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General relativistic hydrodynamics with viscosity: Contraction, catastrophic collapse, and disk
formation in hypermassive neutron stars

Matthew D. Duez, Yuk Tung Liu, Stuart L. Shapiro,* and Branson C. Stephens
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

~Received 18 December 2003; published 28 May 2004!

Viscosity and magnetic fields drive differentially rotating stars toward uniform rotation, and this process has
important consequences in many astrophysical contexts. For example, merging binary neutron stars can form
a ‘‘hypermassive’’ remnant, i.e., a differentially rotating star with a mass greater than would be possible for a
uniformly rotating star. The removal of the centrifugal support provided by differential rotation can lead to
delayed collapse of the remnant to a black hole, accompanied by a delayed burst of gravitational radiation.
Both magnetic fields and viscosity alter the structure of differentially rotating stars on secular time scales, and
tracking this evolution presents a strenuous challenge to numerical hydrodynamic codes. Here, we present the
first evolutions of rapidly rotating stars with shear viscosity in full general relativity. We self-consistently
include viscosity in our relativistic hydrodynamic code by solving the fully relativistic Navier-Stokes equa-
tions. We perform these calculations both in axisymmetry and in full 311 dimensions. In axisymmetry, the
resulting reduction in computational costs allows us to follow secular evolution with high resolution over
dozens of rotation periods~thousands ofM ). We find that viscosity operating in a hypermassive star generi-
cally leads to the formation of a compact, uniformly rotating core surrounded by a low-density disk. These
uniformly rotating cores are often unstable to gravitational collapse. We follow the collapse in such cases and
determine the mass and the spin of the final black hole and ambient disk. However, viscous braking of
differential rotation in hypermassive neutron stars does not always lead to catastrophic collapse, especially
when viscous heating is substantial. The stabilizing influences of viscous heating, which generates enhanced
thermal pressure, and centrifugal support prevent collapse in some cases, at least until the star cools. In all
cases studied, the rest mass of the resulting disk is found to be 10–20 % of the original star, whether surround-
ing a uniformly rotating core or a rotating black hole. This study represents an important step toward under-
standing secular effects in relativistic stars and foreshadows more detailed, future simulations, including those
involving magnetic fields.

DOI: 10.1103/PhysRevD.69.104030 PACS number~s!: 04.25.Dm, 04.40.Dg, 97.60.Jd
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I. INTRODUCTION

The field of numerical relativity has matured to a sta
where it is possible to simulate realistic systems of as
physical interest. In this paper, we examine the global effe
of viscosity on differentially rotating, relativistic stars. Vis
cosity can have significant effects on the stability of neut
stars. For example, it can drive a secular bar instability
rapidly rotating neutron stars, as shown in Newtonian gra
tation @1,2# and in general relativity@3#. Viscosity can sup-
press ther-modes @4,5# and other gravitational-radiatio
driven instabilities, including the secular bar modes@6#. Vis-
cosity also destroys differential rotation, and this can ca
significant changes in the structure and evolution of diff
entially rotating massive neutron stars.

Differentially rotating neutron stars can support sign
cantly more rest mass than their nonrotating or uniform
rotating counterparts, making ‘‘hypermassive’’ neutron st
possible @7,8#. Such hypermassive neutron stars can fo
from the coalescence of neutron star binaries@9–11# or from
rotating core collapse. The stabilization arising from diffe
ential rotation, although expected to last for many dynam
time scales, will ultimately be destroyed by magnetic brak
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and/or viscosity@7,12#. These processes drive the star to u
form rotation, which cannot support the full mass of the h
permassive remnant. This process can lead to ‘‘delay
catastrophic collapse to a black hole, possibly accompan
by some mass loss. Such a delayed collapse might em
delayed gravitational wave signal detectable by laser in
ferometers. Moreover, the collapse, together with any
sidual gas in an ambient accretion disk, could be the ori
of a gamma-ray burst~GRB!.

Both magnetic fields and viscosity can destroy differen
rotation in a rapidly rotating star@12–14#. Simple estimates
show that the magnetic braking~Alfvén! time scale for a
laminar field is much shorter than the time scale of molecu
~neutron! viscosity in a typical massive neutron star. Hen
magnetic fields are expected to be the principal mechan
driving neutron stars toward rigid rotation. Phase mixi
arising from magnetic braking@14,15# or other possible mag
netohydrodynamic instabilities@15,16# might stir up turbu-
lence. Turbulent shear viscosity could then dominate the s
sequent evolution. In this paper, we are primarily interes
in identifying the global evolutionary consequences of sh
viscosity in a relativistic star, independent of the detail
nature or origin of the viscosity.

To explore the consequences of the loss of differen
rotation in equilibrium stars, we study the secular evoluti
of differentially rotating relativistic stars in the presence o
shear viscosity. Viscosity and magnetic fields have t
©2004 The American Physical Society30-1
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DUEZ et al. PHYSICAL REVIEW D 69, 104030 ~2004!
things in common:~1! they both change the angular veloci
profiles of a differentially rotating star, and~2! they both act
on seculartime scales, which can be many rotation perio
The latter inequality poses a severe challenge to nume
simulations using a hydrodynamic code. It is too taxing fo
hydrodynamic code using an explicit differencing scheme
evolve a star for physically realistic secular time scales.
solve this problem, we artificially amplify the strength
viscosity so that the viscous time scale is short enough
numerical treatment. However, we keep the viscous t
scale substantially longer than the dynamical time scale
the stars, so that the evolution of the star remains qu
stationary. We then check the validity of our results by
ducing the viscosity on successive runs and testing that
viscosity-induced physical behavior is unchanged; rath
only the time scale changes and does so inversely with
strength of viscosity. A more detailed discussion of the
pected scaling is presented in Sec. II E@17#.

To study viscous evolution, we need to perform lo
simulations in full general relativity. Typically, we evolve th
stars in axisymmetry. This allows us to follow the secu
evolution of the stars with high resolution in a reasona
amount of time. Viscosity can, however, drive nonaxisy
metric instabilities when a star is rapidly rotating. To test
such instabilities, we also perform lower-resolution, thre
dimensional~3D! simulations on the most rapidly rotatin
stars we consider.

For non-hypermassive neutron stars that are slowly
differentially rotating, we find that viscosity simply drive
the whole star to rigid rotation. If the non-hypermassive n
tron star is rapidly and differentially rotating, however, vi
cosity drives the inner core to rigid rotation and, at the sa
time, expels the material in the outer layers. The final sys
in this case consists of a rigidly rotating core surrounded
a low-density, ambient disk in quasi-stationary equilibrium

Our most interesting results concern the fate of hyperm
sive neutron stars. We numerically evolve four models w
different masses and angular momenta. We find that in
cases, viscosity drives the cores to rigid rotation and tra
ports angular momentum outwards into the envelope. A
result, the core contracts in a quasi-stationary manner,
the outer layers expand to form a differentially rotating tor
Of the four models we have studied, the star with the high
mass collapses to a black hole, with about 20% of the
mass left over to form a massive accretion disk. On the c
trary, the other three stars do not collapse to black holes,
form star1disk systems, similar to the final state of the ra
idly rotating non-hypermassive neutron stars descri
above. As will be discussed in Sec. II F, viscosity genera
heat so that the stars do not evolve adiabatically in gene
The extra thermal pressure due to viscous heating help
support the stars. We also consider the limit of rapid cooli
whereby the heat generated by viscosity is immediately
moved from the stars. Of the three stars which do not c
lapse to black holes in the no-cooling limit, we found that t
one with the lowest angular momentum undergoes c
strophic collapse in the rapid-cooling limit. About 10%
the rest mass is leftover to form an accretion disk in t
case. To test the validity of the axisymmetric results,
10403
.
al

a
o
o

r
e
of
i-

-
he
r,
e
-

r
e
-
r
-

d

-

e
m
y

s-
h
ll
s-
a

nd
.
st
st
n-
ut
-
d
s

al.
to
,
-

l-

a-

s
e

perform 3D simulations to check for any nonaxisymmet
instabilities. We do not find any unstable nonaxisymmet
modes and the 3D results agree with the axisymmetric
sults.

Our results suggest that viscous braking of differen
rotation in a hypermassive neutron star can, but does
always, lead to catastrophic collapse. When catastrophic
lapse does occur, the remnant is a black hole surrounde
a massive accretion disk. This outcome is very different fr
that of the collapse of an unstable, rigidly rotating ‘‘supr
massive’’ neutron star, in which the whole star collapses t
black hole, leaving only a tiny amount of material to form
disk @20,21#. Many models for GRBs require a massive di
around a rotating black hole to supply energy by neutr
processes@22#. Our results suggest that viscous forces in
hypermassive star could lead to the formation of a mass
disk around such a black hole.

The structure of this paper is as follows. In Sec. II, w
derive the relativistic Navier-Stokes equations contain
shear viscosity in a 311 form suitable for numerical integra
tion, and describe how we evolve them in both axisymme
and full 311 dimensions. We then describe in Sec. III se
eral tests that we perform to check our code. We present
results of our simulations on five selected stars in Sec.
Finally, we briefly summarize and discuss our conclusions
Sec. V.

II. FORMALISM AND NUMERICAL METHODS

A. Evolution of the gravitational fields

Throughout this paper, latin indices denote spatial com
nents~1–3! and greek indices denote spacetime compone
~0–3!. We adopt geometrized units, so thatG5c51. We
evolve the 3-metricg i j and the extrinsic curvatureKi j using
the Baumgarte-Shapiro-Shibata-Nakamura~BSSN! formula-
tion @23#. The fundamental variables for BSSN evolution a

f[
1

12
ln@det~g i j !#, ~1!

g̃ i j [e24fg i j , ~2!

K[g i j Ki j , ~3!

Ãi j [e24fS Ki j 2
1

3
g i j K D , ~4!

G̃ i[2g̃ i j
, j . ~5!

The evolution and constraint equations for these fields
summarized in@24# ~hereafter paper I!. In the presence of
matter, these evolution equations contain the followi
source terms:

r5nanbTab,

Si52g ianbTab, ~6!

Si j 5g iag j bTab,
0-2
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GENERAL RELATIVISTIC HYDRODYNAMICS WITH . . . PHYSICAL REVIEW D69, 104030 ~2004!
where Tab is the stress tensor, andna5(2a,0,0,0) is the
future-directed unit normal to the time slice. One must i
pose gauge conditions which specify the lapsea and the
shift b i . We use aK-driver lapse and Gamma-driver shift, a
described in paper I. The numerical implementation of
equations is discussed in paper I, with some improvemen
enhance stability described in@25#. The latter are particularly
relevant for the post-collapse version of our code that
implement with black-hole excision.

B. 3¿1 relativistic Navier-Stokes equations

We treat the matter in our neutron stars as an imper
fluid with a shear viscosity, but no bulk viscosity and no he
conduction. The stress tensor for the fluid is

Tmn5~r01r0e1P!umun1Pgmn22hsmn . ~7!

Here, r0 , e, P, and um are the rest-mass density, speci
internal energy, pressure, and fluid four-velocity, resp
tively. The quantityh is the coefficient of viscosity and i
related to the kinematic viscosityn by h5r0n. The shear
tensorsmn is defined by@26#

smn[u(m;n)1a(mun)2
1

3
ua

;a~gmn1umun!, ~8!

where am is the fluid 4-acceleration. We assume aG-law
equation of state

P5~G21!r0e. ~9!

Our fundamental fluid variables are

r![r0au0e6f, ~10!

e![~r0e!1/Gau0e6f, ~11!

