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Modeling of defect modes in photonic crystals using the fictitious source superposition method
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We present an exact theory for modeling defect modes in two-dimensional photonic crystals having an
infinite cladding. The method is based on three key concepts, namely, the use of fictitious sources to modify
response fields that allow defects to be introduced, the representation of the defect mode field as a superposi-
tion of solutions of quasiperiodic field problems, and the simplification of the two-dimensional superposition to
a more efficient, one-dimensional average using Bloch mode methods. We demonstrate the accuracy and
efficiency of the method, comparing results obtained using alternative techniques, and then concentrate on its
strengths, particularly in handling difficult problems, such as where a mode is highly extended near cutoff, that
cannot be dealt with in other ways.
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I. INTRODUCTION well justified since real systems are finite. However, these

Photonic crystal$l] (PC9 and photonic crystal fibe(®] methods 'gend not be very efficient sm'ce an over.arch-mg
(PCF3 are structures in which the refractive index dependéﬂ""tm:’m""t'c.al framework, such as Bloch's theorem, is miss-
periodically on position. Many of the exciting light propaga- - Accordingly, the physical size of the systems that can be
tion properties of these structures arise from the existence gfodeled is limited.

photonic band gaps, frequency intervals in which running  Photonic crystal waveguides may be studied also using
wave solutions are not allowed. In this paper, we concerpnethods that fit into neither of the two categories mentioned

ourselves with structures with a two-dimensional plane of2POve. These methods3] make use of the reflection scat-

periodicity. In PCs, the light propagates in this plane, and thé‘rﬁgpﬁqx QQatég(sfrfibséir?r'{'engs'teoﬁggﬁnfacsgmﬁﬁﬁé Trk:losionic
refractive index in the direction orthogonal to this plane is * P P

; ; . : s crystal to an incident plane wave of given frequency, polar-
designed for light confinement in that direction. |_lowever’ization, and direction. The response consists of a number of

for simplicity these structures are often modeled as beingqacteq plane waves at angles given by the grating equa-
uniform in this direction, so that only a two-dimensional cal- o “and an infinite number of evanescent orders. The col-
culation is required. In PCFs the refractive index in the di-ymns ofR,, contain the amplitudes of the reflected waves
rection orthogonal to the plane of periodicity genuinely isgenerated by the respective incoming plane wave orders of
uniform, but in contrast to two-dimensional PCs, the lightynit amplitude. Thus, with this tool, a straight photonic crys-
propagation is not confined to this plane. tal waveguide can be modeled as a conventional waveguide:
Many applications of PCs and PCFs rely on the introducit consists of a uniform medium, sandwiched between two
tion of defects in an otherwise periodic structure: in PCs, linesemi-infinite media, the response of which is completely de-
defects lead to waveguidd8], whereas localized defects termined byR.., and by the separation of the semi-infinite
give rise to resonatorst,5], while in PCFs, a localized de- media. In such calculations the modes are found by applying
fect forms the core of the fibdi6]. These applications re- a phase or resonance condition. Calculations of this type,
quire a photonic band gap to confine the light to these dewhich model a genuinely infinite system, have advantages
fects. Until now, almost all the modeling of PCs or PCFsover conventional methods involving a supercell: they are
with defects has used one of two general methods. The firstot only more elegant, but they are also efficient since the
of these are supercell methods, by which the geometry isalculation ofR., involves the Bloch functions of the infinite
repeated periodically7—9]. This turns a nonperiodic struc- system. They are also particularly well suited to calculations
ture into one with periodicity, so that methods that have beemvhen the modal fields have a large extésiich as occurs
developed for periodic structures, relying principally onclose to modal cutoff since the modeling of these fields
Bloch’s theorem, can be brought to bear. The use of such would require a very large supercell.
procedure is justified when the size of the supercell exceeds By construction, the method described in the previous
the size of any of the features that are to be modeled sincgaragraph applies only to line defects, but not to defects that
otherwise, artificial overlaps are introduced. The secondire localized. In this paper, however, we describe a method
class of methods to deal with periodic structures with defect$or calculating the modes of localized defects in otherwise
model these structures as being of finite exfd®-174 (of- infinite structures, both in PCs and in PCFs. Thditious
ten with the use of appropriate absorbing boundary condisource superpositiofFSS methodshares the advantages
tions to make finite the solution regipnOf course, this is listed above: it is theoretically elegant, analytically tractable,
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and can calculate modes of large spatial extent efficiently. y Q
The latter is important in the study of PCFs, where the prop- i
erties of the fundamental mode at long wavelengths are not :
well understood. The long-wavelength behavior can only be i /a
resolved by the type of method described here.

