which is needed is the phase
shift S performed by Alice after receiving the first letter back
from Bob. This is accomplished using a 7 phase delay. Fi-
nally, the task of interference and measurement can be per-
formed by using an interferometer and ideal photon counters.
Alice can create and decorrelate superpositions using beam
splitters and communicate to Bob by sending him photons;
and Bob can calculate his function using Fredkin gates.
Thus, the Deutsch-Jozsa quantum algorithm may be imple-
mented using the traditional components of quantum optics.
This viewpoint will be useful in analyzing the physics of our
machine as we assemble it in the following section.

IV. THE MACHINE

The one-bit Deutsch problem is the simple case where
Alice sends Bob a value of x=0 or x=1, and Bob replies
with f(x), where he has chosen one of the four functions
shown in Table II. Clearly, in the classical case, Alice can
achieve her goal of determining the type of Bob’s function
by sending Bob just two queries. The quantum solution can
be achieved with the same number of queries, so there is no
time advantage in this case. However, it is worthwhile to
consider precisely how the quantum algorithm is imple-
mented to understand the role which quantum coherence
plays.

The machine which we propose is diagrammed in Fig. 4.
The general operation is as follows. Alice prepares two qu-
bits {a,b} and {c,d}, each of which is represented by a
dual-rail single-photon eigenstate. Operationally, this means
that she sends single-photon eigenstates simultaneously into
modes d and b, and the vacuum state into the other two. The
{c,d} qubit is passed through a yNOT gate, which is imple-
mented by a beam splitter to prepare a value of x which is in
a 50-50 superposition of O and 1. This qubit is passed along
with the scratch-pad qubit {a,b} to Bob. Bob uses a quantum
Fredkin gate and three classical switches to perform his cal-
culation, and returns f(x) in the scratch pad. Alice gives the
result a relative 7 phase shift, then allows Bob to invert his
first transform. Finally, Alice sends the {c,d} qubit through a
final beam splitter, and measures the number of photons she
receives in all four modes. In the absence of error, the detec-
tor for mode d tells Alice the type of Bob’s function with
certainty, from a single execution of the machine.

Let us now analyze the behavior of this machine by cal-
culating the states |i;), defined as

| o) = Alice’s initial state,
|41 ) = superposition state sent to Bob,
| 4, =result returned to Alice the first time,
| 4/3) = phase shifted state sent back to Bob,
| 44) =result returned to Alice the second time,
|5) = Alice’s final state, after decorrelation.

We shall label the states as |abcd), and use the fact that S
acts on mode a, B acts on ¢ and d, and Uy acts on a, b, and
c. We may think of mode ¢ of state |¢,) as the value of x
prepared by Alice to send to Bob, and mode a of state
|,) as the value of f(x) returned by Bob. When
k1ko=00, the ¢ and d modes are completely decoupled from
the lower circuit. Using our beam-splitter convention, the
states are thus

|ho)=10101), 4.1)

1
]¢1>:B|‘/’0>=$[|0101>+|0110>], (4.2)
la)=3)=w2)=111), 4.3)
|rsy=BT|4)=]0101). (4.4)

This is the expected result, because ¢ and d form an inde-
pendent, balanced Mach-Zehnder interferometer, and since
the control input to the Fredkin gate is zero, no switching
occurs, and the output state is the same as the input. Note
that the result is a pure state, and so the photon number
measurement result is not stochastic. If the function chosen
by Bob is k;ky=01, the result is similar; this time, the phase
shift S interacts with the photon input to mode b, giving us

[oy=[0101), 4.5)

1

lg1)= \/5[|0101>+|0110>],

(4.6)
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1
|4,//2>= $[|1001)+|1010)], 4.7)
1
lp3)=Sll¢pp) = 3[-11001>—|1010>], (4.8)
1
[hs)= f[_IOIOD_'O“O)]’ (4.9)
ls)=BT|s)=—0101). (4.10)

Both these results are trivial, since whenever k, =0, the re-
sult returned by Bob, f(x); is independent of x.