S̃k[r!huk , ~12!

whereh511e1P/r0 is the specific enthalpy. The conse
vation of stress-energy

Tmn
;n50 ~13!

and the law of baryon number conservation

¹m~r0um!50 ~14!

give the relativistic continuity, energy, and Navier-Stok
equations

] tr!1] i~r!v i !50 ~15!

] te!1] i~e!v i !5
2

G
ae6fh~r0e!(12G)/Gsabsab ~16!
10403
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] tS̃k1] i~S̃kv
i !52ae6fP,k12~ae6fhsk

m! ,m

1ae6fgab
,kS hsab2

1

2
r0huaubD ,

~17!

wherev i5ui /u0 is the 3-velocity. The quantityu0 is deter-
mined by the normalization conditionunun521, which
yields

w25r!
21e24fg̃ i j S̃i S̃jF11

Ge!
G

r!~we6f/r!!G21G22

, ~18!

wherew5r!au0.
The stress-tensorTmn generates the following sourc

terms in the field evolution equations:

r5hwe26f2P2
2h

a2 ~s tt22s t ib
i1s i j b

ib j !, ~19!

Si5e26fS̃i2
2h

a
~s t i2s i j b

j !, ~20!

Si j 5
e26f

wh
S̃iS̃j1Pg i j 22hs i j . ~21!

C. 2¿1 relativistic Navier-Stokes equations

Many of the systems we evolve possess and main
symmetry about their rotation axis, which we set to be thz
axis. Then we can eliminate one dimension and simplify
equations. We utilize axisymmetry and follow@27,28# to
evolve the field and hydrodynamic variables on they50
plane. The data off this plane can be obtained by rotating
data on this plane. As we explain in Sec. II G 1, we find
advantageous when performing 211 simulations to evolve
the hydrodynamic equations~15!–~17! in cylindrical coordi-
nates but on a Cartesian~xz! grid. On they50 plane, the
cylindrical coordinatesÃ5Ax21y2, z, and w5arctan(y/x)
are related to the Cartesian coordinatesx, y, andz as follows:
Ã↔x, Ãw↔y, z↔z. Using these relations, Eqs.~15!–~17!
in cylindrical coordinates can be written

] tr!1
1

x
]B~r!xvB!50, ~22!

] t~S̃A22ae6fhsA
0 !1

1

x
]B~xS̃AvB22ae6fhsB

A!

5
1

x
~S̃yv

y22xae6fhsy
y!dAx2ae6f]AP

1ae6fgab
,AF2

1

2
r0huaub1hsabG , ~23!

] t~S̃y22ae6fhsy
0!1

1

x2 ]B~x2S̃yv
B22ae6fhx2sy

B!50,

~24!
0-3
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DUEZ et al. PHYSICAL REVIEW D 69, 104030 ~2004!
] te!1
1

x
]B~e!xvB!5

2

G
ae6fh~r0e!(12G)/Gsabsab ,

~25!

where the indicesA andB run overx andz ~cf. Eqs.~2.10!–
~2.13! of @28#!.

D. Hierarchy of time scales

There are two dynamical time scales for a rotating s
Gravity provides the free-fall time scaletFF,

tFF;S R3

M D 1/2

;1024S M /R

0.2 D 23/2S M

2M (
D s, ~26!

where M is the gravitational mass of the star~or merged
binary remnant! andR is the radius. If the star is rotating, it
rotation periodProt provides another important time scale:

Prot5
2p

V
51.631023S V

4000 s21D 21

s. ~27!

Dynamical instabilities~e.g., instability to radial collapse o
to dynamical bar formation! will act on the above time
scales.

The stars we study are dynamically stable initially,
their structure is altered on secular time scales. Rota
compact stars may be secularly unstable to gravitatio
radiation driven instabilities. The strongest instabilities
this kind are the~nonaxisymmetric! r-modes and the ba
mode. The time scale of thel 5m52 r-mode instability is
given by @4#

t r
GW;50S V

4000 s21D 26S M /R

0.2 D 4S M

2M (
D 25

s. ~28!

The gravitational-radiation driven~Dedekind! bar-mode
instability occurs if the star is rapidly rotating so th
T/uWu.bs , whereT/uWu is the ratio of kinetic to gravita-
tional potential energy. The thresholdbs'0.14 for a New-
tonian star (M /R!1), anddecreasesas the compactness o
the star~i.e., M /R) increases@29#. The time scale of this
instability is estimated to be@30#

tbar
GW;0.1S M /R

0.2 D 24S M

2M (
D S T/uWu2bs

0.1 D 25

s. ~29!

Viscosity alone can also drive a~Jacobi! bar-mode instability.
The threshold is identical for a Newtonian star (bs'0.14)
but increasesas the compaction increases@3#. The relevant
time scale is~see@1#, p. 99!

tbar
vis;

R2

4n S T/uWu2bs

0.1 D 21

s. ~30!

This is comparable to the viscous time scaletvis;R2/n dis-
cussed below.

Magnetic fields coupled to the matter will redistribute a
gular momentum. In fact, even an initially small magne
10403
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field frozen into the matter will be wound up and can destr
differential rotation in the star on an Alfve´n time scale
@7,12,15#:

tB;100S B

1012G
D 21S M /R

0.2 D 1/2

s. ~31!

Viscosity will also redistribute angular momentum on
viscous time scaletvis . One form of viscosity present in
neutron stars is due to the transport of energy and momen
of neutrons. This viscosity acts on a time scale@31,32#

tn,vis;108T9
2S M

2M (
D 9/2S M /R

0.2 D 223/4

s, ~32!

whereT95T/109 K, andT is the characteristic temperatur
It is widely believed that, for cold neutron star

(T&109 K), the neutron fluid in the inner crust condens
into a superfluid of1S0 Cooper pairs@33#, while in the inte-
rior, the neutrons could form a3P2 superfluid@34# ~although
this is less certain!, and the protons a1S0 superfluid. In the
case of neutron superfluidity,tn,vis will vanish, and the domi-
nant viscosity will be due to electron-electron scatteri
@32,35#

te,vis;108T9
2S M

2M (
D 4S M /R

0.2 D 25

s. ~33!

Electron and proton fluids are forced to move together in
magnetohydrodynamic~MHD! limit @36#. Differences in ve-
locity between the neutron and proton-electron fluids
damped fairly quickly by mutual friction@36,37#.

Viscosity can be used as a model for turbulence in cer
situations. Turbulence may occur in young neutron stars
result of pure hydrodynamic effects or magnetic instabilit
@16#. Turbulence is often modeled by the ‘‘a-disk’’ law, in
which a shear stressTÃw52aP is added to the hydrody
namic equation~see e.g.,@38#, Chap. 14!. Herea is a non-
dimensional constant~which should not be confused with th
lapse function! with values in the range 0.001&a&1. The
viscosity in this model roughly corresponds ton; l turbv turb
;aRcs, wherev turb is the velocity of turbulent cells relative
to the mean fluid motion,l turb is the size of the largest tur
bulent cell, andcs is the sound speed. The correspondi
time scale is

tvis
turb;

1

a
tFF;

1024

a S M /R

0.2 D 23/2S M

2M (
D s, ~34!

which is much shorter than all the other secular time sca
Hence turbulent viscosity, if present, is likely to dominate t
secular evolution of differentially rotating stars.

Thermal energy is radiated away primarily by neutrino
For hot neutron stars (T*109 K), the cooling is dominated
by the direct URCA process, and the star cools on a ti
scale tcool;102T9

24 s ~see @39# and @38#, Chap. 11!. For
cooler neutron stars, the cooling is dominated by the mo
fied URCA process, and the star cools on a time sc
tcool;107T9

26 s @39#. Depending on the temperature and t
0-4
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GENERAL RELATIVISTIC HYDRODYNAMICS WITH . . . PHYSICAL REVIEW D69, 104030 ~2004!
nature of the viscosity, the cooling time scale may be gre
than or less than the viscous time scale. Iftvis!tcool, then
the heat generated by viscosity will build up inside the s
Otherwise, it will be radiated away as quickly as it is gen
ated. We study both limits in this paper.

E. Dynamically modeling secular effects

Secular effects will in general take many rotation perio
to significantly affect the structure or velocity profile of
differentially rotating star. This poses a challenge to the
merical treatment of these changes. Because of the s
Courant time step required for numerical stability, it wou
be computationally prohibitive to evolve a star for such
long time using an explicit finite differencing scheme. T
use of a fully implicit scheme for the finite differencing ca
allow stable evolutions with largerDT. Each time step is
however, much more computationally expensive as it
volves matrix inversion. Moreover, no fully implicit routin
for the coupled Einstein field and relativistic hydrodynam
equations exists at present.

The secular time scales are so much longer than the
namical time scales that the star can be thought of as ev
ing quasi-statically. Therefore, it might be possible to tr
the secular evolution in the quasistatic approximation, a
typical stellar evolution~Henyey! codes, by constructing a
sequence of equilibrium configurations up to the mom
that stable equilibrium can no longer be sustained. This
proach has been used to study the viscous evolution of
ferentially rotating white dwarfs@40#. However, building the
required equilibrium models in full general relativity is
nontrivial task. It would be particularly difficult to identify
the meridional currents and core-halo bifurcation that of
arise in rapidly rotating configurations. More significantly,
would not be possible to follow the evolution of the config
ration with a quasi-stationary approach if a dynamical ins
bility ~i.e., collapse! is triggered during the secular evolutio

Instead, we use our relativistic hydrodynamic code a
artificially amplify the strength of viscosity so that the vi
cous time scale is short enough to make numerical treatm
tractable. However, we keep the viscous time scale su
ciently long that the hierarchy of time scales is maintain
and the secular evolution still proceeds in a quasi-station
manner. The behavior of the real system can then be d
mined by rescaling the time variable to adjust the visco
time scale to its physical value. The characteristic visc
time scale is

tvis;rR2^h&21, ~35!

where^h& is an averaged value ofh across the star. Suppos
we evolve the same star, once withtvis5t1 and once with
tvis5t2. If both t1 andt2 are large enough so that they d
not compete with the dynamical time scale, but shorter t
any other secular time scale~see, e.g., Sec. II D!, then the
configuration of the star with viscosityt1 at timet will be the
same as the configuration of the star with viscosityt2 at time
(t2 /t1)t. By varyingtvis over a wide range and corrobora
ing this scaling, we are confident that the physical behav
we observe is real. We can then scale the result of nume
10403
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simulations to the appropriate strength of viscosity, provid
that the physically relevant viscous time scale is mu
shorter than all the other secular time scales~e.g., t r

GW,
tbar

GW).
As discussed in the previous subsection, turbulent visc

ity is likely to dominate the secular evolution. We adopt t
stress tensor as in Eq.~7! and specify the viscosityh suitable
for modeling turbulence. We consider the turbulent viscos
described in@41#:

h;r l turbv turb. ~36!

~This viscosity law is also used in some accretion-disk m
els @16#.! Typically, v turb is proportional to the sound spee
cs . Henceh; l turbrAP/r;( l turb/cs)P. For simplicity, we
assume thatl turb/cs is constant inside the star. Then we ha

h5nPP, ~37!

wherenP is a constant, and is related to the coefficient
kinematic viscosityn by nP5(r0 /P)n. In our numerical
simulations we specify the value ofnP for each run.

We model the initial stars as rotating polytropes w
polytropic indexn51, so thatP5kr0

2. It is convenient to
rescale all quantities with respect tok. Sincek1/2 has dimen-
sions of length, we can define the following nondimensio
variables@47#:

x̄m5k21/2xm, V̄5k1/2V, ~38!