There are three key ideas involved in the development ; d
and implementation of the FSS method. Tirst is the ap-
plication of fictitious sources which, when introduced into
the interior of any scatterer, allow the field exterior to the
scatterer to be tailored. Here, we exploit a fictitious source,
either to make the scatterer vanish, in that the exterior field is
identical to that if the scatterer was not present, or to modify x
its electromagnetic response so that it mimics the behavior of , ) , )
a scatterer with different size or optical properties. The fic- FIC: 1. Schematic of the geometry with cylinders of radaus
titious source required to modify the response of an indi-2"d refractive indexn”, in a background index”. A defect is
vidual scatterer depends on the field incident upon that scaformed by either removing the central cylinder or changing its ra-
terer. While the calculations are straightforward for adIUS or rgfractlve index; m.ath.ematlcally, this .defecF is modeled .by
problem involving only a single scatterer, the interrelation-considering a perfectly periodic structure and inserting a source into
ships between the fields in an infinite array of scatterers ar§'e central cylindetdotted.
conaplex and make it difficult to solve the field problem di- Il. THEORY
rectly.

This brings us to theecondkey idea, the construction of X . X
the defect mode from a superposition of quasiperiodic field"d introduce the multipole method on which the FSS

solutions for the perfectly periodic structure. For each of thé“e.thOd is _based. Sectio_n B presents the_ P'af?e wave scat-

constituent problzms w)é F:ambed a sou@gin each scat- tering matrice$16,17) which describe a grating with embed-
S ed sources, while Sec. summarizes the calculation o

terer and phase tr;ese quasiperiodically such tQat ded hile Sec. 11 C th lculat f

h . : . 7 the matrix R,, which describes the reflection of a semi-
=Q expliko-Rp) whereR, is the lattice position of scatterer infinite PC. Finally, in Sec. Il D we combine the properties of

p. The defect mode is then formed by a superposition of thgnese two structures to model a periodic structure with
solutions of the periodic structure by integrating with respectygyrces placed along the central row to calculate the modes
to the Bloch vectork, over the first Brillouin zone. The for waveguides and point defects.

superposed solution thus satisfies the relevant wave equation,

the boundary conditions, and is associated with a fictitious A. Preliminaries

source distribution in which scattergrcontains the source Our aim is to model the structure shown in Fig. 1: dielec-
QJez expliko-Rp)dko. This is the key step, with the Bril- tric cylindrical inclusions of radius and refractive index”
louin zone integration entirely eliminating the fictitious in a dielectric background material of indeX, with axes
sources[15] in all but the primary scatterefR,=0). The  aligned with thez axis. These are placed on some regular
remaining source, in the primary scatterer, is thus availabléattice with lattice vector®, ande, and the central cylinder
to modify the response field and, in doing so, to formulatelS €ither removed or altered to form a defect. Since initially
the defect mode. we deal with two-dimensional problems, in which the fields

For the two-dimensional structures that we are considerd'® independent of, we can assume that either the electric

ing, the Brillouin zone integration requires a time consuming®" m;gneti(éEfieId (Ij|e: along thge a>|<is.T'Ir'1hese polarizatior;s
two-dimensional calculation. The efficiency of the calcula-f‘hre elnotet i 6}3 o res{)ek;,:_“\;ﬁ Y. tha ;:_olrgpﬁnent 0

tion can be increased dramatically by reformulating the probboemgiﬁgﬁ? 1€ld 1S denotet, the other fie as na
lem so that only a one-dimensional integration is required. The theory relies on the multipole methfitD,16], which

