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We present an exact theory for modeling defect modes in two-dimensional photonic crystals having an
infinite cladding. The method is based on three key concepts, namely, the use of fictitious sources to modify
response fields that allow defects to be introduced, the representation of the defect mode field as a superposi-
tion of solutions of quasiperiodic field problems, and the simplification of the two-dimensional superposition to
a more efficient, one-dimensional average using Bloch mode methods. We demonstrate the accuracy and
efficiency of the method, comparing results obtained using alternative techniques, and then concentrate on its
strengths, particularly in handling difficult problems, such as where a mode is highly extended near cutoff, that
cannot be dealt with in other ways.
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I. INTRODUCTION

Photonic crystalsf1g sPCsd and photonic crystal fibersf2g
sPCFsd are structures in which the refractive index depends
periodically on position. Many of the exciting light propaga-
tion properties of these structures arise from the existence of
photonic band gaps, frequency intervals in which running
wave solutions are not allowed. In this paper, we concern
ourselves with structures with a two-dimensional plane of
periodicity. In PCs, the light propagates in this plane, and the
refractive index in the direction orthogonal to this plane is
designed for light confinement in that direction. However,
for simplicity these structures are often modeled as being
uniform in this direction, so that only a two-dimensional cal-
culation is required. In PCFs the refractive index in the di-
rection orthogonal to the plane of periodicity genuinely is
uniform, but in contrast to two-dimensional PCs, the light
propagation is not confined to this plane.

Many applications of PCs and PCFs rely on the introduc-
tion of defects in an otherwise periodic structure: in PCs, line
defects lead to waveguidesf3g, whereas localized defects
give rise to resonatorsf4,5g, while in PCFs, a localized de-
fect forms the core of the fiberf6g. These applications re-
quire a photonic band gap to confine the light to these de-
fects. Until now, almost all the modeling of PCs or PCFs
with defects has used one of two general methods. The first
of these are supercell methods, by which the geometry is
repeated periodicallyf7–9g. This turns a nonperiodic struc-
ture into one with periodicity, so that methods that have been
developed for periodic structures, relying principally on
Bloch’s theorem, can be brought to bear. The use of such a
procedure is justified when the size of the supercell exceeds
the size of any of the features that are to be modeled since,
otherwise, artificial overlaps are introduced. The second
class of methods to deal with periodic structures with defects
model these structures as being of finite extentf10–12g sof-
ten with the use of appropriate absorbing boundary condi-
tions to make finite the solution regiond. Of course, this is

well justified since real systems are finite. However, these
methods tend not be very efficient since an overarching
mathematical framework, such as Bloch’s theorem, is miss-
ing. Accordingly, the physical size of the systems that can be
modeled is limited.

Photonic crystal waveguides may be studied also using
methods that fit into neither of the two categories mentioned
above. These methodsf13g make use of the reflection scat-
tering matrix of semi-infinite photonic crystalsf14g. This
matrix R` describes the response of a semi-infinite photonic
crystal to an incident plane wave of given frequency, polar-
ization, and direction. The response consists of a number of
reflected plane waves at angles given by the grating equa-
tion, and an infinite number of evanescent orders. The col-
umns of R` contain the amplitudes of the reflected waves
generated by the respective incoming plane wave orders of
unit amplitude. Thus, with this tool, a straight photonic crys-
tal waveguide can be modeled as a conventional waveguide:
it consists of a uniform medium, sandwiched between two
semi-infinite media, the response of which is completely de-
termined byR`, and by the separation of the semi-infinite
media. In such calculations the modes are found by applying
a phase or resonance condition. Calculations of this type,
which model a genuinely infinite system, have advantages
over conventional methods involving a supercell: they are
not only more elegant, but they are also efficient since the
calculation ofR` involves the Bloch functions of the infinite
system. They are also particularly well suited to calculations
when the modal fields have a large extentssuch as occurs
close to modal cutoffd, since the modeling of these fields
would require a very large supercell.

By construction, the method described in the previous
paragraph applies only to line defects, but not to defects that
are localized. In this paper, however, we describe a method
for calculating the modes of localized defects in otherwise
infinite structures, both in PCs and in PCFs. Thisfictitious
source superpositionsFSSd methodshares the advantages
listed above: it is theoretically elegant, analytically tractable,
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and can calculate modes of large spatial extent efficiently.
The latter is important in the study of PCFs, where the prop-
erties of the fundamental mode at long wavelengths are not
well understood. The long-wavelength behavior can only be
resolved by the type of method described here.

There are three key ideas involved in the development
and implementation of the FSS method. Thefirst is the ap-
plication of fictitious sources which, when introduced into
the interior of any scatterer, allow the field exterior to the
scatterer to be tailored. Here, we exploit a fictitious source,
either to make the scatterer vanish, in that the exterior field is
identical to that if the scatterer was not present, or to modify
its electromagnetic response so that it mimics the behavior of
a scatterer with different size or optical properties. The fic-
titious source required to modify the response of an indi-
vidual scatterer depends on the field incident upon that scat-
terer. While the calculations are straightforward for a
problem involving only a single scatterer, the interrelation-
ships between the fields in an infinite array of scatterers are
complex and make it difficult to solve the field problem di-
rectly.