M̄5k21/2M , R̄5k21/2R, ~39!

r̄05kr0 , n̄P5k21/2nP , ~40!

where the spacetime coordinates arexm5(t,x,y,z). How-
ever, to simplify our notation, we will drop all the overbar
Hereafter, all variables are understood to be in ‘‘k51 units.’’

Using Eq.~35!, we can see thattvis scales withR, r, and
nP as

tvis;
R2

n
;

R2r

nPP
~41!

which for n51 becomes

tvis;
R2

rnP
. ~42!

For definiteness, we taketvis to be

tvis5l
Req

2

r0,maxnP
, ~43!

where Req is the equatorial radius,r0,max is the maximum
value ofr0 in the star, andl is a dimensionless constant. W
use the constantl to approximately matchtvis to the rate of
decay of differential rotation observed by our simulation
With the appropriatetvis , the value ofsmnsmn, which is
proportional to the rate of energy dissipation@see Eq.~16!#,
is expected to decay like
0-5
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DUEZ et al. PHYSICAL REVIEW D 69, 104030 ~2004!
smnsmn'~smnsmn!u t50exp~22t/tvis!. ~44!

We measuretvis by numerically evolving a given star, an
observing the decay with time of̂smnsmn&, the average
value ofsmnsmn throughout the star, weighted by rest de
sity. We determine the value ofl by requiring thattvis
roughly corresponds to thee-folding time of the decay of
A^smnsmn&. Carrying out this measurement on a sampli
of the stars used below, we find thatl'0.23 in all cases.
Thus we usel50.23 to definetvis in the sections below.

We note that the turbulent viscosity adopted above for
numerical treatment is roughly equivalent to an ‘‘a ’’ model
provided we identifya;(cs/R)nP;(M /R3)1/2nP . Equation
~43! for tvis is then equivalent to Eq.~34!.

F. Radiative cooling

Our stars do not evolve isentropically. Viscosity heats
matter on a time scaletvis , as shown by Eq.~16!. At the
same time, neutrino radiation carries away heat, cooling
star on a time scaletcool. We will carry out simulations
below in two opposite limits, which we describe in som
detail in the Appendix. In theno-coolinglimit, tcool@tvis , so
we ignore radiative cooling and simply evolve Eqs.~15!–
~17!. In the rapid-cooling limit, tcool!tvis , so we evolve
Eqs. ~15!–~17! as before, butwithout includingthe viscous
heating term in the energy equation@Eq. ~16!#. This will
allow net heating by adiabatic compression but not by v
cosity. The viscous heat is assumed to be~instantaneously!
lost by radiation in this limit, while viscous braking pro
ceeds. The emitted radiation will carry off some moment
as well as energy, causing a modification of Eq.~17!, but this
will have a much smaller effect provided the luminosity do
not exceed the~neutrino! Eddington luminosity. Baumgarte
and Shapiro@42# investigated the loss of angular momentu
in binary neutron star merger remnants due to radiation,
they found it to be fairly small. We therefore feel justified
ignoring radiative corrections to Eq.~17!.

G. Numerical implementation

1. 2¿1 dimensional code

Our hydrodynamical scheme employs van Leer–type
vection with artificial viscosity to handle shocks. We also u
a ‘‘no-atmosphere’’ approach, in which the density at a
point on our grid can fall exactly to zero. Our hydrodynam
cal algorithms are described in detail in paper I. We ha
evolved the above equations both in two dimensions, ass
ing axisymmetry, and in three dimensions. Using axisy
metry saves us computational time and allows us to
higher resolution. However, 3D runs must still be carried
for rapidly rotating systems in order to check for the occ
rence of nonaxisymmetric instabilities. There are seve
ways to evolve in axisymmetry. One could write the field a
hydrodynamic evolution equations in cylindrical coordina
(Ã,z,w) and evolve in this coordinate system. This has
advantage that one can explicitly remove the dependenc
the variables onw. Unfortunately, there are singularities
the cylindrical coordinate system which can make the evo
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tion of the field equations in these coordinates difficult. I
stead, we choose to evolve the metric variables (g̃ i j , Ãi j , f,
K, G̃ i , a, andb i) in axisymmetry using the Cartoon metho
@27#. In this approach, variables are evolved on a Cartes
grid consisting of three planes corresponding toy52DY,
y50, andy5DY. Then the middle (y50) plane is evolved
using the 3D evolution equations in Cartesian coordina
Each time the middle plane is evolved forward one time st
they52DY andy5DY planes are updated by applying th
assumption of axisymmetry. Thus, the value of a tensorf at
location (Ã,z,6w) on y56DY is equal tof at (Ã,z,0)
rotated by~coordinate! tensor transformation about thez axis
by angles6w. Since an arbitrary point (Ã,z,0) will gener-
ally not coincide with any grid point on they50 plane,
interpolation inx is necessary to apply this update. We u
third-order polynomial interpolation, so that we do not lo
second-order accuracy.

With the hydrodynamic evolution equations, we also ha
the choice of either evolving in cylindrical coordinates
evolving in Cartesian coordinates using the Cartoon presc
tion. Like Shibata in his work on axisymmetric star collap
@28,43#, we choose to evolve the fluid variables in cylindric
coordinates, i.e., we use Eqs.~22!–~25!. This is superior to
using the Cartoon method because Eq.~22! can be finite
differenced in such a way that the total rest mass will
exactly conserved~except for flow beyond the outer bound
aries!. In the absence of viscosity, angular momentum a
becomes a numerically conserved quantity. We have fo
that evolving the fluid variables in cylindrical coordinate
gives significantly more accurate runs than evolving via C
toon hydrodynamics. The drawback of using 2D evolutio
is the instability caused by the coordinate singularity on
x50 axis. ~This instability is also present if we use the 3
Cartesian Navier-Stokes equations together with the Cart
boundary condition.! There are several ways of removin
this instability. Shibata@28# adds a small artificial shear vis
cosity

] t~S̃A /r!!5•••1nartr!D~S̃A /r!!, ~45!

whereD is the flat-space Laplacian, andS̃i /r!5hui is the
momentum variable evolved by the code of@28# ~instead of
S̃i).

We have confirmed that adding such a term to Eq.~17!
can stabilize our code. However, since we will be study
the effects of real shear viscosity, we instead choose to
move the instability using a higher-order dissipation schem
namely, we add a small Kreiss-Oliger dissipation term@44#

] tS̃A5•••2Cko

~DXDZ!2

16DT
D2S̃A . ~46!

We useCko50.2 for all the simulations reported in this pa
per.

In both 2D and 3D simulations, we assume that our s
tem preserves equatorial symmetry across thez50 plane,
and we therefore only evolve thez.0 portion of the grid. In
3D runs, we make the added assumption ofp symmetry,
0-6
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GENERAL RELATIVISTIC HYDRODYNAMICS WITH . . . PHYSICAL REVIEW D69, 104030 ~2004!
which allows us to evolve only half of the remaining gri
which we choose to be they.0 half. When performing 2D
runs, we evolve only the regionx.0 since the values o
variables in thex,0 region can be deduced from the valu
on thex.0 region from the assumed axisymmetry.

2. Finite differencing

We compute all spacial derivatives using standard c
tered differencing. We integrate forward in time using
3-step iterated Crank-Nicholson scheme. So, for exam
we evolve the equation] t f 5 ḟ ( f ) from time stepn at time t
to time stepn11 at timet1DT by the following algorithm:

~i! Predict: 1f n11[ f n1DT ḟ( f n)
~ii ! 1st Correct:

2f n11[ f n1DT@0.4ḟ ( f n)10.6ḟ ( 1f n11)#
~iii ! 2nd Correct:

f n115 f n1DT@0.4ḟ ( f n)10.6ḟ ( 2f n11)#
As discussed in paper I, the coefficients 0.4 and 0.6 w

chosen to improve stability.
In the presence of viscosity, the time differencing is n

entirely straightforward, due to the presence of time deri
tives of um in smn , and of time derivatives ofsmn in the
Navier-Stokes equations. Thus,] tS̃k ~which gives] tuk) is an
expression which itself contains] tuk and ] t

2uk . Since the
viscosity is a small perturbing force on the fluid motion, w
find that it is sufficient to split off the viscous terms an
integrate them separately~operator splitting!. In particular,
we compute] tuk and] tsk

0 appearing in the viscous terms

a non-time centered way. Consider theS̃ evolution equation
for the viscous piece:] tS̃5S8 (s,ṡ), where we have sup
pressed all indices. To evolve this equation from time sten
to time stepn11, we need to know the time derivatives ofu
and s. When performing the predictor step, these time
rivatives are approximated by subtracting values of the fie
on the time stepn from those on the previous time ste
n21.

~i! Before predictor step,
computeu̇n21/25@un2un21#/DT,
sn5s(un,u̇n21/2),
ṡn21/25@sn2sn21#/DT

Note that these time derivatives are centered atn21/2. We
then carry out the predictor step.

~ii ! Predict: 1S̃n115S̃n1DTS8 (sn,ṡn21/2)
From the predicted values ofu ands, we construct time

derivatives centered atn11/2 and use these in the correct
step.

~iii ! compute1un11 from 1S̃n11

1u̇n11/25@ 1un112un#/DT,
1sn115s( 1un11, 1u̇n11/2),
1ṡn11/25@ 1sn112sn#/DT

~iv! 1st Correct:
2S̃n115S̃n1DT@0.4S8 (sn,ṡn21/2)

10.6S8 ( 1sn11, 1ṡn11/2)]
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~v! compute2un11 from 2S̃n11

2u̇n11/25@ 2un112un#/DT,
2sn115s( 2un11, 2u̇n11/2),
2ṡn11/25@ 2sn112sn#/DT

~vi! 2nd Correct:
S̃n115S̃n1DT@0.4S8 (sn,ṡn21/2)

10.6S8 ( 2sn11, 2ṡn11/2)]
By differencing the equations in this way, the domina

nonviscous terms in the evolution equations are accurat
second order~except for small effects due to the use of t
coefficients 0.4 and 0.6 in the corrector steps!, but small
viscous terms involving time derivatives are accurate only
first order inDT. Numerical convergence tests show that o
code is nearly second-order convergent in space and t
We find this to be sufficient for our purposes. When comp
ing smn , we first use Eq.~8! to get the spatial component
s i j . The remaining componentss0m are then obtained from
the conditionsumsmn50.

As in most other Eulerian hydrodynamic codes, high v
locities can easily develop in the low-density regions n
the surfaces of our stars. The method for evolving such
gions in the absence of viscosity is described in pape
Since calculation of the shear tensor involves taking deri
tives of the velocity field, we are unable to calculate it acc
rately in the very low-density regions. To ensure stability,
seth50 in regions wherer0,1023r0,max. Since these low-
density regions contain an insignificant amount of rest ma
this prescription should not affect our evolutions. We confi
this by varying the cutoff density in several test problem
and checking that the effect is negligible.

H. Diagnostics

Our most important diagnostics are the total mass-ene
M and angular momentumJ. These are both defined by su
face integrals at infinity@45#:

M5
1

16pES`

Agg img jn~gmn, j2g jn,m!d2Si , ~47!

Ji5
1

8p
« i j

kE
S`

xjKk
md2Sm . ~48!

Using Gauss’s law, these surface integrals can be conve
to volume integrals:

M5E
V
Fe5fS r1

1

16p
Ãi j Ã

i j 2
1

24p
K2D2

1

16p
G̃ i jk G̃ j ik

1
12ef

16p
R̃Gd3x, ~49!

