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We analyze the optical response of small-diameter ([1 nm) semiconducting carbon nanotubes under the
exciton–surface-plasmon coupling. Calculated optical absorption lineshapes exhibit the significant line
(Rabi) splitting �0.1–0.3 eV as the exciton energy is tuned to the nearest interband surface plasmon res-
onance of the nanotube so that the mixed strongly coupled surface plasmon–exciton excitations are
formed. We discuss possible ways to bring the exciton in resonance with the surface plasmon. The exci-
ton–plasmon Rabi splitting effect we predict here for an individual carbon nanotube is close in its mag-
nitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic
semiconductors deposited on metallic films. We believe this effect may be used for the development
of carbon nanotube based tunable optoelectronic device applications in areas such as nanophotonics
and cavity quantum electrodynamics.

� 2008 Elsevier B.V. All rights reserved.
Single-walled carbon nanotubes (CNs) are quasi-one-dimen-
sional (1D) cylindrical wires consisting of graphene sheets rolled-
up into cylinders with diameters �1–10 nm and lengths �1–
104 lm [1–3]. CNs are shown to be useful for miniaturized elec-
tronic, electromechanical, chemical and scanning probe devices
and as materials for macroscopic composites [4]. The area of their
potential applications has been recently expanded towards nano-
photonics and optoelectronics [5,6] after the experimental demon-
stration of controllable single-atom incapsulation into single-
walled CNs [7,8].

For pristine (undoped) single-walled CNs, the numerical calcu-
lations predicting large exciton binding energies (�0.3–0.6 eV) in
semiconducting CNs [9–11] and even in some small-diameter
(�0.5 nm) metallic CNs [12], followed by the results of various
measurements of the excitonic photoluminescence [13–16], have
become available. These works, together with other reports inves-
tigating the role of effects such as intrinsic defects [15], exciton–
phonon interactions [16–19], external magnetic and electric fields
[20,21], reveal the variety and complexity of the intrinsic optical
properties of carbon nanotubes.

One of us have reported earlier the interactions between exci-
tonic states and surface electromagnetic (EM) fluctuations to result
in the strong exciton–surface-plasmon coupling in small-diameter
([1 nm) semiconducting single-walled CNs [22]. The reason is,
due to the nanotube quasi-one-dimensionality, the exciton transi-
ll rights reserved.

v).
tion dipole moment matrix element and the quasi-momentum
vector are directed predominantly along the CN axis (the longitu-
dinal exciton). This prevents the exciton from the electric dipole
coupling to the transversely polarized surface EM modes of the
nanotube as they propagate predominantly along the CN axis with
their electric vectors orthogonal to the propagation direction. The
longitudinally polarized surface EM modes are generated by the
electronic Coulomb potential (see, e.g., Ref. [23]), and therefore
represent the CN surface plasmon excitations. These have their
electric vectors directed along the propagation direction. They do
couple to the longitudinal excitons on the CN surface [22]. Such
modes were observed in Ref. [24] to occur in the same energy
range of �1 eV where the exciton excitation energies are located
in small-diameter ([1 nm) semiconducting CNs [25,26]. They are
the weakly-dispersive interband plasmon modes [27] similar to
the intersubband plasmon modes in quantum wells [28].

Here we analyze the optical response of small-diameter semi-
conducting CNs under the strong exciton–surface-plasmon cou-
pling. The calculated optical absorption lineshapes of the (11,0)
and (10,0) CNs exhibit the significant line (Rabi) splitting effect
�0.1 eV as the exciton energy is tuned to the nearest interband
surface plasmon resonance of the nanotube. This result is particu-
larly interesting since it reveals the fundamental EM phenomenon
– the strong exciton–plasmon coupling – in an individual quasi-
one-dimensional (1D) nanostructure, a carbon nanotube, as op-
posed to various artificially fabricated hybrid plasmonic nanostruc-
tures, such as dye molecules in organic polymers deposited on
metallic films [29], semiconductor quantum dots coupled to metal-
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lic nanoparticles [30], or nanowires [31], where semiconductor
material carries the exciton and metal carries the plasmon.