This brings us to thesecondkey idea, the construction of
the defect mode from a superposition of quasiperiodic field
solutions for the perfectly periodic structure. For each of the
constituent problems, we embed a sourceQp in each scat-
terer and phase these quasiperiodically such thatQp
=Q expsik0·Rpd whereRp is the lattice position of scatterer
p. The defect mode is then formed by a superposition of the
solutions of the periodic structure by integrating with respect
to the Bloch vectork0 over the first Brillouin zone. The
superposed solution thus satisfies the relevant wave equation,
the boundary conditions, and is associated with a fictitious
source distribution in which scattererp contains the source
QeBZ expsik0·Rpddk0. This is the key step, with the Bril-
louin zone integration entirely eliminating the fictitious
sourcesf15g in all but the primary scatterersRp=0d. The
remaining source, in the primary scatterer, is thus available
to modify the response field and, in doing so, to formulate
the defect mode.

For the two-dimensional structures that we are consider-
ing, the Brillouin zone integration requires a time consuming
two-dimensional calculation. The efficiency of the calcula-
tion can be increased dramatically by reformulating the prob-
lem so that only a one-dimensional integration is required.
This reformulation of the problem is thethird key idea, and
models the structure as a single diffraction grating with em-
bedded quasiperiodically phased fictitious sources, that is
sandwiched between two semi-infinite photonic crystals that
are modeled byR` f14g. These are crucial to this approach in
that they encapsulate the second dimension of the Brillouin
zone in their mode structure, eliminating one integration di-
rection, and thus reducing the solution of the problem to
require only a one-dimensional Brillouin zone integration.

In Sec. II, we formulate the method for two-dimensional
cylinder arrays for both elementary polarizations, and then
outline the generalization to handle out-of-plane configura-
tions required for PCFs. We then discuss the numerical
implementation in Sec. III, and verify the method in Sec. IV.
In Sec. V, we conclude by considering the challenging case
of modeling defect modes that are highly extended.

II. THEORY

We begin with the geometry to be modeledsSec. II Ad,
and introduce the multipole method on which the FSS
method is based. Section II B presents the plane wave scat-
tering matricesf16,17g which describe a grating with embed-
ded sources, while Sec. II C summarizes the calculation of
the matrix R` which describes the reflection of a semi-
infinite PC. Finally, in Sec. II D we combine the properties of
these two structures to model a periodic structure with
sources placed along the central row to calculate the modes
for waveguides and point defects.

A. Preliminaries

Our aim is to model the structure shown in Fig. 1: dielec-
tric cylindrical inclusions of radiusa and refractive indexn−

in a dielectric background material of indexn+, with axes
aligned with theẑ axis. These are placed on some regular
lattice with lattice vectorse1 ande2 and the central cylinder
is either removed or altered to form a defect. Since initially
we deal with two-dimensional problems, in which the fields
are independent ofz, we can assume that either the electric
or magnetic field lies along thez axis. These polarizations
are denotedEi and H i, respectively. Thez component of
the relevant field is denotedV; the other field has noz
component.

The theory relies on the multipole methodf10,16g, which
was developed to model dielectric structures with cylindrical
inclusions. Central to the multipole method are the local field
expansions ormultipole expansionsaround each inclusion.
Assume cylinderj is centered atcj. BecauseV satisfies a
Helmholtz equation inside and outside the cylinder, we can
write, in cylindrical coordinates,r =sr ,ud,

Vscj + r d = o
l=−`

`

fAl
jJlsk+rd + Bl

jHl
s1dsk+rdgeilu,

Vscj + r d = o
l=−`

`

fCl
jJlsk−rd + Ql

jHl
s1dsk−rdgeilu, s1d

for r ùa and r øa, respectively. Herek±=kn± denote the
magnitudes of the wave number inside and outside the cyl-

FIG. 1. Schematic of the geometry with cylinders of radiusa
and refractive indexn−, in a background indexn+. A defect is
formed by either removing the central cylinder or changing its ra-
dius or refractive index; mathematically, this defect is modeled by
considering a perfectly periodic structure and inserting a source into
the central cylindersdottedd.
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inder. AlsoJl andHl
s1d denote the Bessel function of the first

kind and the Hankel function of the first kind, respectively.
For convenience the latter is denoted byHl from this point.
Also, in what follows, we formulate the problem in a vector-
matrix notation, denoting such quantities by boldface sym-
bols, e.g.,A j =fAl

jg represents a vector of coefficients. Physi-
cally, the coefficientsA j represent the standing wave field
incident on the cylinder,B j is the field outgoing from the
cylinder, C j is that inside the cylinder, incoming from the
cylinder’s boundary, andQ j represents a fictitious source in-
side the cylinder. The last is used to tailor the fields outside
the cylinder, so that it disappears or mimics a different cyl-
inder. To achieve this we consider the relationships between
the coefficients inside and outside the cylinder, that result
from the continuity conditions of the fields at the cylinder’s
boundary. They can be written

B j = R̂A j + T̂Q j ,

C j = T̂8A j + R̂8Q j . s2d

These equations express the outgoing fieldB j as a reflec-
tion of the incoming fieldA j and a transmission of the inter-

nal sourceQ j, and similarly forC j; that is, the matricesR̂, T̂,

R̂8, and T̂8 are essentially Fresnel coefficients in the cylin-
drical harmonic basis. Because the local field expansion in
cylindrical coordinates is well suited to the cylindrical shape
of the inclusions, these matrices are diagonal. The second
equation is used only for field reconstruction, and is not men-
tioned again. Explicit forms for the elements of these matri-
ces are given in Refs.f10,18g.