Ji5« i j
kE

V
S 1

8p
Ãk

j 1xjSk1
1

12p
xjK ,k

2
1

16p
xj g̃ lm

,kÃlmDe6fd3x. ~50!
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In axisymmetry, the angular momentum integral simplifies
@46#

Jz5E
V
xSyd

3x. ~51!

Henceforth, we drop the subscriptz since all angular mo-
mentum is in thez direction.

The massM and angular momentumJ in our grid should
be strictly conserved only in the absence of radiation~al-
though gravitational radiation carries no angular moment
in axisymmetry!. Since the energy and angular momentu
emitted in gravitational waves are negligible in our runs, t
means thatM and J should be conserved in the no-coolin
limit. They thus serve as useful code checks in this limit.
the rapid-cooling limit, the mass computed by the volum
integral~49! over the numerical grid will not be conserved—
thermal energy is carried off the grid by thermal radiatio
The expected rate of mass-energy decrease due to the
energy loss can be computed by differentiating Eq.~49! with
respect to time. To lowest order, we can ignore the effect
the quasi-stationary loss of thermal energy on the spacet
and so ignore the time derivatives of field variables. Th
only the first term in Eq.~49! will be important.

dM

dt U
cooling

5
d

dtEV
d3xe5fr1•••

'E
V
d3xe5f

]r

]t U
cooling

, ~52!

where]r/]tucooling is the component of the time derivative o
r caused by loss of internal energy due to cooling. T
quantity may be computed by applying the chain rule to E
~19!:

dM

dt U
cooling

5E
V

]r

]eU
r0 ,u0

]e

]e!
U

r0 ,u0

]e!

]t U
cooling

e5fd3x.

~53!

Changes inu0 are ignored because they represent a high
order influence ondM/dt. The rate of change ine! due to
cooling is given by the effective balance of heating and co
ing that characterizes the rapid-cooling limit~see the Appen-
dix!. Thus,] te!ucooling is minus the value of] te! due to vis-
cous heating, i.e.,

]e!

]t U
cooling

52
2

G
ae6fh~r0e!(12G)/Gsabsab ~54!

@see Eq.~16!#. From Eqs.~53! and~54!, it is straightforward
to construct

dM

dt U
cooling

52E
V
d3xH 2e5fae6fhsabsabS r0

r!
D

3FGe212fS r!

r0
D 2

2G11G J . ~55!
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Finally, the quantity which is nearly conserved in the rap
cooling limit ~up to losses due to gravitational radiation! is

M tot5M1M cooling[M2E
0

t

dt8
dM

dt8
U

cooling

. ~56!

In both the no-cooling and rapid-cooling runs, we c
divide M into its constituent pieces: the rest massM0, inter-
nal energy massMi , kinetic energyT, and gravitational po-
tential energyW, defined by@47#

M05E
V
r0dV, ~57!

Mi5E
V
~r0e!dV, ~58!

T5E
V

1

2
VTw

0~u0!21dV, ~59!

W5M2M02Mi2T, ~60!

wheredV5au0e6fd3x is the proper 3-volume element. T
study the effects of heating, it is useful to break up the int
nal energye into its ‘‘cold’’ componente05r0

G21/(G21),
and its ‘‘thermal’’ componenteheat5e2e0. Then we can
break upMi into cold and hot components

Mic5E
V
~r0e0!dV, ~61!

Mih5E
V
~r0eheat!dV. ~62!

Note that in the rapid-cooling limit,Mih50.
Finally, we also compute the circulation along clos

curves. For a closed curvec with tangent vectorlm, the
circulation is defined to be

C~c!5 R
c
humlmdz, ~63!

wherez parameterizes points onc @i.e., lm5(]/]z)m]. Ac-
cording to the Kelvin-Helmholtz theorem, the circulationC
will be conserved in the absence of viscosity ifc moves with
the fluid and if the fluid is barotropic@P5P(r0)#. When
viscosity is present or the equation of state is more gene
as in the case of nonisentropic flow, the Navier-Stokes eq
tions give

dC
dt

52 R
c
lmr0

21@P,m22~hsm
n! ;n#dz. ~64!

If h50, the second term in the integrand vanishes, an
P5P(r0), the remaining term is an exact differential. The
dC/dt integrates to zero, in accord with the Kelvin-Helmol
theorem.
0-8
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TABLE I. Initial equilibrium models for code tests.

Star M M0 Req/M r0,max
a T/uWu Veq/Vc

b Prot /M
c Rpe

d

A 0.170 0.186 4.10 0.241 0.032 1.0 155 0.8
B 0.171 0.187 3.48 0.363 0.031 1.0 125 0.8
C 0.183 0.200 4.53 0.155 0.095 0.346 60.6 0.
D 0.241 0.260 5.47 0.061 0.234 0.383 52.4 0.
E 0.259 0.277 5.92 0.045 0.263 0.381 57.4 0.

aMaximum rest-mass density. This does not correspond to the center of the star for hypermassive,
models D and E.
bRatio of V at the equatorial surface toV at the center.
cInitial central rotation period.
dRatio of polar to equatorial coordinate radius.
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In axisymmetry, we choose to evaluateC on circular rings
on the equatorialz50 plane, so thatz5w. The ringc inter-
sects our 2D grid at a point on thex axis. By our symmetries
the curvec will always remain circular and always remain
z50, so the Lagrangian point representingc only moves in
x. Evolution in t and in t are simply related byd/dt
5u0d/dt. Since the system is axisymmetric, the integra
being a scalar, is constant alongc, so Eqs.~63! and ~64!
simplify to

C52phuw52phxuy ~axisym!, ~65!

dC
dt

5
1

u0

dC
dt

5
4p

r0u0 ~hsw
n! ;n

5
4p

r!x
@~x2ae6fhsy

0! ,t1~x2ae6fhsy
A! ,A#.

~66!

Hence the quantityCtot given by

Ctot5C1Cvis[C2E
0

t

dt8
dC
dt8

~67!

is conserved, even in the presence of viscosity.
Finally, we compute the Hamiltonian and momentum co

straint violations@given by Eqs.~16! and~17! of paper I#. We
monitor theL2 norm of the violation of each constraint. W
compute theL2 norm of a grid functiong by summing over
every grid pointi:

L2~g!5A(
i

gi
2. ~68!

The constraint violations are normalized as described in
per I @Eqs.~59! and ~60!#.

III. CODE TESTS

In paper I, we presented our relativistic hydrodynam
code. This code evolves the coupled Einstein field relativi
hydrodynamic system on 3D grids, assuming perfect-fl
hydrodynamics. We demonstrated the ability of our code
distinguish stable from unstable relativistic polytropes, to
10403
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curately follow gravitational collapse of rotating stars, and
accurately evolve binary polytropes in quasi-stationary cir
lar orbits. When black holes appear on our grid, we c
employ excision to remove the spacetime singularities fr
our grid. Tests of our black hole excision algorithm using th
code were reported in@48# for single rotating black holes in
vacuum spacetimes and in@25# for black holes that arise
during the collapse of hydrodynamic matter. In this secti
we test the adaptations of this code which force axisymm
ric evolution and the modifications which allow a physic
viscosity. Simulations performed with our axisymmetr
code show that stable and unstable Tolman-Oppenheim
Volkoff ~TOV! stars are correctly distinguished. The co
also achieves approximate second order convergence in
evolution of linear gravitational waves and TOV stars. B
low, we describe test runs on rotating stars in some de
First, we consider stable and unstable uniformly rotat
stars, as well as a stable differentially rotating star, in a
symmetry and without viscosity. We then test the sensitiv
of our code to nonaxisymmetricdynamicalbar formation.
Finally, we check that physical viscosity is implemented c
rectly by considering stable uniformly and differentially ro
tating models. A summary of the models used for these c
tests is given in Table I. The models are initiallyn51 equi-
librium polytropes and are evolved using aG-law equation of
state withG52 @see Eq.~9!#. Initial data for all of these
models are obtained from the relativistic, rotating star eq
librium code of @47#. Stars A and B were also studied i
paper I@49#. For the differentially rotating stars C, D, and E
we choose the initial rotation profile

u0uw5Req
2 A2~Vc2V!, ~69!

whereV is the angular velocity of the fluid,Vc is the value
of V at the center and all along the rotation axis,Req is the
equatorial coordinate radius, and the parameterA, which
measures the degree of differential rotation, is chosen to
unity. In the Newtonian limit, Eq.~69! reduces to the so
called ‘‘j -constant’’ law@50#

V5
Vc

11Ã2/Req
2 A2

. ~70!
0-9
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DUEZ et al. PHYSICAL REVIEW D 69, 104030 ~2004!
We note that then51 TOV polytrope of maximum mass ha
massM50.164 and compactionReq/M53.59 @47#. All of
the axisymmetric tests in this section were performed wit
modest resolution of 64364 and outer boundaries at abo
12M . Passing these tests successfully with modest resolu
helps establish the robustness of our code.

A. Tests in axisymmetry

To demonstrate that our ‘‘axisymmetrized’’ code can d
tinguish stable and unstable uniformly rotating models,
consider stars A and B. These stars lie along a sequenc
constant angular momentum, uniformly rotating stars. As
scribed in paper I, star A lies to the left of the turning po
on theM -rc equilibrium curve, while star B lies to the righ
Then by the theorem of Friedman, Ipser, and Sorkin@51#,
star B is secularly unstable to radial perturbations, while s
A is stable. Since the onset of dynamical radial instability
very close to the onset of secular instability for such
quences@20#, we expect that star A will be stable to collaps
while star B will be dynamically unstable. When evolved
axisymmetry, star A persists for more than 7Prot without sig-
nificant changes in structure, where the central rotation
riod is

Prot[
2p

Vc~ t50!
. ~71!

The oscillations inrc , which correspond to radial pulsation
have an amplitude of&7%. For this run, the Hamiltonian
and momentum constraints are satisfied to within 2%, wh
M is conserved to better than 1%. Meanwhile, the unsta
uniformly rotating star~star B! collapses, with an apparen
horizon first appearing at timet.2Prot , corresponding to
21.3 light crossing times of the grid. At this time, the co
straints are satisfied to within 6% andM is conserved to
within 3%. Thus, stable and unstable uniformly rotating st
are clearly distinguished even at this moderate resolut
Figure 1 summarizes the results for these two runs.

Next we consider the evolution of a differentially rotatin
star using our axisymmetric code. We evolve star C fo
time *15Prot . Throughout the simulation, all constraints a
satisfied to better than 4.5%, whileM, J, and M0 are con-
served to within 3.5% (J and M0 decrease due to flow be
yond the outer boundaries!. In the absence of a dissipativ
mechanism to brake the differential rotation, the structure
the equilibrium star should not change. We find that we c
numerically hold this equilibrium state for 15Prot . Note that
the small amount of Kreiss-Oliger dissipation employed
numerical stability does not alter the rotation profile of t
star. After this time, inaccuracies at the center, manifested
growth in V and high-frequency oscillations inr0, begin to
grow. We monitor the evolution of the circulation for thre
different fluid elements chosen at the following initial loc
tions in the equatorial plane:~a! r 5Req/4, ~b! r 5Req/2, and
~c! r 53Req/4, whereReq is the initial radius of the star. We
find that, fort&22.5Prot , the circulation is conserved to be
ter than 5% for all three of these points. After this time, t
same inaccuracies cause the circulation to deviate from
initial value.
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Because viscosity tends to smooth irregularities in the
locity field, the problems near the axis and the inaccuracy
the azimuthal velocity can be controlled by a small sh
viscosity. To test this we evolve star C for;60Prot with a
very small shear viscosity~such thattvis.550Prot). Because
tvis is so much greater than the length of the simulation,
small viscosity does not significantly alter the structure of
star. We find that the behavior ofV improves considerably
while the small-scale variations inr0 near the axis do no
occur. In addition, the circulation values for the same th
points which we studied in the previous case are conser
to within 5% for more than 50Prot . Thus, even a tiny shea
viscosity significantly lengthens the period during which o
runs are accurate. As we will describe below, the presenc
a small shear viscosity allows us to evolve axisymme
models accurately for hundreds ofProt , corresponding to
thousands ofM.