The energy �hxlðkÞ of the coupled exciton–surface-plasmon
excitation of branch l ð¼ 1;2Þ is given by the integral dispersion
relation [22], which is written in the dimensionless form as
follows:

x2
l � e2

f �
ef

2p

Z 1

0
dx

xCf
0ðxÞqðxÞ

x2
l � x2 ¼ 0: ð1Þ

Here,

x ¼ �hx
2c0

; xl ¼
�hxlðkÞ

2c0
; ef ¼

Ef ðkÞ
2c0

ð2Þ

with c0 ¼ 2:7 eV being the carbon nearest neighbor overlap integral
entering the CN surface axial conductivity rzz (the CN axis is as-
signed to be the z-axis of the cylindrical coordinate system we
use, and we neglect much smaller azimuthal conductivity compo-
nent ruu in our model). The total energy Ef ðkÞ of the f-internal-state
exciton with the quasi-momentum k ¼ fku; kzg, where kz is contin-
uous and ku is quantized due to the transverse confinement effect,
is given by

Ef ðkÞ ¼ Eðf ÞexcðkuÞ þ
�h2k2

z

2Mex
ð3Þ

with the first term representing the excitation energy,
Eðf ÞexcðkuÞ ¼ EgðkuÞ þ Eðf Þb , of the f-internal-state exciton with the (neg-
ative) binding energy Eðf Þb , created via the interband transition with
the band gap EgðkuÞ ¼ eeðkuÞ þ ehðkuÞ, where ee;h are transversely
quantized azimuthal electron–hole subbands (see the schematic
in Fig. 1). The second term represents the kinetic energy of the
translational longitudinal movement of the exciton with the effec-
tive mass Mex ¼ me þmh, where me and mh are the electron and hole
effective masses, respectively. The function

Cf
0ðxÞ ¼

4jdf
zj

2x3

3�hc3

2c0

�h

� �2

ð4Þ

represents the (dimensionless) exciton spontaneous decay rate.
Here, c is the speed of light and df

z ¼
P

nh0jðd̂nÞzjf i (summation over
carbon atoms) is the longitudinal exciton transition dipole moment
matrix element. The function

qðxÞ ¼ 3S0

4paR2
CN

Re
1

�rzzðxÞ
ð5Þ
Fig. 1. Schematic of the transversely quantized azimuthal electron–hole subbands
(left), and the first-interband ground-internal-state exciton energy (right) in a small-
diameter semiconducting carbon nanotube. See text for notations.
stands for the surface plasmon density of states (DOS) which is
responsible for the exciton decay rate variation due to the coupling
to plasmon modes. Here, S0 ¼ ð3

ffiffiffi
3
p

=4Þb2 with b ¼ 1:42 Å being the
carbon–carbon interatomic distance, a ¼ e2=�hc ¼ 1=137 is the fine-
structure constant, RCN is the nanotube radius, and �rzz ¼ 2p�hrzz=e2

is the dimensionless CN surface axial conductivity per unit length.
Note that the conductivity factor in Eq. (5) equals

Re
1

�rzzðxÞ
¼ �4ac

RCN

�h
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in view of Eq. (2) and the formula rzz ¼ �ixð�zz � 1Þ=4pSqT repre-
senting the Drude relation for CNs, where �zz is the longitudinal
dielectric function, S and qT are the surface area of the tubule and
the number of tubules per unit volume, respectively [32–35]. This
relates very closely the surface plasmon DOS function Eq. (5) to
the loss function �Imð1=�Þ measured in electron energy loss spec-
troscopy (EELS) experiments to determine the properties of collec-
tive electronic excitations in solids [24].

Fig. 2 shows the low-energy behaviors of the functions �rzzðxÞ
and Re½1=�rzzðxÞ� for the (11,0) and (10,0) CNs (RCN ¼ 0:43 nm
and 0:39 nm, respectively) we study here. We obtained them
numerically as follows. First, we adapt the nearest-neighbor
non-orthogonal tight-binding approach [36] to determine the
realistic band structure of each CN. Then, the room-temperature
longitudinal dielectric functions �zz are calculated within the ran-
dom-phase approximation [37,38], which are then converted into
the conductivities �rzz by means of the Drude relation. Electronic
dissipation processes are included in our calculations within the
relaxation-time approximation (electron scattering length of
130RCN was used [18]). We did not include excitonic many-elec-
tron correlations, however, as they mostly affect the real conduc-
tivity Reð�rzzÞ which is responsible for the CN optical absorption
[10,12,39], whereas we are interested here in Reð1=�rzzÞ represent-
ing the surface plasmon DOS according to Eq. (5). This function is
only non-zero when the two conditions, Im½�rzzðxÞ� ¼ 0 and
Re½�rzzðxÞ� ! 0, are fulfilled simultaneously [27,28,37]. These result
in the peak structure of the function Reð1=�rzzÞ as is seen in Fig. 2.
It is also seen from the comparison of Fig. 2b with Fig. 2a that the
peaks broaden as the CN diameter decreases. This is consistent
with the stronger hybridization effects in smaller-diameter CNs
[40].