This reformulation of the problem is tithird key idea, and was developed to model dielectric structures with cylindrical
models the structure as a single diffraction grating with em- P y

bedded quasiperiodically phased fictitious sources, that ipflgigigi.scgmﬁli tglg'ee)r?ﬂgggﬁ;ﬁr{;ﬁdea;(?hﬂ}ﬁgﬁjcsigeId
sandwiched between two semi-infinite photonic crystals tha P P P '

- . . ] . .
are modeled by, [14]. These are crucial to this approach in ssume cylinder Is centered ac'. BecauseV satisfies a

that they encapsulate the second dimension of the Brillouirg—ltalthItZ equation inside and outside the cylinder, we can

zone in their mode structure, eliminating one integration di-Wme’ in cylindrical coordinates; =(r, 6),

We begin with the geometry to be model&8ec. 11 A),

rection, and thus reducing the solution of the problem to _ < _—_— _
require only a one-dimensional Brillouin zone integration. V(d +1) = 2 [AJ(K'T) +BHP (k') e,
In Sec. Il, we formulate the method for two-dimensional I==»

cylinder arrays for both elementary polarizations, and then
outline the generalization to handle out-of-plane configura-
tions required for PCFs. We then discuss the numerical
implementation in Sec. lll, and verify the method in Sec. IV.
In Sec. V, we conclude by considering the challenging caséor r=a and r<a, respectively. Her&k*=kn* denote the

of modeling defect modes that are highly extended. magnitudes of the wave number inside and outside the cyl-

V@+n =2 [k +QHM (K™, (1)

|=—o
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inder. AlsoJ, and Hl(l) denote the Bessel function of the first = YL
kind and the Hankel function of the first kind, respectively. n d =
For convenience the latter is denoted Byfrom this point. WAE[) 57

Also, in what follows, we formulate the problem in a vector- ®\

matrix notation, denoting such quantities by boldface sym- Q o Qe
bols, e.g.Al=[Al] represents a vector of coefficients. Physi-
cally, the coefficientsAl represent the standing wave field
incident on the cylinderB! is the field outgoing from the
cylinder, Cl is that inside the cylinder, incoming from the
cylinder’s boundary, an@’ represents a fictitious source in-
side the cylinder. The last is used to tailor the fields outside

FIG. 2. A grating is formed by a row of cylinders, with their
axes aligned along the axis (out of the plang Such gratings are
stacked to model the desired structure in Fig. 1. Here the cylinders
also contain sources as shown.

the cylinder, so that it disappears or mimics a different cyl- Al =¢gldp, Bl =g,

inder. To achieve this we consider the relationships between

the coefficients inside and outside the cylinder, that result Ci=gwidc, Qi =daidQ

from the continuity conditions of the fields at the cylinder’s ’ '

boundary. They can be written where the omission of the indgxrefers to the central cylin-

oA A der(j=0).
B'=RAI+TQ, The form of the field expansion around the central cylin-
der is determined by a relation between the singular and

Ci=T'Al + li’QJ', (2 nonsingular parts of the field, known as the Rayleigh iden-

. ) . tity. To derive this we apply Green'’s theorem in the unit cell,
~ These equations express the outgoing figlds a reflec- ging the fieldv and the quasiperiodic Green’s function,
tion of the incoming fieldA’ and a transmission of the inter- \yhich satisfies

nal sourceQ!, and similarly forC!: that is, the matriceR, T,

R’, and T’ are essentially Fresnel coefficients in the cylin-

drical harmonic basis. Because the local field expansion in
cylindrical coordinates is well suited to the cylindrical shape

of the inclusions, these matrices are diagonal. The secong cylindrical coordinates[r=(r,6)] the quasiperiodic
equation is used only for field reconstruction, and is not mengeen’s function can be written

tioned again. Explicit forms for the elements of these matri-

©

(V2+13)G(r) = >, &(r —j dx)e@oid,

j=—

ces are given in Ref$10,18. P
We now exploit Eqs(2) to illustrate the first key idea, by G(r)=- 4 > @eldHy(k|r = j dX|)
removing a single cylinder. The condition on the external j=—=
fields for the cylinder to disappear BI=0, i.e., there is no ) L
outgoing field sourced by this cylinder. From E@), we :—I—Ho(k+r) _r > SJ,(kr)e'’. (3)
deduce that the required source is 4 L