We now exploit Eqs.s2d to illustrate the first key idea, by
removing a single cylinder. The condition on the external
fields for the cylinder to disappear isB j =0, i.e., there is no
outgoing field sourced by this cylinder. From Eq.s2d, we
deduce that the required source is

Q j = − T̂−1R̂A j ,

which depends on the incident fieldA j. As noted in the In-
troduction, the direct extension of this idea to modeling a
defect mode in an infinite lattice is very difficult, if not pos-
sible, given the complex interactions between the scatterers.
Instead, we develop the mode through a superposition of
quasiperiodic fictitious sourcessSec. II Dd as was outlined
earlier.

B. The grating field problem

Recalling the third key idea discussed in Sec. I, we now
model a cylinder grating, with cylinders placed along thex
axis with periodd sFig. 2d, and having embedded sources.
From Bloch’s theorem, thex periodicity of the grating allows
us to apply the quasiperiodicity condition

Vsr + dx̂d = eia0dVsr d,

where a0 is the lateral component of the Bloch vectork0.
This quasiperiodicity implies that the multipole expansion
coefficientss1d around thej th cylinder of the grating are
given by

A j = eia0jdA, B j = eia0jdB,

C j = eia0jdC, Q j = eia0jdQ,

where the omission of the indexj refers to the central cylin-
der s j =0d.

The form of the field expansion around the central cylin-
der is determined by a relation between the singular and
nonsingular parts of the field, known as the Rayleigh iden-
tity. To derive this we apply Green’s theorem in the unit cell,
using the fieldV and the quasiperiodic Green’s function,
which satisfies

s¹2 + k2dGsr d = o
j=−`

`

dsr − j dx̂deia0jd.

In cylindrical coordinates fr =sr ,udg the quasiperiodic
Green’s function can be written

Gsr d = −
i

4 o
j=−`

`

eia0jdH0sk+ur − j dx̂ud

= −
i

4
H0sk+rd −

i

4 o
l=−`

`

SlJlsk+rdeilu. s3d

A second form of the Green’s function in Eq.s3d, which
applies whenr ,d, is obtained using Graf’s addition theorem
and introduces thelattice sumsf14g defined by

Sl = o
j=1

`

Hlsk+jddfeia0jd + s− 1dle−ia0jdg,

characterizing the contributions to each multipole order due
to the phased array of multipole sources. It is this particular
form of the Green’s functions3d that ultimately yields the
field sRayleighd identity, with the first termH0sk+rd referring
to an outgoing wave generated by the primary sources j
=0d, and the second term, comprising a sum of terms
Jlsk+rdexpsilud weighted by the lattice sums, and represent-
ing an incident field that is generated by all other sources.

We now apply Green’s theorem to derive the field expan-
sion in the vicinity of the primary cylinder, denoting byC the
boundary of central cylinder and byD the boundary of a unit
cell of the grating, both traversed counterclockwise. Apply-
ing Green’s theorem toVsr 1d and Gsr −r 1d in the regionR
betweenC andD gives

FIG. 2. A grating is formed by a row of cylinders, with their
axes aligned along thez axis sout of the planed. Such gratings are
stacked to model the desired structure in Fig. 1. Here the cylinders
also contain sources as shown.
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Vsr d =R
C
FGsr − r 1d

]V

]n̂1

sr 1d − Vsr 1d
]G

]n̂1

sr − r 1dGdr 1

+R
D
FVsr 1d

]G

]n̂1

sr − r 1d − Gsr − r 1d
]V

]n̂1

sr 1dGdr 1

= IC + ID, s4d

for any r [R. We obtain an expression forGsr −r 1d from the
form given in Eq.s3d, together with a further application of
Graf’s addition theorem. Then, using the multipole expan-
sion s1d around the central cylinder forV, we evaluate

IC = o
l=−`

`

BlHlsk+rdeilu + o
l=−`

`

Jlsk+rdeilu o
m=−`

`

Sl−mBm, s5d

for r sufficiently close to the central cylinder.
To evaluate the integral overD, we decompose the field

above and below the grating into plane waves of the correct
quasiperiodicity. That is,

Vsr d = o
p=−`

`

xp
−1/2eiapxsf1p

+ eixpy + f1p
− e−ixpyd,

Vsr d = o
p=−`

`

xp
−1/2eiapxsf2p

+ eixpy + f2p
− e−ixpyd,

for y.a andy,−a, respectively, where

ap = a0 +
2p

d
p = k+ sinup,

xp = Îsk+d2 − ap
2 = k+ cosup

denote the direction sines and cosines of the relevant diffrac-
tion orders. The plane wave coefficientsf1

− and f2
+ represent

the incoming plane waves above and below the grating re-
spectively, whilef1

+ and f2
− represent the outward-going plane

waves. The factorxp
−1/2 is a convenient normalizationf16g

which ensures that each propagating plane wave order carries
unit energy flux.