Left panels in Fig. 3a and b show the lowest-energy plasmon
DOS resonances calculated for the (11,0) and (10,0) CNs as given
by the function qðxÞ in Eq. (5). The corresponding fragments of
the functions Re½�rzzðxÞ� and Im½�rzzðxÞ� are also shown there. In all
graphs the lower dimensionless energy limits are set up to be equal
to the lowest bright exciton excitation energy [Eexc ¼ 1:21 eV
(x ¼ 0:224) and 1:00 eV (x ¼ 0:185) for the (11,0) and (10,0) CN,
respectively, as reported in Ref. [25] by directly solving the
Bethe–Salpeter equation]. Peaks in qðxÞ are seen to coincide in en-
ergy with zeros of Im½�rzzðxÞ� {or zeros of Re½�zzðxÞ�}, clearly indicat-
ing the plasmonic nature of the CN surface excitations under
consideration [27,41]. They describe the surface plasmon modes
associated with the transversely quantized interband electronic
transitions in CNs [27]. As is seen in Fig. 3 (and in Fig. 2), the inter-
band plasmon excitations occur in CNs slightly above the first
bright exciton excitation energy [39], which is a unique feature
of the complex dielectric response function – the consequence of
the general Kramers–Krönig relation [42].

We further take advantage of the sharp peak structure of qðxÞ
and solve the dispersion Eq. (1) for xl analytically using the
Lorentzian approximation

qðxÞ �
qðxpÞDx2

p

ðx� xpÞ2 þ Dx2
p

: ð7Þ



Fig. 2. (a) and (b) Calculated (see text) dimensionless axial surface conductivities for the (11,0) and (10,0) nanotubes. Dimensionless energy is defined as ½Energy�=2c0,
according to Eq. (2).

Fig. 3. (a) and (b) Surface plasmon DOS and conductivities (left panels), and lowest bright exciton dispersion when coupled to plasmons (right panels) in the (11,0) and (10,0)
CN, respectively. Dimensionless energy is defined as ½Energy�=2c0, according to Eq. (2). See text for dimensionless quasi-momentum.
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Here, xp and Dxp are, respectively, the position and the half-width-
at-half-maximum of the plasmon resonance closest to the lowest
bright exciton excitation energy in the same nanotube (as shown
in the left panels of Fig. 3). The integral in Eq. (1) then simplifies
to the form

1
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dx

xCf
0ðxÞqðxÞ
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with FðxpÞ ¼ xpC
f
0ðxpÞqðxpÞ=2p. This expression is valid for all xl

apart from those located in the narrow interval ðxp � Dxp; xp þ DxpÞ
in the vicinity of the plasmon resonance, provided that the reso-
nance is sharp enough. Then, the dispersion equation becomes the
biquadratic equation for xl with the following two positive solu-
tions (the dispersion curves) of interest to us:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Here, Fp ¼ 4FðxpÞDxpðp� Dxp=xpÞ, and the arctan-function of Eq. (8)
is expanded into series to linear terms in Dxp=xp � 1.

The dispersion curves Eq. (9) are shown in the right panels in
Fig. 3a and b as functions of the dimensionless longitudinal qua-
si-momentum. In these calculations, we estimated the interband
transition matrix element in Cf

0ðxpÞ [Eq. (4)] from the equation
jdf

zj
2 ¼ 3�hk3=4srad

ex according to Hanamura’s general theory of the
exciton radiative decay in spatially confined systems [43], where
srad

ex is the exciton intrinsic radiative lifetime, and k ¼ 2pc�h=E with
E being the exciton total energy given in our case by Eq. (3). For zig-
zag-type CNs we here consider, the first Brillouin zone of the lon-
gitudinal quasi-momentum is given by �2p�h=3b 6 �hkz 6 2p�h=3b
[1,2]. The total energy of the ground-internal-state exciton can
then be written as E ¼ Eexc þ ð2p�h=3bÞ2t2=2Mex with �1 6 t 6 1
representing the dimensionless longitudinal quasi-momentum. In
our calculations we used the lowest bright exciton parameters
Eexc ¼ 1:21 eV and 1:00 eV, srad

ex ¼ 14:3 ps and 19:1 ps,
Mex ¼ 0:44m0 and 0:19m0 (m0 is the free-electron mass) for the
(11,0) CN and (10,0) CN, respectively, as reported in Ref. [25] by
directly solving the Bethe–Salpeter equation.