B. Tests of dynamical bar mode sensitivity

We now demonstrate that our 3D code is sensitive to
nonaxisymmetricdynamicalbar-mode instability. This sensi
tivity is important because the results of axisymmetric ru
for a particular case will only be valid physically if it can b
demonstrated that nonaxisymmetric modes do not develo
the corresponding 3D evolution. We consider two models
and E, which we expect to be dynamically stable and
stable to bars, respectively. This expectation is based on
lier 311 fully relativistic evolutions of these stars by Sh
bata, Baumgarte, and Shapiro@52#, who studied the

FIG. 1. Axisymmetric evolution of uniformly rotating stars. Sta
A ~solid lines! is stable, while star B~dotted lines! is unstable to
collapse. The upper window shows the central density normali
to its initial value, while the lower gives the central lapse. The so
dot indicates the first appearance of an apparent horizon during
collapse of star B.
0-10
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GENERAL RELATIVISTIC HYDRODYNAMICS WITH . . . PHYSICAL REVIEW D69, 104030 ~2004!
formation of bars. Both models are hypermassive, toro
configurations with high values ofT/uWu ~0.230 for D and
0.258 for E!. These models are identical to models D1 a
D2 considered in@52#. To test for bars, we add a nonaxisym
metric density perturbation of the following form to the ax
symmetric initial data:

r5r0S 11db

x22y2

Req
2 D , ~72!

wheredb parameterizes the strength of the initial bar def
mation. We choosedb50.1 for both models D and E. W
then re-solve the constraint equations as in@53# to ensure
that they are satisfied on the initial time slice. The growth
a bar is indicated by the quadrupole diagnostic~see@54#!,

Q5^eimw&m525
1

M0
E d3xr!

~x22y2!12ixy

x21y2
. ~73!

We will take uQu5AQ* Q as a measure of the magnitude
the bar deformation.

We evolve star D for a time 8.9Prot , during whichM and
J were conserved to within 0.7% and all constraints w
satisfied to within 2%. For Star E, the run was termina
after 6.3Prot and M and J were conserved to within 1.0%
while constraint violations were&5.5%. Both runs were
performed inp symmetry on uniform grids with resolutio
128364332. The outer boundaries in thex-y plane were at
16.6M for star D and 19.3M for star E. The results are
shown in Fig. 2. This test clearly shows the growth of the
mode for star E, while star D does not form a bar even w
the substantial initial perturbation.

C. Tests with viscosity

As a first test of our shear viscosity implementation,
demonstrate that uniformly rotating configurations are un
fected by the presence of even a large viscosity. We evo
the uniformly rotating, stable star A withnP50.2 ~such that
tvis.0.09Prot) for ;100Prot;15,500M . The massM is con-
served to within 0.1%, andJ to within 1.5%.~Note that, even
in axisymmetry,J is not identically conserved by our finit
differencing scheme when viscosity is present.! All con-
straints are satisfied to better than 1.1% for the duration
this run. The resulting evolution of the central rest-mass d
sity and central angular velocity are shown in Fig. 3. The
quantities oscillate on the radial oscillation time sca
(;tFF) with amplitudes of several percent, and this run e
compassed roughly 120 oscillation periods. Because the
cillations are radial, they are not appreciably damped by
shear viscosity. For the entire run, the average values orc
and Vc drop by about 4.5% and 6.5%, respectively. The
small deviations are due to the accumulated numerical e
of the finite differencing and are reduced by increasing re
lution. Since the star does not change appreciably over m
viscous time scales, our code simulates the correct phys
behavior for this case.

We now test the viscous evolution of the differentia
rotating star C. We choose viscositynP50.015, so that Eq.
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FIG. 2. Quadrupole diagnostic for evolutions of rapidly rotati
hypermassive stars. Star D is stable and star E is unstable to
namical bar formation. The initialm52 perturbation decays for sta
D ~dotted line! but grows for star E~solid line!. Note that, for each
curve, the time axis is normalized byProt which differs for the two
stars.

FIG. 3. Evolution of the stable, uniformly rotating star A wit
high viscosity. The central density~shown in the upper window!
and central angular velocity~lower window! oscillate without
changing appreciably for over 100 rotation periods (15 500M ).
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DUEZ et al. PHYSICAL REVIEW D 69, 104030 ~2004!
~43! givestvis'5.5Prot . In axisymmetry, we ran this case fo
84.5Prot515.4tvis55 120M , during which timeM andJ are
conserved to within 0.4% while all of the constraints a
satisfied to better than 1.1%. Figure 4 shows several s
shots of the angular velocity profile in the equatorial pla
for the 2D case taken at various times. This clearly sho
that the presence of viscosity drives the star toward unifo
rotation. As a quantitative test of the action of viscosity,
check that the circulation evolves according to Eq.~66!.
Choosing three fluid elements in the initial configuration,
track these fluid elements and calculate the circulationC for
each one, as well as the time-integrated contributions fr
viscosityCvis @see Eq.~67!#. The fluid elements are chosen
the same locations as for the inviscid test of star C in S
III A. The results are shown in Fig. 5, which gives the c
culation, the viscous contribution, and their sum,Ctot . For all
three cases,Ctot is conserved to better than 2% for the ent
run. Thus, angular momentum is transported correctly
many tens of rotation periods~thousands ofM ) when a sig-
nificant shear viscosity is present.

We also used this case to test the scaling behavior of
solutions withnP . Results are shown in the upper window
Fig. 6, which gives the evolution of̂smnsmn& for several
values ofnP versus scaled time. We define the energy dis
pation rate via shear viscosity,^smnsmn&, as in Sec. II E@see
Eq. ~16!#. This quantity decays due to the action of viscos
The figure shows that our solutions obey the proper sca
with nP , i.e., they evolve identically but on a time sca
inversely proportional to the adopted viscosity (nP). Hence
our results can all be scaled to the much smaller viscos
likely to be appropriate for physically realistic viscosity
stars. We provide further demonstration of scaling in S
IV B 2 ~see Fig. 13!.

FIG. 4. Angular velocity profiles in the equatorial frame at s
lected times for star C withtvis'5.5Prot . The presence of viscosity
drives the star to uniform rotation on a viscous time scale.
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FIG. 5. Evolution of the circulation for three selected fluid el

ments of star C in axisymmetry~usingnP50.015). The dotted line
gives the circulationC, the dashed line gives the time integrate
contribution due to viscosityCvis , and the solid line gives their sum
C, which is well-conserved@see Eq.~67!#. Each quantity is normal-
ized by the corresponding initial circulation.

FIG. 6. Energy dissipation ratêsmnsmn&, normalized to its
initial value, for several runs with star C. The upper window de
onstrates the proper scaling of our solutions withnP . Note that the
time axis is scaled according to the appropriate value ofnP . The
lower window compareŝsmnsmn& for runs in axisymmetry~2D!
andp symmetry~3D!, both withnP50.0155n0. These evolutions
agree fairly well.
0-12
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GENERAL RELATIVISTIC HYDRODYNAMICS WITH . . . PHYSICAL REVIEW D69, 104030 ~2004!
TABLE II. Initial models.

Case M0 /M0,TOV
a M0 /M0,sup

b M Req/M J/M2 T/uWu Veq/Vc Prot /M nP
c

I 1.69 1.38 0.279 4.48 1.0 0.249 0.33 38.4 0
II 1.39 1.13 0.228 4.40 0.85 0.188 0.32 41.3 0.
III 1.39 1.13 0.232 5.54 1.0 0.224 0.37 54.2 0.1
IV 1.39 1.13 0.234 6.27 1.1 0.244 0.31 63.3 0.
V 1.0 0.81 0.168 8.12 1.0 0.181 0.40 103 0.1

aIf this ratio is greater than unity, the star’s mass exceeds the TOV limit forn51 polytropes (M0,TOV

50.180).
bIf this ratio is greater than unity, the star’s mass exceeds the uniformly rotating~supramassive! upper limit
(M0,sup50.221) and is therefore hypermassive.
cThe values ofnP are chosen such that the viscous time scaletvis'3Prot;10tFF.
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The results of the axisymmetric run withnP5n0 agree
fairly well with a 3D, p-symmetric run performed for the
same model. This 3D run employed 64332332 grid zones,
giving only half of the resolution of the axisymmetric ru
We terminated the 3D run after 6.35Prot . M is conserved to
within 0.4%, while the constraint violations are&3.6%. Be-
cause of the lower resolution in this case, 3.2% of the to
angular momentum is lost~as opposed to 0.4% for the muc
longer axisymmetric run!. A comparison of̂ smnsmn& for the
2D and 3D cases is plotted in the lower window of Fig.
and shows good agreement.

IV. DYNAMICAL EVOLUTIONS

A. Introduction and discussion of models

Having shown simulations for several test models,
now present the evolution of five differentially rotating, d
namically stable stellar models in which viscosity chang
the structure of the stars in nontrivial ways. Our models
summarized in Table II and Fig. 7. We first perform short, 3
simulations without viscosity on all the five models to ma
sure that they are all dynamically stable to bar formati

FIG. 7. Rest massM0 and spin parameterJ/M2 for the five
selected models in Table II. The dashed line denotes the mass
of uniformly rotating supramassiven51 polytropes,M05M0,sup.
All stars above this line are hypermassive and require differen
rotation to be in hydrostatic equilibrium.
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Each of them is then evolved with our axisymmetric code
both the rapid and no-cooling limits described in Sec. II
The initial data for the five stars are again computed with
relativistic equilibrium code of@47#. The stars obey ann
51 polytropic equation of stateP5r0

2. We adopt the rota-
tion law given by Eq.~69! with A51. This rotation law has
been found to be a good approximation to the angular ve
ity profile of proto-neutron stars formed from core collap
@55#. In the case of a binary neutron star merger, the remn
can form a dynamically stable hypermassive neutron
provided the remnant mass does not exceed about 1.7 t
the maximum mass of a nonrotating spherical star@10#. Our
adopted rotation law is also found to be a reasonably g
approximation to the angular velocity profile of these hyp
massive neutron stars@8#.

In all of our axisymmetric calculations, we use a grid si
1283128 with an outer boundary at 14M for the most mas-
sive and compact star~star I!, and 24M for the least massive
and compact star~star V!. Initially, the equatorial radii of the
stars are only aboutReq'5M . However, viscosity causes th
outer layers to expand and, in some cases, we find that a
percent of rest mass is lost due to material flowing out of
grid. In each model, we choose the value of the viscos
coefficientnP such that the viscous time scale defined by E
~43! is tvis'3Prot;10tFF. With this moderate strength o
viscosity, we need to evolve the stars for (100–200)Prot in
most cases to follow the complete secular evolution and
termine the final fate of the stars. The reason is that in m
cases, viscosity generates a low-density envelope around
central core. Since our viscosity law hash}P, the viscosity
in the low-density region is small.~The density throughou
the envelope is greater, however, than the cutoff density
low which h50.! Hence the effective viscous time sca
increases with time and it takes longer for the stars
achieve a final state.