The evaluation ofID requires the plane wave form of the
Green’s functions3d

Gsr d =
1

2id
o

q=−`

`
1

xq
eisaqx+xquyud. s6d

Using this, the left and right sides of the integral alongD
cancel due to quasiperiodicity and we obtain

ID = o
p=−`

`

xp
−1/2eiapxsf1p

− eixpy + f2p
+ eixpyd, s7d

namely, the plane wave field incident upon the grating. To
proceed further, we need to convert this form to the cylindri-
cal harmonicsmultipoled basis, deriving

ID = o
p=−`

`

o
l=−`

`

sJ0lp
− f1p

− + J0lp
+ f2p

+ dJlsk+rdeilu, s8d

where

J0lp
+ = xp

−1/2eilup, J0lp
− = xp

−1/2s− 1dle−ilup.

Then, substituting Eqs.s5d ands8d into Eq.s4d, we obtain the
total field expansion

Vsr d = o
l

BlHlsk+rdeilu + o
l

Jlsk+rdeiluo
m

Sl−mBm

+ o
p

o
l

sJ0lp
− f1p

− + J0lp
+ f2p

+ dJlsk+rdeilu, s9d

valid for r sufficiently close to the central cylinder. The ex-
pansion in Eq.s9d comprises three terms, an outgoing field
sourced at the primary cylinder, an incident field that is due
to all other cylinders, and the incoming plane waves. Equat-
ing this with the local expansions1d for the central cylinder
s j =0d and comparing the coefficients of termseilu, we de-
duce the Rayleigh identity

Al = o
m=−`

`

SlmBm + o
p=−`

`

sJ0lp
− f1p

− + J0lp
+ f2p

+ d,

whereSlm=Sl−m. That is, in the vicinity of the central cylin-
der, the nonsingular part of the fieldsi.e., that part of the field
that is not outgoing from that cylinderd is due to all other
cylinders and incident plane waves. In matrix notation, this
reduces to

A = SB+ J0
−f1

− + J0
+f2

+. s10d

As we have seen above,IC represents the quasiperiodic
field that is outgoing from the grating. We can derive an
alternative form for this by using the plane wave form of the
Green’s functionGsr −r 1d from Eq.s6d. Maintaining the field
point sr d dependence in Cartesian exponential form, and
transforming the source pointfr 1=sr1,u1dg dependent expo-
nential terms into cylindrical harmonicsfi.e., Jlsk+r1deilu1g,
the integralIC may then be evaluated to yield the outgoing
plane waves in terms of the multipole coefficientsB. That is,

IC =
2

d
o

p=−`

`

o
l=−`

`

xp
−1/2eisapx±xpydK0pl

± Bl , s11d

where the1 and 2 signs correspond toy.a and y,−a,
respectively, and

K0pl
+ =

2

d
xp

−1/2e−ilup, K0pl
− =

2

d
xp

−1/2s− 1dleilup.

Then, substituting Eqs.s7d and s11d into Eq. s4d gives

Vsr d = o
p=−`

`

xp
−1/2eiapxsf1p

− e−ixpy + f2p
+ eixpyd

+ o
p=−`

`

o
l=−`

`

xp
−1/2K0pl

± Ble
isapx±xpyd.
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As in Eq. s9d, we have expressed the field as a sum of
contributions from fields incident on the grating, and fields
outgoing from the cylinders. However, in this expression, we
have converted the latter into plane waves usingK 0

±, rather
than converting the former into cylindrical harmonic func-
tions usingJ0

±. When this expansion is compared with the
plane wave expansion above or below the grating, one of the
terms in the first sum cancels. Equating coefficients of the
plane wave orders then gives

f1p
+ = f2p

+ + o
m=−`

`

K0pl
+ Bl ,

f2p
− = f1p

− + o
m=−`

`

K0pl
− Bl ,

or, in matrix notation,

f1
+ = f2

+ + K 0
+B,

f2
− = f1

− + K 0
−B, s12d

the first expressing that the upward field above the grating
sf1

+d is due to the upward field from belowsf2
+d and the up-

ward field generated by the gratingsK 0
+Bd.

Expressionss10d ands12d relate the different field expan-
sions outside the cylinders, and incorporate the geometrical
arrangement of the cylinders. When this is combined with
the multipole relations of Eq.s2d, which incorporate the ma-
terial propertiessi.e., radius and optical constantsd of the in-
dividual cylinders, we derive the reflection and transmission
characteristics of the grating with embedded sources. By
substituting Eq.s10d into Eq.s2d we derive an expression for
the outgoing multipole field coefficientsB as a function of
the “forcing terms,” namely, the fictitious sourcesQ and the
incident plane wave fieldsf1

− and f2
+. That is,

B = GsR̂J0
−f1

− + R̂J0
+f2

+ + T̂Qd, s13d

where

G = s1 − R̂Sd−1,

and1 denotes the identity matrix. Finally, by combining Eqs.
s13d and s12d, we deduce

f1
+ = R0

+f1
− + T0

+f2
+ + Q0

+Q,

f2
− = R0

−f2
+ + T0

−f1
− + Q0

−Q, s14d

where

R0
+ = K 0

+GR̂J0
−, R0

− = K 0
−GR̂J0

+,

T0
+ = 1 + K 0

+GR̂J0
+, T0

− = 1 + K 0
−GR̂J0

−,

Q0
+ = K 0

+GT̂, Q0
− = K 0

−GT̂ .