However, a nontrivial output results when k;=1. Con-
sider k,;ky=10. Here, Bob’s transform Ufm=F is a Fredkin

gate acting on a, b, and ¢, and we get

| o) =10101), 4.11)
Iw1>=B|¢o>=%[|0101>+|0110>], @12)
|¢2>=Uf10|¢1>=%[|0101)+|1010)], (4.13)
)=S0 = Ll010) —1010)). (@14)
=0 ¢3>:Ji§[|0101>—|0110>1, @15)
|¢gsy=B| )= —0110). (4.16)

This result can be understood by realizing that if the control
signal input to a quantum Fredkin gate is a superposition
state, then the outputs will also be superposition states. Thus,
the state |,) returned by Bob leaves y in a superposition
state, and since the phase shift S has an effect only when its
input is |1) (i.e., not the vacuum), it “filters” out and marks
those cases where f(x) has odd parity. This nontrivial result
is obtained by virtue of the quantum coherence between all
four states. The result for k1kg=11 is similar:

|wo)=[0101), 4.17)
1

|91)=Blgo) = L1010 +[0110)]. (418
1

[2)=Uy, )= L1100 +[0110)],  (4.19)
1

(4.20)

[¢3)=S|4)= E[—UOODHOUO)],
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FIG. 5. Simplified versions of the quantum computer circuit
when k ky= 10, Bob’s apparatus is merged in, and (a) the 7 phase
shift S is in place, or (b) S is removed.

1

|a)=U"s l¢h3)= E[lonm— jot01)],  (4.21)

|¢ps)=B"|44)=10110). (4.22)
Note that the output is very different when k;=0 or 1. Let z
be the measurement result for mode d. When k;=0, the
result is z=1, and Alice’s correct conclusion is that Bob’s
function is type 1. Likewise, when k=1, Alice finds that
z=0, and concludes that Bob’s function is type 2.

Another way to understand physically what is happening
is to reduce the circuit by breaking the abstraction barrier
around Bob’s apparatus, and taking advantage of the fact that
a 7 phase shift sandwiched between two beam splitters is
just a crossover switch. We consider the k1ky=10 case,
where the circuit reduces to become that shown in Fig. 5(A).
We have two interferometers linked by Kerr media; in the
bottom interferometer, the photon is split at the first beam
splitter. If it takes the upper path, then it causes a 7 phase
shift in mode ¢ via cross-phase modulation in the first Kerr
medium. Alternatively, if the photon takes the bottom path, it
also causes a 7 phase shift in ¢, this time through the second
Kerr medium. Either way, the result is the same; the upper
interferometer is unbalanced by 7r, and thus its inputs are
exchanged to give the outputs. This explains why the output
is |#s)=]0110) in Eq. (4.16). Note the usefulness of the
Everett many-worlds interpretation of quantum mechanics
[21] in explaining the operation of this quantum computer.
Another interesting observation is that if k; =1, then insert-
ing and removing the phase shift S should have the effect of
turing k,; on and off. This effect is the signature of quantum
parallelism in our apparatus.

Finally, it is interesting to consider what happens if clas-
sical operation of this machine is attempted. If a coherent
state |a) is used to represent logical 1, and the vacuum |0)
as logical 0, the machine will fail in the following way: the
measurement results will be independent of whether § is in
place or removed. Consider the k;ky=10 case, and simplify
the circuit to the two circumstances shown in Fig. 5. Now, it
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is well known that the outputs of a beam splitter fed with a
coherent state and a vacuum input are coherent states with
half the expected photon number,

0,a>=|a/\/§,—-a/\/§) ,

B (4.23)

since this is just the expected classical behavior. In this case,
both arms of the lower interferometer will contain the same
number of photons, so the photons in mode ¢ will receive the
same cross-phase modulation in both cases. When § is in
place, ¢ will get a phase shift once from » and once from a,
and when S is removed, ¢ will be phase shifted twice by b.
Since the amount of shift is the same in either case, the
measurement result is independent of presence of S.

This shows that quantum parallelism does not occur in
our machine under classical operation. This is not a surpris-
ing result, since a beam splitter does not create a Schrodinger
cat state of |0) and |@) from a coherent state input.

V. ERROR CORRECTION

An important feature of our simple quantum computer is
its use of a dual-rail qubit representation. Given correct input
preparation, we expect at all times that a single photon exists
in either mode ¢ or d, but not both; likewise for modes a and
b. This feature allows us to detect certain cases when infor-
mation is lost from the computer, and reject the faulty data.
Although this error correction scheme is simpleminded and
does not solve the general quantum error correction problem,
it is simple to implement, and effective in reducing the prob-
ability of error, as we shall see in this section.