Four of the five stars we consider are hypermassive,
we expect viscosity to change their structure significan
Star I is the most hypermassive star (M051.38M0,sup, where
M0,sup50.221 is the mass limit for uniformly rotatingn51
polytropes, i.e., for stars at the mass-shedding limit@47#!. We
find that this star eventually collapses to a black hole, bu
substantial amount of rest mass is leftover to form a mas
accretion disk. We consider three other hypermassive mo

it

al
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TABLE III. Summary of simulations.

Case 2D/3D Cooling tfinal /Prot
a Initial T/uWu Final T/uWu ^P/rG& b Fate Jh /Mh

2 c M0,disk/M0 Jdisk/J

I 2D No 28.9 0.25 0.09d 3.9 BH1disk 0.6 0.23 0.65
2D Yes 13.7 0.15d 1.0 BH1disk 0.8 0.21 0.55
3D Yes 9.3 0.21d 1.0 BH1disk 0.8 0.18 0.47

II 2D No 286 0.19 0.09 2.8 Star1disk – 0.15 0.56
2D Yes 57.7 0.14d 1.0 BH1disk 0.7 0.10 0.36

III 2D No 105 0.22 0.09 4.3 Star1disk – 0.21 0.68
2D Yes 315 0.12 1.0 Star1disk – 0.15 0.58

IV 2D No 99 0.23 0.10 7.3 Star1disk – 0.25 0.76
2D Yes 235 0.13 1.0 Star1disk – 0.17 0.62
3D Yes 11.5 – 1.0 No bar – – –

V 2D No 105 0.18 0.09 3.7 Star1disk – 0.13 0.52
2D Yes 171 0.13 1.0 Star1disk – 0.09 0.38

aThe time at which the simulation was terminated.
bThis quantity corresponds to an average ofP/rG over the final configuration of the star weighted by rest-mass density at the end o
simulation. Thermal pressure generated by viscous heating causesP/rG.1 ~recall thatk51). We find that the viscous heating is much mo
significant in the low-density region than in the core.
cThese values are obtained by solving Eqs.~74!–~82!.
dThe quantityT/uWu is undefined when the star undergoes a dynamical collapse. The number given here is an approximate value b
star becomes dynamically unstable.
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~stars II, III and IV! to study whether or not all hypermassiv
neutron stars will collapse in the presence of viscosity. S
II, III and IV have the same rest mass (M051.13M0,sup)
which is slightly smaller than that of star I but different a
gular momentaJ. We find that stars III and IV never col
lapse, but evolve in a quasi-stationary manner to a unifor
rotating core surrounded by a low-density, disk-like env
lope. Star II eventually collapses to a black hole~BH! if we
impose rapid cooling. In the no-cooling limit, however, th
model forms a uniformly rotating core surrounded by a s
stantial disk. Star V is the only non-hypermassive model.
expected, this star does not collapse under the action of
cosity. However, viscosity cannot drive the whole star
rigid rotation, because the angular momentum of the
exceeds the maximum angular momentum allowable fo
rigidly rotating star having the same rest mass. Instead,
cosity again leads to a uniformly rotating core and a diff
entially rotating disk-like envelope. The final outcomes
the five models are summarized in Table III.

We also performed 3D simulations on stars I and IV
search for unstable, nonaxisymmetric secular modes. A n
axisymmetric bar instability usually develops when a sta
rotating rapidly, i.e., has a sufficiently largeT/uWu. Of the
five models we study, stars I and IV have the highestT/uWu.
We do not find any nonaxisymmetric instabilities in the
two models, and the 3D results roughly agree with the a
symmetric results.

We discuss the results of our simulations in detail in
following subsections.

B. Star I

1. 2D with no cooling

Star I is the most massive neutron star we study. We
perform an axisymmetric calculation with no cooling. Att
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50, the star has a toroidal density profile, i.e., the maxim
density occurs off center~see the upper left panel of Fig. 9!.
As viscosity gradually brakes differential rotation, the s
readjusts to a monotonic density profile. Figure 8 shows
maximum rest-mass density and the minimum value of
lapse as a function of time. Figure 9 shows the meridio
rest-mass density contours at various times. We see th
meridional current is built up in the process. However, t
magnitude of the meridional velocity (&0.01c) is much
smaller than the typical rotational velocity (;0.3c).

Viscosity destroys differential rotation and transfers ang
lar momentum to the outer layers. In the early phase of

FIG. 8. Maximum value of rest-mass density~upper panel! and
minimum value of lapse~lower panel! as a function of time for
star I in the presence of viscosity. The solid~dashed! curves repre-
sent the case without~with! cooling. In both cases, the central co
collapses to a black hole, and leaves behind a massive accr
disk.
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GENERAL RELATIVISTIC HYDRODYNAMICS WITH . . . PHYSICAL REVIEW D69, 104030 ~2004!
FIG. 9. Meridional rest-mass
density contours and velocity field
at various times for star I. The
simulation was performed by as
suming that the system is axisym
metric and experiences no coo
ing. The levels of the contours
~from inward to outward! are
r0 /r0,max51020.15(2j 10.6), where
j 50,1, . . .,12. In the lower right
panel (t528.8Prot), the thick
curve denotes the apparent hor
zon.
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evolution, the core contracts and the outer layers expand
quasi-stationary manner. As the core becomes more
more rigidly rotating, it approaches instability because
star is hypermassive and cannot support a massive rig
rotating core. At timet'27Prot'11tvis , the star becomes
dynamically unstable and collapses. An apparent horizon
pears at timet'28.8Prot . Without black hole excision, the
code crashes about 10M after the horizon appears because
grid stretching. About 30% of rest mass remains outside
apparent horizon at this point. We then continue the evo
tion using the excision technique described in@25#. We are
able to extend the evolution reliably for another 55M . The
system settles down to a black hole surrounded by a mas
ambient disk. The rest massM0,disk and angular momentum
Jdisk of the disk can be calculated by integrating the re
mass and angular momentum density over the volume
side the apparent horizon@cf. Eqs.~57! and ~51!#. The mass
of the black hole can be estimated by the proper circum
ence of the horizon in the equatorial plane:Mh5Ch/4p ~as-
suming that the spacetime can be described by a Kerr m
ric!. Figure 10 shows the evolution ofMh and the rest mas
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of the disk M0,disk. We estimate the final values ofMh ,
M0,disk, andJdisk by fitting these curves to analytic function
of the form A1B exp(2Ct) and extrapolating these fitting
functions tot→` @56#. We estimate that the mass of the fin
black hole isMh'0.82M . The asymptotic rest mass an
angular momentum of the ambient disk are found to
M0,disk'0.23M0 and Jdisk'0.65J. We can infer from the
conservation of angular momentum that the final angu
momentum of the black hole isJh'0.35J. Hence we find
Jh /Mh

2'0.52(J/M2)'0.52.
The formation of a massive disk is mainly due to the fa

that viscosity transports angular momentum from the in
core to the outer layers. The material in the outer region
unable to fall into the black hole because of the centrifu
barrier. The final mass of the black hole and disk can also
estimated independently from the conservation of spec
angular momentum using a method developed by Sha
and Shibata@57#, which we apply below.

During the dynamical collapse, the effect of viscosity
negligible. Since the spacetime is axisymmetric, the spec
0-15
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DUEZ et al. PHYSICAL REVIEW D 69, 104030 ~2004!
angular momentumj 5huw of a fluid particle is conserved
For a Kerr black hole of massMh and angular momentum
Jh , the specific angular momentum of a particle at the inn
most stable circular orbit~ISCO! j ISCO is given by

j ISCO5
AMhr ms~r ms

2 22aAMhr ms1a2!

r ms~r ms
2 23Mhr ms12aAMhr ms!

1/2
, ~74!

wherea[Jh /Mh . The ISCO radius is

r ms5Mh@31Z22A~32Z1!~31Z112Z2!#, ~75!

where

Z1511S 12
Jh

2

Mh
4D 1/3F S 11

Jh

Mh
2D 1/3

1S 12
Jh

Mh
2D 1/3G

~76!

and

Z25S 3
Jh

2

Mh
4

1Z1
2D 1/2

. ~77!

The rest mass and angular momentum of the escaping m
in the envelope withj . j ISCO is given by

M0,disk5E
j . j ISCO

r* d3x, ~78!

FIG. 10. Evolution of the black hole massMh and the rest mass
of the diskM0,disk after the appearance of the apparent horizon
t51106M528.8Prot . Note that time is plotted in units ofM
(1Prot538.4M ). Black hole excision is employed to track this la
evolution.
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Jdisk5E
j . j ISCO

r* jd3x. ~79!

We assume that the energy radiated by gravitational wave
negligible so that the total mass-energy of the system is
proximately conserved. Hence we have

M5Mh1Mdisk, ~80!

J5Jh1Jdisk. ~81!

For a bound system, the contribution to the mass-energ
the matter in the disk,Mdisk, is smaller than its rest mas
M0,disk. We write

Mdisk5qM0,disk. ~82!

We consider two opposite limits forq: q51 and q
5M /M0. The valueq'1 is a good approximation in the
weak gravity regime. In the limit whereMh!M , we have
Mdisk'M and M0,disk'M0. Hence in this limit,q'M /M0,
which is 0.92 for star I~see Table II!. We expect that the
correctq lies somewhere between these two extremes, wh
are not very different. The mass and angular momentum
the black hole can be estimated by solving the system
transcendental Eqs.~74!–~82! at a particular time slice dur
ing the pre-excision dynamical collapse phase, including
time slice at the onset of dynamical collapse~where q is
close to unity!. We find that the values ofMh and Jh are
insensitive toq. They are also insensitive to which time slic
we choose to do the calculation. We findMh'0.75M and
Jh'0.35J (Jh /Mh

2'0.6). The rest mass in the ambient di
is found to beM0,disk'0.23M0. It should be noted that this
calculation is based on the assumptions that the space
around the disk can be approximated by a Kerr metric, a
that the disk is moderately thin and lies in the equato
plane of the hole. This approximation is not reliable wh
the disk is massive (Mdisk'M ). In our case, we find this
calculation agrees rather well with the actual asymptotic v
ues determined by the dynamical simulation with excisio

FIG. 11. Angular velocity profiles in the equatorial plane
various times during the evolution of star I.

t
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FIG. 12. Same as Fig. 9 but fo
rapid cooling.
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Henceforth we will use Eqs.~74!–~82! to estimateMh , Jh ,
M0,disk, andJdisk whenever an apparent horizon forms.

Since viscosity is small in the low-density region, it tak
longer to remove the differential rotation in the outer laye
Figure 11 shows the angular velocity profiles at vario
times. We see that by the time the inner core collapses,
material in the outer layers is still differentially rotating. A
ter the dynamical collapse, viscosity will cause some of
remaining material to slowly accrete onto the black hole.