Here, the matricesR0
± andT0

± are the plane wave reflec-
tion and transmission scattering matrices, while the terms

Q0
±Q denote the contributions to the upward and downward

going plane wave fields due to the embedded quasiperiodic
array of sourcesQ. In fact, because the grating has up-down
symmetry, it can be shown that

R0
+ = R0

− =
def

R0, T0
+ = T0

− =
def

T0. s15d

As we shall see in Sec. II D, this symmetry simplifies the
formulation and decreases the computation time.

C. Reflection by a stack

We now consider a stack of the gratings discussed in Sec.
II B, but without sources. In this way we can create the two-
dimensional, semi-infinite array of cylinders shown in the
gray regions in the Fig. 3. Between each layer, we represent
the field by a plane wave expansion with upwardsf+d and
downwardsf−d components that we combine into a vector

Sf−

f+D .

Putting Q=0 in Eq. s14d and rearranging these expressions
allows us to relate the fields on either side of the layer in
terms of atransfer matrixT f14g. The eigenvalue problem
for this matrix is equivalent to finding the Bloch modes of
the bulk structure; specifically, if

TSf−

f+D = mSf−

f+D ,

then the coefficientsf± determine a Bloch mode with Bloch
vector k0, whose scalar products with the lattice vectors
he1,e2j are given by

eik0·e1 = eia0d, eik0·e2 = m.

The downward propagating Bloch modes are combined to
form the columns of the partitioned matrix

SF−

F+D .

FIG. 3. Modeled structure, consisting of a sourced grating be-
tween two semi-infinite stacks, described by reflection matricesR`

±.
The lower stack has infinite extent in the downward direction and
its reflection is described byR`

+, which relatesf2
− and f2

+. The ap-
propriate source removes the dotted cylinders along the central row,
thus leading to a waveguide.
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We are interested in determining the reflection properties
of a semi-infinite PC, to model the structure in Fig. 3. We see
such a crystal extending infinitely in the −ŷ direction in gray
in the lower half of this figure. Just above this stack, the
upward propagating wavef2

+ is a reflection of the downward
propagating wavef2

−. The reflection condition is that there
are no Bloch modes propagating upward from −`ŷ. The field
should then be composed only of downward propagating
Bloch modes. That is,

Sf2
−

f2
+D = SF−

F+Dc−,

wherec− are the amplitudes of these Bloch modes. Eliminat-
ing c−, we deduce

f2
+ = R`

+f2
−,

whereR`
+ =F+sF−d−1. We can similarly find the reflection ma-

trix R`
− for the stack extending upward; indeed it can be

shown that, by up-down symmetry,

R`
+ = R`

− =
def

R`. s16d

A detailed description of this procedure was given earlier
f14g, and we do not discuss it further here.

D. Formulation for defect modes

1. Solution of the inhomogeneous problem

We now determine the outgoing fieldsBd in terms of the
fictitious sourcessQd in Fig. 3. In Sec. II B, we derived Eq.
s14d to describe the scattering properties of the grating with
embedded sources in terms of the plane wave fields above
and below the grating, while in Sec. II C we deduced the
reflection conditions imposed by the semi-infinite stacks on
these coefficients, i.e.,

f2
+ = R`

+f2
−, f1

− = R`
−f1

+.

By combining these results we derive

f1
− = R`

−sR0
+f1

− + T0
+f2

+ + Q0
+Qd,

f2
+ = R`

+sR0
−f2

+ + T0
−f1

− + Q0
−Qd. s17d

Although Eqs.s17d can be solved simultaneously, in general,
it is convenient to exploit the up-down symmetry, thereby
realizing a substantial increase in the computational effi-
ciency of the method. We define

fs = 1
2sf1

− + f2
+d, fa = 1

2sf1
− − f2

+d,

Q0
s = 1

2sQ0
+ + Q0

−d, Q0
a = 1

2sQ0
+ − Q0

−d,

J0
s = J0

− + J0
+, J0

a = J0
− − J0

+.

Employing the results of up-down symmetry mentioned in
the previous two subsections, Eq.s17d is replaced by the
symmetrized and antisymmetrized forms

fs = R`fsR0 + T0dfs + Q0
sQg,

fa = R`fsR0 − T0dfa + Q0
aQg,

while Eq. s13d becomes

B = GsR̂J0
sfs + R̂J0

afa + T̂Qd.

Hence

B = ZQ , s18d

where

Z = Zsk,a0d = GhR̂J0
sf1 − R`sR0 + T0dg−1R`Q0

s

+ R̂J0
af1 − R`sR0 − T0dg−1R`Q0

a + T̂j.

We have thus expressed the outgoing field around the central
cylinder in terms of the fictitious source it contains. Note that
Z incorporates the effects of scattering by the infinite number
of surrounding cylinders and depends on the transverse wave
numberk anda0=k0x, thex component of the Bloch vector.
The other component of the Bloch vector is included through
R`.

2. One-dimensional defect (waveguide) modes

Earlier we mentioned that the construction of a defect
mode requires the superposition of all quasiperiodic solu-
tions, necessitating an integration over the first Brillouin
zone, a result we detail shortly. Before doing so, however,
we demonstrate that it is possible to proceed directly from
s18d to model a one-dimensional defect mode, i.e., a wave-
guide mode, without the need for any integration.