Qi=-TIRA, A second form of the Green’s function in E¢B), which

: o _— : _applies whem <d, is obtained using Graf's addition theorem
which depends on the incident fiekl. As noted in the In and introduces thattice sumg14] defined by

troduction, the direct extension of this idea to modeling a
defect mode in an infinite lattice is very difficult, if not pos- o
sible, given the complex interactions between the scatterers. S = H(k'jd)[eid + (- 1)lea0d],
Instead, we develop the mode through a superposition of i=1
quasiperiodic fictitious sourcesec. Il D as was outlined
earlier. characterizing the contributions to each multipole order due
o to the phased array of multipole sources. It is this particular
B. The grating field problem form of the Green’s functior(3) that ultimately yields the
Recalling the third key idea discussed in Sec. |, we nowfield (Rayleigh identity, with the first termHy(k™r) referring
model a cylinder grating, with cylinders placed along the to an outgoing wave generated by the primary souice
axis with periodd (Fig. 2), and having embedded sources.=0), and the second term, comprising a sum of terms
From Bloch’s theorem, the periodicity of the grating allows  J,(k*r)exp(il §) weighted by the lattice sums, and represent-
us to apply the quasiperiodicity condition ing an incident field that is generated by all other sources.
o i We now apply Green's theorem to derive the field expan-
VA + dR) =€), sion in the vicinity of the primary cylinder, denoting &/the
where oy is the lateral component of the Bloch vectky.  boundary of central cylinder and Iy the boundary of a unit
This quasiperiodicity implies that the multipole expansioncell of the grating, both traversed counterclockwise. Apply-
coefficients(1) around thejth cylinder of the grating are ing Green’s theorem t&¥(r;) and G(r —r,) in the regionR
given by betweenC andD gives
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© oo

N e _
V(r)=3£C{G(r —rl)&—m(rl)—v(rl)&—m(r —rl)}drl b= 2 2 Jopfip* Japfipdi ke, (8)

p=—x |=—

G AYA
+3§ {vm)g(r ~ry)-G(r - rﬂg(rp}drl where
D 1 1 ngp - X;l/zellﬁp, ‘J(_)lp — XF—)l/Z(_ l)le—llﬂp.

=+l 4

¢ @ Then, substituting Eq$5) and(8) into Eq.(4), we obtain the
for anyr €R. We obtain an expression f@(r -r,) fromthe  total field expansion
form given in Eq.(3), together with a further application of ol el
Graf’s addition theorem. Then, using the multipole expan- v(r) :EI BH(K'r)e 9+; J(KNEY S B
sion (1) around the central cylinder for, we evaluate m

. . . + 2 2 Gopfrp + Jop ) Ak, 9)

_ . I
lc= 2 BH(KNE '+ X J(Kne'"’ > S_yBy (5 i
I=—o0 I=—o0 m=—o0 valid for r sufficiently close to the central cylinder. The ex-
. ) pansion in Eq(9) comprises three terms, an outgoing field
for r sufficiently close to the central cylinder. ~ sourced at the primary cylinder, an incident field that is due
To evaluate the integral oveéd, we decompose the field 4 4| other cylinders, and the incoming plane waves. Equat-

above and below the grating into plane waves of the correcf,q this with the local expansiofl) for the central cylinder
quasiperiodicity. That is, (j=0) and comparing the coefficients of terrd¥’, we de-
duce the Rayleigh identity

V() = 2 xp e (FL e + fe o), * -
= AI: E SmBm+ 2 (Jalpfzp""](;lpf;p)-

m=—o p=—
_ “U2acX( £+ mixe) + f= eixey whereS,,=S_,» That is, in the vicinity of the central cylin-
V()= 20 xp e (T80 + fo 67, der, the nonsingular part of the fielde., that part of the field