We monitor the conserved quantities and the constra
during the entire evolution. Since our finite-differen
scheme preserves the rest mass, the variation ofM0 can only
come from material flowing out of the grid. We find thatM0
is conserved to 0.01%, and angular momentum is conse
to 0.1%. The Hamiltonian constraint is violated by less th
0.3% before the dynamical collapse occurs. It increase
3% by the time an apparent horizon appears. The momen
constraints are violated by less than 1% before the dynam
collapse occurs, and increase to 6% by the time an appa
horizon appears.
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2. 2D with rapid cooling

We next perform an axisymmetric simulation of star
with rapid cooling. The dashed lines in Fig. 8 show the tim
evolution of the maximum rest-mass density and the m
mum value of the lapse. As in the no-cooling case, the in
core contracts and the outer layers expand in a qu
stationary manner. The core then collapses dynamically
black hole and leaves behind a massive accretion disk. S
there is no viscous heating, the whole process occurs m
quickly than in the no-cooling case. The dynamical collap
occurs at timet'12Prot'5tvis and the apparent horizon ap
pears att'13.5Prot . Figure 12 shows the meridional res
mass density contours at various times. We estimate, by s
ing Eqs.~74!–~82! at t'13.5Prot with q51, that the mass
and angular momentum of the final black hole areMh

'0.75M and Jh'0.45J (Jh /Mh
2'0.8). About 20% of rest

mass escapes capture to form an accretion disk.
In Sec. III C, we demonstrated that when the viscous ti

scale is significantly longer than the dynamical time sca
the secular rates of change of all physical quantities sc
0-17
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inversely with viscosity. The secular evolution of star I wi
rapid cooling is short enough for us to perform another
tailed scaling test. Figure 13 demonstrates this scaling be
ior by evolving star I with four different strengths of visco
ity nP50.4, 0.2, 0.1, and 0.05.~The curves in Fig. 8
correspond tonP50.2.! We see that the scaling holds un
dynamical collapse at timet'td(nP). Whent*td , the evo-
lution of the system is no longer driven by viscosity. W
therefore expect that the collapse is independent of
strength of viscosity as long as the viscous time scale
much longer than the dynamical time scale. In the low
panel of Fig. 13, we demonstrate that it is possible to s
the time axes (t→t2td) so that the four viscosity runs yiel
the same result whent2td*0, which indicates that viscosity
is insignificant during the dynamical collapse. The values
td are determined by requiring that the scaling relat
td(n2)/td(n1)'n1 /n2 holds, and that the four curves b
aligned when plotted against the shifted timet2td(nP). We
found thattd(nP)/Prot'6.1, 12.0, 24.08, and 47.75 respe
tively for nP50.4, 0.2, 0.1, and 0.05. The fact that we a
able to findtd(nP) that satisfies these requirements valida
our physical interpretation of the two phases of evolution

To better visualize the effects of viscosity, we follow th
motions of ten selected Lagrangian fluid elements. Figure
shows the worldlines of these particles. We choose the
ticles to be in the equatorial plane of the star. Equato
symmetry implies that the particles will remain in the equ
torial plane at all times. The position of a fluid particleX
satisfies the equations

d

dt
X~ t !5

ux
„t;X~ t !…

ut
„t;X~ t !…

. ~83!

FIG. 13. Evolution of the maximum rest-mass density of sta
for various strengths of viscosity, assuming rapid cooling. Up
panel: the curves coincide when plotted against the scaled
prior to dynamical collapse. Lower panel: during dynamical c
lapse, it is possible to shift the time axes@ t→t2td(nP)# so that the
curves again coincide, which indicates that viscosity plays an in
nificant role during the dynamical collapse phase.
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We label the particles by the initial fraction of rest ma
interior to the cylinder of radiusX. We see that the particle
with the initial mass fractionm&m* .0.8 move toward the
center and ultimately move inside the apparent horiz
while those withm*m* move away from the center an
remain outside the apparent horizon. This agrees with
estimates of the rest mass of the ambient disk.

Since there is rapid cooling, the mass is not conser
because the thermal energy generated by viscous heati
removed, as discussed in Sec. II H. However, when we
count for the mass-energy carried away by thermal radiat
M cooling, the total massM tot5M1M cooling should be con-
served approximately@see Eq.~56!#. Figure 15 showsM and

I
r
e

-

-

FIG. 14. The worldlines of Lagrangian fluid elements at t
equator for star I, assuming rapid cooling. The cylindrical coor
nate X of the particles at timet50 is chosen so that the initia
fraction of rest massm(X) interior to the cylinder of radiusX is,
from left to right,m50.03, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 a
0.9. The cross in the diagram denotes the location of the appa
horizon at the end of the simulation.

FIG. 15. Evolution of the massM of star I in the rapid-cooling
limit. The mass is not conserved since the thermal energy gener
by viscous heating is removed. However, the sum of the remain
mass and the mass carried away by ‘‘radiation,’’M cooling, is ap-
proximately conserved.
0-18
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M tot as a function of time before an apparent horizon
pears. The total mass is well conserved except near the
of the simulation, where the numerical error arising from t
grid stretching causes a few percent drop in the mass.

We monitored the violations of the constraints during t
evolution. The violation of the Hamiltonian constraint
;0.1% before the dynamical collapse occurs, and goes u
7% at the time when the apparent horizon appears. The
lations of the momentum constraints are also;0.1% before
the dynamical collapse occurs, and increase to 8% at the
when the apparent horizon appears.

C. Other models

The evolution of star II due to viscosity is different from
that of star I. Although it is still hypermassive, the mass
star II is smaller than that of star I. When evolved in t
absence of cooling, the star does not collapse to a black h
but forms a rigidly rotating core with a low-density disk-lik
envelope. When evolved in the rapid-cooling limit, howev
the star collapses to a black hole. Figure 16 shows the e
lution of the central density.

In the no-cooling case, star II has not collapsed to a bl
hole by the end of simulation (t5286Prot587tvis
511 800M ), but is settling to a uniformly rotating core su
rounded by a massive torus. Figure 17 shows the meridio
density contours at the beginning and at the end of the si
lation. Figure 18 shows the angular velocity profiles at va
ous times. Viscosity drives the star to a quasi-equilibriu
rigidly rotating core surrounded by a low-density disk. W
cannot exclude the possibility that some of the outer mate
will slowly accrete onto the uniformly rotating inner cor
eventually triggering collapse to a black hole. However
star acquires enhanced pressure support against col
from viscous heating@i.e., P/r0

G.k(0) where k(0)51].
Hence it may no longer be hypermassive with respect to
new ‘‘hot’’ equation of state, as the simulation suggests. D
ing the entire simulation, the star loses 1.2% of its rest m
and 4.5% of its angular momentum due to material flow
out of the grid. Figure 19 shows theL2 norms of the Hamil-

FIG. 16. Evolution of the central rest-mass density for star
with no cooling~solid line! and with rapid cooling~dashed line!.
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tonian and momentum constraints defined by Eqs.~59! and
~60! of paper I. We see that the violation of all the constrain
are smaller than 1% during the entire evolution of 286Prot
511 800M .

The values of the ratio of kinetic to gravitational potent
energy,T/uWu, for all of the stars we studied decrease w
time. Figure 20 shows the evolution ofT/uWu for star II
evolved without cooling. Viscosity transforms part of the r
tational kinetic energy into heat. It also changes the equi
rium configuration of the star significantly, causing a red

I

FIG. 17. Meridional rest-mass density contours for star II w
no cooling. The upper graph shows the contours att50 and the
lower graph shows the contours at the end of the simula
(t5286Prot587tvis). The contours are labeled as in Fig. 9.

FIG. 18. Angular velocity profiles at various times in the equ
torial plane for star II evolved with no cooling.
0-19
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tribution of various energies. Figure 21 shows the tim
evolution of various energies defined in Eqs.~57!–~62!. The
mass of the system decreases by 1.4% due to a small am
of mass flowing out of the grid~not visible in the graph!. The
rotational kinetic energyT decreases slightly. The contra
tion of the core raises the gravitational binding energyuWu,
as well as the adiabatic part of the internal energyMic .
Viscous heating generates the thermal energyMih , which
prevents the star from undergoing catastrophic collapse.

In the rapid-cooling case, star II collapses dynamically
time t'57Prot'17.4tvis . An apparent horizon appears att
557.7Prot . The mass and angular momentum of the fin
black hole are estimated by solving Eqs.~74!–~82!: Mh

'0.88M and Jh'0.63J (Jh /Mh
2'0.7). About 10% of the

rest mass is left as an accretion disk.
The situations for stars III and IV are similar. The inn

core contracts in a quasi-stationary manner while the o
layers expand. Each system evolves into a rigidly rotat
core surrounded by a disk-like envelope. The stars do
collapse to black holes at the end of the simulations whe
or not rapid cooling is imposed. Again, we do not rule o

FIG. 19. L2 norms of the Hamiltonian constraint and mome
tum constraints for star II evolved without cooling.

FIG. 20. Evolution ofT/uWu for star II evolved without cooling.
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the possibility that they might collapse to black holes wh
enough material accretes onto the inner core.

From Table III, we see that at the end of the simulation
large amount of angular momentum is transported to a m
sive disk. For stars III and IV, the rest mass of the co
M0,core is smaller than the rest-mass limit of a supramass
starM0,sup. For star II,M0,coreis slightly smaller thanM0,sup
in the absence of cooling, but is slightly greater thanM0,sup
in the rapid-cooling limit. For star I,M0,core.M0,sup in both
the rapid-cooling and no-cooling cases. This suggests
the fate of a hypermassive neutron star depends on whe
viscosity can create a rigidly-rotating core withM0,core
.M0,sup, in which case it will collapse. Both viscous heatin
and the star’s initial angular momentum play an importa
role in the final outcome. A hypermassive neutron star w
higher mass and lower angular momentum is prone to
lapse, whereas viscous heating tends to suppress the
lapse.

Finally, we study the effect of viscosity on star V, which
non-hypermassive. As expected, the star does not collap
a black hole, irrespective of cooling. The star eventua
evolves into a rigidly rotating core surrounded by a disk. T
fact that the star does not simply become rigidly rotati
without shedding mass is due to the fact that viscosity c
servesM0 andJ. For a givenM0 and equation of state, ther
is a maximum value of angular momentumJmax(M0) above
which a star can no longer maintain rigid rotation witho
shedding mass at the equator. In the case of star V,
apparent thatJ.Jmax. Hence viscosity cannot force th
whole star into rigid rotation. Similar results were found
studies of viscous evolution of differentially rotating whi
dwarfs assuming Newtonian gravitation@40#.

D. 3D tests of bar formation

The results of the axisymmetric runs described above
not be physically relevant if the models are secularly u
stable to bar formation. We evolved stars I and IV in 3D
check for the formation of bars. These models were cho
because, of our five models, they have the highest value

FIG. 21. Evolution of various energies for star II evolved wi
no cooling.
0-20
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T/uWu. Viscous heating can lead to expansion and, henc
decrease inT/uWu. Thus, to further increase the chance
bar formation, we performed these runs in the rapid-cool
limit. We superimposedm52 perturbations on the initia
data according to Eq.~72! for both stars with magnitudedb

50.1, so thatuQu50.014 initially. Both runs were performe
in p symmetry with a uniform grid of size 128364332 and
outer boundaries in thex-y equatorial plane at 14.3M for
star I and 17.1M for star IV. To reduce computational cost
the extent of the grid in thez direction is only half as large a
in thex andy directions. This setup is feasible because th
models are initially highly flattened due to rapid rotation a
because their evolution results in an expansion which
largely horizontal. For star I, we find thatuQu decreases in
magnitude until the code terminates due to the collap
when uQu50.0015. Before the collapse, all constraints a
satisfied to within 3.5% whileM and J are conserved to
within 3%. For star IV,uQu also decreases, reaching 0.00
after 11.5Prot53.3tvis , when the simulation is terminated. I
this case, the constraints are satisfied to within 6.0% whileM
andJ are conserved to within 1.4%. We also find that the r
density contours remain nearly axisymmetric throughout
evolutions of both stars. These results indicate that both s
are stable against secular bar formation on the viscous
scale.