To do this, we setB=0, as in Sec. II A, thereby setting the
responsesoutgoingd field from the central cylinder to zero.
Since all cylinders are quasiperiodically phased according to
Bloch’s theorem, settingB=0 removes not only the central
cylinder but all cylinders of the grating. We thus derive a
mode of the waveguide structuresFig. 3d characterized by a
nontrivial solution of

ZQ = 0. s19d

For a fixed frequencysi.e., a givenkd, we may vary thex
component of the Bloch vector,a0, so thatZ becomes sin-
gular. That is,

detfZsk,a0dg = 0.

The sourceQ for which the outgoing fieldB vanishes around
each grating cylinder is found from the null space of
Zsk,a0d, from which the mode can be reconstructed.

Similarly we can model a waveguide obtained by altering
the central row of cylinders, e.g., varying their optical con-
stants or their radii. To mimic the altered cylinders, the ex-
ternal fields must satisfy the equivalent of Eq.s2d, but with-
out the fictitious source, for the new cylinder radius and
index, namely,

B = R̂1A . s20d

Combining Eq.s20d with Eqs.s2d and s18d, we obtain
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fs1 − R̂1R̂
−1dZ + R̂1R̂

−1T̂gQ = 0.

Again, a0 is varied to make this matrix singular, and the null
space producesQ which defines the mode.

3. Two-dimensional defect modes

To model a mode of a point defect, we must employ the
second key idea, namely, its construction from the superpo-
sition of the solutions of all quasiperiodic field problems
formed by integrating overa0 within the first Brillouin zone.
The superposed solution thus satisfies the Helmholtz equa-
tion and the boundary conditionsswhich depend only on
k and not ona0d and is associated with an averaged fic-
titious source distribution which, in cylinderj , is
Qe−p/d

p/d expsia0jddda0. This is the crucial step in the method,
with the Brillouin zone integration maintaining the source in
the central cylindersj =0d which is independent ofa0, while
eliminating all the other sources due to the Bloch factor
eia0jd.

The superposed solution, corresponding to a single source
sFig. 1d in the central cylinder, thus follows by integrating

Bsk,a0d = Zsk,a0dQskd s21d

over the first Brillouin zone with the averaging operator

d

2p
E

−p/d

p/d

da0.

We thus derive

B̄skd = Z̄skdQskd, s22d

where the overbar denotes an averaged quantity.
We may now proceed, as in the waveguide case, to find

the modes of a defect structure with the central cylinder re-
moved or altered, by solving

Z̄Q = 0,

or

fs1 − R̂1R̂
−1dZ̄ + R̂1R̂

−1T̂gQ = 0,

respectively. The free space wave numberk, or equivalently
the normalized frequency

f = kd/s2pd, s23d

is varied to make the relevant matrix singular. Again, the null
space determinesQ, from which the fields may be recon-
structed.

E. Three-dimensional fields

Thus far, we have assumed an in-plane solution for either
Ei or H i polarization, so only one of the fields has aẑ com-
ponent, which is constant inz. However, in the three-
dimensional case, as occurs when solving propagation prob-
lems for PCFs, the fields have aneibz dependence. This
causes theẑ components of the two fields to couple at the
cylindrical interfaces and requires that both quantities be in-

cluded in the solution of the field problem. For notational
convenience, we combine these into a single vector; for in-
stance we replaceA by

SAE

AK D ,

partitioned into two blocks containing a vector of electric
field coefficientsAE and a vector of magnetic field coeffi-
cientsAK. Here we have introducedK =Z0H, whereZ0 is the
vacuum impedance, soE andK have the same units. Simi-
larly, all of the above matrices double in dimension; for in-
stance, in block matrix notation, the Toeplitz matrix of lattice
sums,S, is replaced by

SS 0

0 S
D .

Rather than being diagonal, the boundary condition ma-
trices of s2d are now composed of diagonal blocks; for in-

stanceR̂ is replaced by

SR̂EE R̂EK

R̂KE R̂KK
D ,

where each submatrix is diagonal, in the case of circular
cylinders. Their exact forms are given in Refs.f10,18g. It
should also be noted that the magnitude of the in-plane com-
ponent of the wave vector is now given by

k± = În±2k2 − b2.

In general, the matricesR̂EK andR̂KE do not vanish and thus
the electric and magnetic fields problems are coupled. In the

case of in-plane incidence, however, bothR̂EK andR̂KE van-
ish, and thus all matrices in the formulation are of block
diagonal form, leading to decoupledEi and H i polarized
solutions.

From this point on, the formulation is almost identical to
that of Sec. II B onward, the only exception being the rela-
tions resulting from up-down symmetry; because the mag-
netic field is a pseudovector, it is reversed when we reflect in
the xz plane. Thus Eqs.s15d and s16d become

R0
− = YR0

+Y, T0
− = YT 0

+Y, R`
− = YR`

+Y ,

where

Y = S1 0

0 − 1
D ,

written as a block matrix partitioned into electric and mag-
netic plane wave coefficients.