Because the machine operates deterministically under per-
fect conditions, error correction is easy. If the measurement
result for the four modes ever changes without any change of
the inputs or the switch conditions, then somewhere a ran-
dom process must be interacting with the qubits in the ma-
chine. For example, measurement of a total of zero or one
photons at the output is indicative of a loss process, while
measurement of more than two photons suggests some error
in preparation of the inputs. Assuming that input preparation
is always perfect, we may correct for random errors by re-
jecting all executions which result in one of |0000),
[0001), |0010), |0100), or |[1000). We may also reject
[1010) and |1001), since we know a priori that the scratch
pad (qubit {a,b}) should remain logically unchanged. When
rejection occurs, we perform a retrial execution.

Let us now consider a specific decoherence model. The
Kerr medium used by Bob in his quantum Fredkin gate is
experimentally known to be lossy [22], and we may model
this by inserting a loss mechanism in modes » and c¢. With-
out loss of generality, we consider just the k;ko=10 case,
and imagine having loss occur only during the second instan-
tiation of Bob’s apparatus. Specifically, just as before, we
have

|¢3)=SUfIOB]0101) (5.1)
as the state sent by Alice to Bob in her second communica-
tion. We now dismantle Bob’s apparatus; in the ab-
sence of decoherence, Bob performs the transform
Uf|0=BabeCBZb, where B, is the usual 50-50 beam split-
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ter acting on modes a and b, and K,.=exp[imb'bc'c] is the
Kerr operator acting on modes b and c. However, we shall
consider instead I.lel():BabF,,I'chcBZb, where I'; is a non-
unitary amplitude damping operator acting on mode i. The
formal operation of I'; is best described by its action on a
general single-qubit density matrix,

poot(1=e Mpy e "py

e " pyg e "py

Poo  Poi

1‘:
i Pro r

r pu| i

(5.2)

In other words, I'; describes the amplitude damping due to a
Caldeira-Leggett-type coupling [23] of mode i to the envi-
ronment, with coupling constant y. We concern ourselves
only with the reduced density matrix of the system here; a
good description of this procedure can be found in standard
quantum-optics textbooks [24].

The calculation of the output result is straightforward us-
ing density matrices. We get

|30) = Bas| ¥3), (5.3)
P3a=|¥3a){¥3al, (5.4)
p3=T,p3 LI}, (5.5
p3.=B.Kp3,K'B],, (5.6)
ps=B'p3 B, (5.7)

where the density matrix p;, describes the input to the loss
medium, p;;, is the input to the Kerr medium [calculated
using Eq. (5.2)], ps. is the output of Bob’s apparatus, and
p4 is the final output. The diagonal elements of p, give us
the final measurement result probabilities. Physically, we ex-
pect errors to occur because the loss of photons results in the
possibility of the second Fredkin gate failing to switch. Thus,
loss either causes an incorrect total output photon count, or
results in the incorrect location of an output photon.

Without error correction, we simply look at the measure-
ment result for mode d. Since the expected result is that
z=0 for the k,ky= 10 case, we find that the error probability
is

Pype=i[l+e™7=2e7372]. (5.8)

On the other hand, if we perform error correction by reject-
ing all illegal results, then the error probability is given by
the relative probability of getting |0101) (the wrong answer)
to |0110) (the right answer),

P ! 1 h L4 5.9
==|1—sech=| . .
The dramatic improvement in our error rate given by use of
the dual-rail qubit error correction scheme is shown in Fig 6.
Work is currently in progress to extend these results to con-

sider other noise sources, such as phase randomization.
It is possible to generalize our results to the N-bit Deutsch
problem, using the techniques outlined in the previous two

sections, although we shall not do so here. Rather, let us
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FIG. 6. Error probability for the final measurement result in the
kiky=10 case, with and without error correction (lower and upper
curves). As loss increases to infinity, the error correction scheme
becomes ineffective because the photons become localized in an
arm of the interferometer, but for small vy, the improvement is sub-
stantial; Pyge~ /2 and Pgc~ v?/16, where loss is 4.34y dB.

summarize the findings from the study of our simple quan-
tum computer: (1) the concept of quantum parallelism, dem-
onstrated through the simultaneous calculation of f(x) for
two values of x, is not in conflict with any fundamental
principle of physics, or any fundamental source of noise that
is apparent in our system, and (2) rudimentary error correc-
tion using a dual-rail qubit representation is simple to apply
to a quantum computer, and indeed can be effective in indi-
cating coherence loss or improper input preparation. These
advances are hopeful signs of the eventual practicality of
quantum computing.