V. DISCUSSION AND CONCLUSIONS

We have simulated the evolution of rapidly rotating sta
in full general relativity including, for the first time, shea
viscosity. Our findings indicate that the braking of differe
tial rotation in hypermassive stars always leads to signific
structural changes, and often to delayed gravitational
lapse. The rest mass, angular momentum, and thermal en
all play a role in determining the final state. We perform
axisymmetric numerical simulations of five models to stu
the influence of these parameters. In the presence of s
viscosity, the most hypermassive model which we stud
~star I!, collapses to a black hole whether we evolve by
noring cooling, or by assuming rapid cooling of the therm
energy generated by viscosity. However, the viscous tra
port of angular momentum to the outer layers of the s
results in mass outflow and the formation of an apprecia
disk. Next, we considered three hypermassive models~stars
II, III, and IV ! with the same rest massM0, but different
values of the spin parameterJ/M2. These models have
smallerM0 than star I, and are therefore less prone to c
lapse. Star II, which hasJ/M250.85, collapses when
evolved in the rapid-cooling limit, leaving behind a disk. B
without cooling, this model evolves to a stable, uniform
rotating core with a differentially rotating massive disk. T
additional thermal pressure support provided by visc
heating prevents collapse in this case.

In contrast, stars III and IV, which haveJ/M251.0 and
1.1, respectively, do not collapse even in the rapid-cool
limit. This is sensible because these models have a sm
rest mass than star I, but larger angular momenta than st
Though the cores of stars III and IV contract, they are p
vented by centrifugal support from reaching the necess
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compaction to become dynamically unstable. In both ca
we find low-density disks surrounding uniformly rotatin
cores. However, our simulations do not rule out the possi
ity that slow accretion of the disk material could eventua
drive the uniformly rotating cores to collapse. Disk form
tion also occurs for star V, which is differentially rotating b
non-hypermassive. Since there exist stable, uniformly ro
ing models with the same rest mass, the braking of differ
tial rotation in this case does not result in collapse. Howev
differentially rotating stars can support largerT/uWu than
uniformly rotating stars. In the case of star V, there does
exist a uniformly rotating star with the same~high! angular
momentum and rest mass, so that mass shedding must
place as viscosity drives the star to uniform rotation. In t
final state, we find a rigidly-rotating core surrounded by
low-density, disk.

Since results obtained from our axisymmetric code
physically reliable only for models which are not subject
nonaxisymmetric instabilities, we evolved stars I and IV
3D to check for such instabilities. Previous studies in Ne
tonian gravity have found that the secular, viscosity-driv
bar instability in uniformly rotating stars should set in whe
T/uWu*0.14 @1,2#. When general relativity is taken into ac
count, the threshold value can be somewhat higher@3#. Thus,
of all of our models, stars I and IV have the best chances
developing bars since they have the highestT/uWu. We in-
troduced an initial bar-shaped perturbation and ran th
cases in the rapid-cooling limit. We found that, in both cas
the small initial perturbation decays and no bar is form
This is somewhat surprising sinceT/uWu is well above 0.14
in both of these cases. We plan to address this issue
future report.

For the evolution of each of our five models, we find th
a massive disk or torus forms in the final state. The d
typically carries;20% of the rest mass of the initial con
figuration. Viscosity transports angular momentum from t
interior of the star to the more slowly rotating exterior. Th
exterior regions then expand to accommodate the additio
centrifugal force, forming a low-density disk. The inner co
becomes rigidly rotating and, in some cases, underg
gravitational collapse. The disk, however, remains differe
tially rotating since viscosity acts much more slowly in low
density regions. For cases in which black holes are form
the mass of the disk may be estimated by integrating
rest-mass density for those fluid elements which have s
cific angular momentumj greater than the value at the ISCO
j ISCO @see Eq.~78!#. The estimates obtained in this way agr
reasonably well with the results of our numerical simu
tions. Particularly good agreement was found for the cas
star I with no cooling, for which we were able to extend t
evolution some 55M beyond the first appearance of an a
parent horizon. The rest mass and angular momentum o
disk surrounding the rotating black hole could then be cal
lated directly and agreed well with the estimates. We exp
that excision techniques will continue to be crucial in esta
lishing the final fate of systems involving matter surroundi
black holes.

In a recent paper, Shibata@21# numerically simulated col-
lapses of marginally stable, supramassive stars. These s
0-21
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DUEZ et al. PHYSICAL REVIEW D 69, 104030 ~2004!
massive models were constructed using polytropic equat
of state with 2/3,n,2 and rotate at the mass-shedding lim
with 0.388<J/M2<0.670. Shibata found that the collapse
these stars results in Kerr black holes and that no more
0.1% of the initial rest mass remains outside of the hole. T
result is quite different from our finding that disks are usua
present following collapse. However, the initial data for t
two calculations are quite different, as well as our inclus
of viscosity. The analysis of@21# takes uniformly rotating,
unstable configurations as initial data and follows their d
namical evolution. Our calculations begin with differential
rotating, stable configurations and follow both their secu
~viscous! and dynamical evolution. Viscosity drives our co
figurations to uniform rotation. We find that massive dis
usually form as by-products of the formation of uniform
rotating cores. This is due primarily to the transport of ang
lar momentum from the inner to the outer layers. In additi
all of our models have 0.85<J/M2<1.1. ~Large angular
momentum is required to generate a hypermassive neu
star in equilibrium.! Since this range is higher than that co
sidered in@21#, our models more naturally produce dis
@58#.

All of the phenomena observed in our simulations follo
from the braking of differential rotation in strongly relativis
tic stars. This may be accomplished by viscosity as sho
here, but magnetic fields are likely to be more important. T
fate of the hypermassive remnants of binary neutron
mergers may crucially depend on these effects. The los
differential rotation support in such a remnant may lead
delayed gravitational collapse. This collapse could in tu
lead to a delayed gravitational wave burst following t
quasi-periodic inspiral and merger signal@7#. Our results in-
dicate that if the remnant is not sufficiently hypermassi
collapse may not occur, at least not until the star cools
radiating away its thermal energy. Understanding the evo
tion of such merger remnants could aid the interpretation
signals observed by ground based gravitational wave de
tors, such as LIGO, VIRGO, GEO, and TAMA. In additio
short-duration GRBs are thought to result from mergers
binary neutron stars or neutron star–black hole syste
@22,59#. In this scenario, the GRB may be powered by acc
tion from a massive torus or disk surrounding a rotat
black hole. We have demonstrated that such disks are e
produced during the evolution of hypermassive neutron st

The braking of differential rotation may also be importa
in neutron stars formed in core collapse supernovae. Nas
neutron stars are probably characterized by significant dif
ential rotation ~see, e.g.,@60–63# and references therein!.
Conservation of angular momentum during the collapse
expected to result in a large value ofT/uWu. However, uni-
form rotation can only support small values ofT/uWu without
shedding mass~@38#, Chap. 7!. Thus, nascent neutron sta
from supernovae probably rotate differentially. If the induc
differential rotation is strong enough, hypermassive neut
stars can form. Their subsequent evolution and final fate t
depends on the presence of viscosity or magnetic fields. S
considerations may be important for long-duration GRBs
the collapsar model@64#. In this model, the GRB is powere
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by accretion onto the central black hole formed through c
collapse in a massive star.

Several interesting astrophysical systems undergo sec
evolution in strongly gravitating environments. In this pap
we have shown that it is possible to study secular effects
occur over many dynamical time scales using hydrodyna
computations in full general relativity. We consider this
important step toward future numerical explorations of se
lar effects in other contexts. In particular, we plan to inco
porate MHD into our evolution code, as magnetic braki
probably acts more quickly than viscosity to destroy diffe
ential rotation in many systems, like neutron stars or sup
massive stars@65#. Our results have also raised the followin
interesting question: Under what circumstances are differ
tially rotating, compressible neutron stars with highT/uWu
unstable to nonaxisymmetric modes? We plan to address
issue in a future report.

ACKNOWLEDGMENTS

The calculations for this paper were performed at the N
tional Center for Supercomputing Applications at the Univ
sity of Illinois at Urbana-Champaign~UIUC!. This paper
was supported in part by NSF Grants PHY-0090310 a
PHY-0205155 and NASA Grant NAG 5-10781 at UIUC.

APPENDIX: VISCOUS HEATING AND RADIATIVE
COOLING

In this appendix, we describe the thermal properties of
configurations. The dissipation of rotational energy by v
cosity heats the stars, but they may be cooled by radia
~e.g., neutrino radiation!. The presence of radiation contrib
utes a termRab to the stress tensor:Ttotal

mn 5Tmn1Rmn, with
Tmn given by Eq.~7!. This modifies the equations of motio
~13! to

Tmn
;n52Rmn

;n5Gm, ~A1!

whereGm is the 4-force density due to radiation~see@66#!.
The specific entropys of a fluid element with temperatureT
and number densityn5r0 /m changes when there is heatin
and cooling according to

nT
ds

dt
5Gheat2L5Gvis1G rad2L rad, ~A2!

where t is the proper time along the element’s worldlin
Here, we have separated the contributions from viscosity
radiation to the heating rate. The quantityGvis is the viscous
heating rate per unit volume, which comes from thesabsab

term in Eq. ~16!. In terms of the thermal energy densi
U therm and viscous time scaletvis , Gvis is roughly

Gvis.U therm/tvis . ~A3!

In general, a fluid can be heated and cooled by the prese
of a radiation field. The energy equation becomes

umTmn
;n5unGn52G0̂, ~A4!
0-22
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where the last equality arises from evaluatingumGm in the
comoving orthonormal frame of the fluid, whereum̂

5(1,0,0,0). Then

G0̂5G rad2L rad5E E dndV~knI n2hn!, ~A5!

where the integral is evaluated in the comoving frame a
kn , I n , andhn are the opacity, intensity, and emissivity
frequencyn @66#. For applications of interest here, radiatio
mediatesnet cooling of the viscous-heated fluid. Hence, w
can setG rad50 for simplicity.

The first law of thermodynamics

d~e/n!52Pd~1/n!1Tds, e[r0~11e!, ~A6!

and Eq.~9! give

nTds5nGdS Pn2G

G21 D
5

nG

G21
dk. ~A7!

Here we define the entropy parameterk by P[knG, where,
in general,k5k(s). The form of L rad will depend on the
details of the neutron star’s microphysics, but it must ha
the property thatL rad50 whenk(s)5k05k(s50), where
k0 is the value ofk for the unheated fluid~i.e., no emission
from a zero-entropy fluid!. Accordingly, we replace Eq.~A5!
for L rad by the following illustrative form:
e
.

.
J.,

.

tt.

. J

J

10403
d

e

L rad5jn@k~s!2k0#/tcool, ~A8!

wherej is a constant andtcool is the radiation time scale
Combining Eqs.~A2!–~A8!, we find

dk

dt
5

G21

nG H U therm

tvis
2

jn@k~s!2k0#

tcool
J . ~A9!

In the limit tcool@tvis , radiative cooling is unimportant an
k increases due to viscous heating. We refer to this regim
the no-coolinglimit. If tcool!tvis , then the first term on the
right hand side of Eq.~A9! may be dropped in relation to th
second, giving

d

dt
~k2k0!52

j~G21!

nG21

~k2k0!

tcool
. ~A10!

Thus, k is exponentially driven tok0. We refer to this re-
gime as therapid-cooling limit, whereby the thermal energy
generated by viscosity is radiated immediately and does
heat the gas. In effect,L rad5Gvis in this limit. In practice we
implement this limit by omitting thesmnsmn in Eq. ~16!.
Though we consider only these two limits in our analysis,
expect that, in reality, heating will dominate in some regim
and cooling in others. We treat both limiting cases in o
simulations.
.L.
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