The search routine for defect modes in three-dimensional
problems is slightly different, being tailored to the practice
usually adopted for PCFs. Whereas, in the two-dimensional
case we varied the free space wave numberk, for a PCF we
fix k and vary the propagation constantb, or equivalently the
effective index

neff = b/k,

to make the relevant matrix singular.
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III. IMPLEMENTATION

The theory of Sec. II was implemented numerically to
model defects in PCs and PCFs. First this requires the infi-
nite dimensional matrices to be truncated; that is, the cylin-
drical harmonic indexl and plane wave order indexp, which
range from −̀ to `, are restricted to

− NJ ø l ø NJ, − Np ø p ø Np. s24d

Central to the method presented in Sec. II B was the calcu-
lation of the matrix

G = s1 − R̂Sd−1. s25d

However, the matrix1−R̂S is poorly conditioned for nu-
merical inversion. By studying the asymptotic behavior of

the elements ofR̂ andS, it can be seen that for the purposes
of calculation, Eq.s25d should be replaced by

G = CfC−1s1 − R̂SdCg−1C−1,

whereC is the diagonal matrix defined by

Cll = Sk+a

2
Dul u 1

ul u!
.

This allows us to calculateZsk,a0d numerically.

To obtainZ̄, we approximate the Brillouin averaging by a
numerical integration

Z̄skd < o
l=0

N

wlZSk,
2p

d
xlD ,

whereswl ,xld are chosen according to some integration rule.
We generally use Gaussian quadratures, which are well
suited to the behavior of the integrand. However, assume
momentarily that the trapezoidal rule withN points is used to
replace the integral; then we leave, in effect, sources in every
Nth cylinder. Therefore, although the theory we have pre-
sented deals with a truly infinite structure, the structure we
then ultimately model has everyNth cylinder along the cen-
tral row missing or altered. Nevertheless, unlike a supercell
calculation, the method can calculate defect modes with ex-
tremely large spatial extent, as we discuss in Sec. VI.

Our theory has been implemented inMATHEMATICA f19g,
with the lattice sums calculated in aFORTRAN routine linked
to the MATHEMATICA routines using theMATHLINK toolkit
f19g. This implementation is thus a successful prototype, but
not one that has been optimized for efficiency. All calcula-
tions reported here were undertaken using a 2.4 GHz Pen-
tium 4 workstation running under Microsoft Windows XP,
with timings referring to this system.

IV. VERIFICATION

A. Waveguide mode

In Sec. II D 2 we investigated a waveguide mode in order
to verify numerically the fictitious sources concept on which
the method relies. Consider a square lattice structure, con-
sisting of dielectric cylinders of indexn=3 and radiusa

=0.2d, surrounded by air. One row of cylinders is removed
to form a waveguide. At a normalized frequency off =0.4
fsee Eq.s23dg, the FSS method found anEi polarized mode
with Bloch componenta0=1.825 28sFig. 4d. The value of
a0 obtained by another code, developed by Bottenet al.
f13,20g, that combines a multipole calculation with a Bloch
mode analysis, agreed to the six figures shown. This value of
a0 was used as the input for a supercell calculation, using the
RSoft moduleBandSOLVEf21g, which returned a normalized
frequency of 0.400 06. The relative discrepancy of,0.02%
is mainly due to the number of plane waves used in the
supercell calculation, namely 323256; increasing this to
643512 reduced the discrepancy to,0.005%. In contrast,
our calculation obtained results accurate to 11 significant fig-
ures using multipole series truncation ofNJ=6 and plane
wave series truncation ofNp=3.

B. PCF modes

The FSS method has been used to find modes in PCFs,
using the parametersNJ=9, Np=4, andN=80. The wave-
length was chosen small enough that the modes were well
confined. This allowed them to be compared to those of a
finite structure, calculated using other multipole software de-
veloped by Kuhlmeyf22,23g. The latter was also used to plot
the modes.

In all cases the PCF structure consisted of air holes in
silica, the latter having a refractive index of 1.45. Figure 5
shows the fundamental modes of an infinite structure and a
finite structure with seven rings, both with hole radiusa
=0.12d and at wavelengthl=0.133d. The effective indices
were found to be 1.449 226 451 3 for the infinite structure
and 1.449 226 452 0+1310−12i for the finite structure. The
loss of the finite structure mode, which is proportional to
Imsneffd, is very low. This indicates that the mode is well
confined, explaining the good agreement between the effec-
tive indices found.

Figure 6 shows the same comparison for the second
mode, but with hole radiusa=0.25d and at a wavelengthl
=0.3d. The effective indices were now 1.436 222 for the in-
finite structure and 1.436 225+6310−8i for the finite struc-

FIG. 4. Squared modulus of the electric field in anEi polarized
waveguide mode calculated with the FSS method, plotted over one
period in thex direction. Circles at the top indicate the cylinders.
The corresponding result obtained by RSoftBandSOLVEdiffers by a
maximum of 1 part in 103.
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ture. The imaginary part of the latter is larger than for the
fundamental mode, and the difference in the real parts of the
effective indices between is correspondingly greater.

To ensure that the parameters chosen above are sufficient,
we varied them and observe the stability ofneff sTable Id. All
but the final calculation used the trapezoidal rule for the nu-
merical integration; the last employed Gaussian quadratures.
As we discuss further in Sec. VI, the stability of the root
confirms that the method is accurately modeling an infinite
structure.