Fig. 4. (a) and (b) Exciton absorption lineshapes as the exciton energies are tuned to the nearest plasmon resonance energies (vertical dashed lines here; see Fig. 3, left panels)
in the (11,0) and (10,0) CN, respectively. Dimensionless energy is defined as ½Energy�=2c0, according to Eq. (2).
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Both graphs in the right panels in Fig. 3 are seen to demonstrate
a clear anticrossing behavior with the (Rabi) energy splitting
�0.1 eV. This indicates the formation of the strongly coupled sur-
face plasmon–exciton excitations in the nanotubes under consider-
ation. It is important to realize that here we deal with the strong
exciton–plasmon interaction supported by an individual quasi-1D
nanostructure – a single-walled (small-diameter) semiconducting
carbon nanotube, as opposed to the artificially fabricated metal–
semiconductor nanostructures studied previously [29–31] where
the metallic component normally carries the plasmon and the
semiconducting one carries the exciton. It is also important that
the effect comes not only from the height but also from the width
of the plasmon resonance as is seen from the definition of the Fp

factor in Eq. (9). In other words, as long as the plasmon resonance
is sharp enough (which is always the case for interband plasmons),
so that the Lorentzian approximation Eq. (7) applies, the effect is
determined by the area under the plasmon peak in the DOS func-
tion Eq. (5) rather then by the peak height as one would expect.

We are now in a position to derive the exciton absorption line-
shape function. To do that, we follow the optical absorption line-
shape theory that one of us developed recently for atomically
doped CNs [5]. In doing so, we take into account the exciton–pho-
non scattering in the relaxation time approximation. The (dimen-
sionless) exciton absorption lineshape function IðxÞ in the vicinity
of the plasmon resonance is then of the form

IðxÞ ¼
I0ðxpÞ½ðx� ef Þ2 þ Dx2

p �
½ðx� ef Þ2 � X2

f =4�2 þ ðx� ef Þ2ðDx2
p þ De2

f Þ
; ð10Þ

where I0ðxpÞ ¼ Cf
0ðxpÞqðxpÞ=2p, Xf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDxpI0ðxpÞ

p
, and Def ¼

�h=2c0sph ð< DxpÞ is the exciton energy broadening due to the pho-
non scattering with the relaxation time sph.

The calculated exciton absorption lineshapes for the CNs under
consideration are shown in Fig. 4a and b as the exciton energies are
tuned to the nearest plasmon resonances. We used sph ¼ 30 fs as
reported in Ref. [17]. The line (Rabi) splitting effect is seen to be
�0.1–0.3 eV, indicating the strong exciton–plasmon coupling with
the formation of the mixed surface plasmon–exciton excitations.
The splitting is larger in the smaller diameter nanotubes, and is
not masked by the exciton–phonon scattering.

Thus, we have shown the strong exciton–surface-plasmon cou-
pling effect with the characteristic exciton absorption line (Rabi)
splitting �0.1–0.3 eV in small-diameter ([1 nm) semiconducting
CNs. This is almost as large as the typical exciton binding energies
in such CNs (�0.3–0.8 eV [9–11,14]), and of the same order of mag-
nitude as the exciton–plasmon Rabi splitting in organic semicon-
ductors (�180 meV [29]). Also, this is much larger than the
exciton–polariton Rabi splitting in semiconductor microcavities
(�140–400 leV [44–46]), or the exciton–plasmon Rabi splitting
in hybrid semiconductor–metal nanoparticle molecules [30]. How-
ever, the formation of the strongly coupled exciton–plasmon states
is only possible if the exciton total energy is in resonance with the
energy of an interband surface plasmon mode. The exciton energy
might be tuned to the nearest plasmon resonance in ways used for
the excitons in semiconductor quantum microcavities – thermally
(by elevating sample temperature) [44–46], and/or electrostati-
cally [47–50] (via the quantum confined Stark effect with an exter-
nal electrostatic field applied perpendicular to the CN axis). The
two possibilities influence the different degrees of freedom of the
quasi-1D exciton – the (longitudinal) kinetic energy and the exci-
tation energy, respectively [see Eq. (3)]. In the latter case, plasmon
and exciton resonances both shift to the red due to the decrease in
Eg as the field increases [48]. However, the exciton shift is approx-
imately twice as less due to the decrease in jEbj (see Ref. [48]),
which is enough for the resonance to occur in view of the large
jEbj contribution� 0:5Eexc in small-diameter CNs [9–11,14]. This ef-
fect may be used for the development of CN based tunable opto-
electronic device applications in areas such as nanophotonics and
cavity quantum electrodynamics.
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