VI. CONCLUSION

The experimental realization of a quantum computer is a
difficult proposition. By definition, unitary evolution requires
complete isolation from the environment. However, at the
same time, it must be possible for qubits to interact with each
other, so that information processing can occur. This di-
lemma goes to the heart of a tradeoff that is central to the
practicality of quantum computing.

We chose to use single photons as representations of a
qubit, in part because it is easy to create superpositions of
single photons using a normal beam splitter. However, it
turns out that it is difficult to find a nonlinear optical material
with a x® coefficient sufficiently strong to allow two single
photons to give each other 7 cross-phase modulation. In
contrast, it is easy to cross-phase modulate two single elec-
trons, via the Coulomb interaction [25], but difficult to fab-
ricate a 50-50 electron beam splitter shorter than the dephas-
ing length in a high-mobility semiconductor electron gas.
The tradeoff is the interaction strength; it seems that, in gen-
eral, if bits strongly interact, then it is easy to make them
process information, but difficult to put them into superposi-
tion states.

Another general observation comes from contemplating
the structure of our quantum computer: There are three in-
terferometers in this simple one-bit machine. The problem is
that quantum computing involves the storage and manipula-
tion of information in canonically conjugate degrees of free-
dom. For example, in our apparatus, information is encoded
both in the photon number (in each mode) and the phase of
the photon. Interferometers are used to convert between the
two representations. This is fine, in our system, because it is
feasible to construct stable optical interferometers. However,
if an alternate, massive representation of a qubit were cho-
sen, then it would rapidly become difficult to build stable
interferometers, because of the shortness of typical de Bro-
glie wavelengths.

Both of the above problems deal with coherence. There is
also the issue of timing. The quantum computer envisioned
here is ballistic. Although the machine we present is, in prin-
ciple, perfectly reversible, we have implicitly assumed that
no scattering takes place within the system, because such
effects would lead to timing jitter which would cause the
malfunctioning of the machine. That is because the logical
state of our machine is distributed among four modes, and
we cannot deal with effects which cause temporal synchro-
nization to be lost. The only solution we have is that given to
us by our simple error correction method; in the event of a
detected error, throw out the execution trial and try again.

Despite these problems, we believe that Nature favors
quantum computing with single-photon states in several
ways. First, it is very easy to create superposition states us-
ing a beam splitter. These states have been called
Schrodinger-cat-like states because of their robustness com-
pared to macroscopic superposition states which are more
massive. Also, transformations such as the phase shift § have
simple realizations, because a'a is the number operator for a
single photon, rather than for something macroscopic. These
features suggest that single photons (or single electrons) are
appropriate physical realizations of quantum bits.

Furthermore, we believe that imminent technological ad-
vances in the area of single photonics may provide some
impetus to the realization of our machine. In particular, we
suggest that the single-photon turnstile device [26] may be
the solution for generating a quantum bit source with high
spectral purity and a well-defined clock. This would give us
delocalized states with a high Kerr interaction cross section,
and robustness against timing errors. Also, we hope for a
new generation of single-photon detectors, such as the
single-photon gate field-effect transistor [27] and new ava-
lanche photodetectors [28]. Finally, we look forward to new
nonlinear optical interactions which may give us single-
photon driven switches by coherently converting a photon to
and from some other particle (e.g., the exciton-polariton)
which has a larger nonlinear interaction strength [29].

Realization of our simple quantum computer using optical
components is attractive because of the simplicity of our
proposal. Because of mirror symmetry, only one quantum
logic gate need be implemented. Furthermore, as a practical
initial test of quanutum parallelism (and the feasibility of
maintaining quantum coherence through a nonlinear me-
dium), Kerr media with x<<7r may be used. In this case,
insertion and removal of the phase shift S will still give a
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statistical signature showing whether classical or quantum
operation has been achieved.

Our design of a simple quantum computer has laid a foun-
dation upon which more complicated and general purpose
systems may be formulated. By describing quantum compu-
tation in terms of the traditional tools of quantum optics, and
by introducing a system complete with rudimentary error
correction, we have constructed a simple framework for ana-
lyzing the impact of decoherence, and evaluating the reality
of quantum computation. We hope that our work will lead to
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a future experiment to demonstrate the practicality of quan-
tum computing.
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