Due to the high symmetry of the geometry, the fundamen-
tal PCF mode studied is doubly degenerate. Our numerical
results are consistent with this: the effective indices obtained
for the modes differ only slightlysby roughly 3310−12d,
which is smaller than the accuracy of the calculation.

V. SPATIALLY EXTENDED MODES

The results in Sec. IV B, while validating the FSS
method, do not demonstrate the unique advantage that it af-
fords, namely, in handling the difficult cases in which meth-
ods which assume a finite structure, either explicitly or im-
plicitly, fail. Accordingly, we show the strength of the

technique by calculating a poorly confined defect mode near
the edge of the band gap. Because of the large spatial extent
of the mode, such a calculation using existing methods can-
not achieve the same accuracy.

We consider the same square lattice as that from which
the waveguide structure was obtained. The central cylinder
radius is reduced to 0.17d. With the parametersNJ=6, Np
=3, and a Gaussian integration withN=40 points, the FSS
method took less than 3 min to find a defect mode at nor-
malized frequency 0.321 035 154 65sFig. 7d. A convergence
study demonstrated that the result is accurate to the 11 fig-
ures shown.

TABLE I. Effective index neff for the structure in Fig. 5 as a
function of the numerical parametersNJ andNp fEq. s24dg, and the
number of integration pointsN.

NJ Np N neff

9 4 80 1.449226451342261

6 4 80 1.4492264513

3 4 80 1.449226452014651

9 3 80 1.449226451340456

9 2 80 1.449226451345897

9 4 40 1.449226451343528

9 4 120 1.449226451340771

9 4 80 1.449226451340257

FIG. 5. Theẑ component of the Poynting vectorS~E3H of
the fundamental mode in an infinite structurestopd and a finite
structure with seven ringssbottomd for a=0.12d, l=0.133d, and
n=1.5.

FIG. 6. As in Fig. 5 but for the second mode anda=0.25d, l
=0.3d, andn=1.5.
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The mode can also be found using an RSoftBandSOLVE

f21g calculation in comparable time. However, the same ac-
curacy cannot be achieved; Fig. 8 shows the difference be-
tween the frequency of the supercell calculation and the fre-
quency of the mode, as a function of supercell size. The three
curves correspond to 8, 12, and 24 plane waves per unit cell
of the original lattice. It is clear that a very large supercell is
required because of the spatial extent of the mode.

Because the bulk of the computation time for the FSS

method involves calculatingZ̄, the hole radius can easily be
varied at fixed frequency. For example, Fig. 9 shows the
frequency of the above defect mode versus hole radius. Us-
ing NJ=6, Np=3, andN=80, the 60 data points for the figure
took less than 7 min to produce.

VI. CONCLUSIONS

To date, all methods for computing defect modes have
been approximations, relying either on perturbation tech-

niques or embedding in the model an explicit or implicit
assumption of a finite structure. The method that we have
outlined here is different in that it can model exactly defect
modes in structures which have a truly infinite cladding. It
thus can handle those extreme situations in which the mode
becomes arbitrarily extended, such as near cutoff, for which
alternative methods either fail completely or become either
inefficient or inaccurate.

While the theory is exact, in the sense that it models geo-
metrically infinite structures, any numerical implementation
introduces some truncation errors. The most significant po-
tential source of error lies in the numerical evaluation of the
Brillouin zone integration. Recall from Sec. III that if the
integral is approximated by the trapezoidal rule, then we es-
sentially model a structure with missing or altered cylinders
placed periodically along the central row. Thus, although the
method theoretically models an infinite structure, our nu-
merical implementation is apparently very similar to a super-
cell technique. Nevertheless, our modeled structure is truly
infinite in the ±ŷ directions, and thus the computation time
increases only linearly with the artificial periodN in the x̂
direction. In contrast, the computation time for supercell
methods must increase at least quadratically, since the matri-
ces scale in size quadratically withN. Recall also that the
convergence study of Sec. IV B found the root to be very
stable when varying not only the number of integration
points, but also the integration rule; Gaussian quadrature has
irregularly spaced points, and so does not model an equiva-
lent supercell structure. Even atl=1.6d, the highest wave-
length studied, a Gaussian rule with 80 points was sufficient
to find the effective index of the fundamental PCF mode to
seven figures of accuracy. We thus conclude that we are
modeling a truly infinite structure.

With the method’s unique capabilities for handling spa-
tially extended modes demonstrated, we plan to apply the
tool to study applications not accessible by other means. In
particular, we intend to use it to study the endlessly single
mode property of PCFs and to clarify the issue concerning
the existence, or otherwise, of a cutoff of the fundamental
mode. We also plan to extend the method to remove the
current restriction of a single defect, allowing us to study
more general defect geometries.
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FIG. 7. Electric field in anEi polarized defect mode for a single
cylinder defect in a square symmetric lattice witha=0.2d and n
=3. Cylinders are placed on the grid of points with integer
coefficients.

FIG. 8. Frequency error versus supercell size, for different num-
bers of plane waves per unit cell, when calculating the mode in Fig.
7 using a supercell.

FIG. 9. Normalized frequencyf of the defect mode if one cyl-
inder in the regular square lattice is reduced to radiusa. The dotted
line indicates the lower edge of the band gapfe. Inset shows a
closeup, indicatingf − fe versusa.
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