= that is not outgoing from that cylindeis due to all other
for y>a andy<-a, respectively, where cylinders and incident plane waves. In matrix notation, this
reduces to
2w + - s
ap=ag+ Fp:k sin 6, A =SB+ Jof; + Jof5. (10

As we have seen abové; represents the quasiperiodic
ey field that is outgoing from the grating. We can derive an
Xp=V(K)" = ap =K cos, alternative form for this by using the plane wave form of the

denote the direction sines and cosines of the relevant diffrac(—zreen,S functior(r -r,) from Eq. (). Maintaining the field

tion orders. The plane wave coefficierffsand f, represent point (r) erendence in Qartesian exponential form, and
the incoming plane waves above and below the grating refansforming the source poifit; =(ry, 6,)] dependent SXpo-
spectively, whilef] andf;, represent the outward-going plane nen'glal terms into cylindrical harmon|c[$.e.., J(K'ry)e" "], .
waves. The factop(gl’z is a convenient normalizatiofL6] the mtegraIICl may then be evalgated to ylglq the outgoing
which ensures that each propagating plane wave order carri@&ne waves in terms of the multipole coefficieBtsThat is,
unit energy flux. ©

The evalua_ttion of, requires the plane wave form of the |C=g >3 X—1/28i(ap>¢xpy)K$ B, (11)
Green’s function(3) d P P

p=— |=—o0

15 where the+ and — signs correspond tg>a andy<-a,
G(r)=— > —e XD, (6)  respectively, and
2id g=—= Xq

2 ' 2 .
K6p| - aXBIIZe—II Hp' Kapl - aX;llZ(— 1)|e|| Gp.

Then, substituting Eqg7) and(11) into Eq. (4) gives

Using this, the left and right sides of the integral aldbg
cancel due to quasiperiodicity and we obtain

|~ = ~L2diapX(f- dxpY + 5 glxpy), 7 o o )
D p:z—oc Xp ( 1p 2p ) (7) V(r) = 2 Xp1/2e|ap><(flpe—|)(py+ f;rpelxpy)
p:—OC
namely, the plane wave field incident upon the grating. To © o
proceed further, we need to convert this form to the cylindri- + > > X;1/2KgpIBIei(ap>¢xpy)_
cal harmonic(multipole) basis, deriving p=—o |=—o0
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As in Eg. (9), we have expressed the field as a sum of
contributions from fields incident on the grating, and fields
outgoing from the cylinders. However, in this expression, we
have converted the latter into plane waves udfig rather

than converting the former into cylindrical harmonic func- R
tions usingJs. When this expansion is compared with the BN [
plane wave expansion above or below the grating, one of the ¢ ® * ® ¢
terms in the first sum cancels. Equating coefficients of the fff ‘fz_
plane wave orders then gives R.."
f-{p = f;p + E K8p|B| y
m=—co
% FIG. 3. Modeled structure, consisting of a sourced grating be-
fop=f1p+ > KopiBl» tween two semi-infinit_e s_tgcks, desc_ribed by reflection r_natrﬁli’gs
f=—co The lower stack has infinite extent in the downward direction and
] . ) its reflection is described bR, which relatesf, andf}. The ap-
or, In matrix notation, propriate source removes the dotted cylinders along the central row,

fI - f; + KSB, thus leading to a waveguide.
f = f +KB (12 Q5Q denote the contributions to the upward and downward
271 o= going plane wave fields due to the embedded quasiperiodic
the first expressing that the upward field above the gratingrray of source®. In fact, because the grating has up-down
(f]) is due to the upward field from belo@,) and the up- symmetry, it can be shown that
ward field generated by the gratii ;B). def def

Expressiong10) and(12) relate the different field expan- Re=Ry=Rg T5=Ty=To. (15)
sions outside the cylinders, and incorporate the geometrical ) ) o
arrangement of the cylinders. When this is combined withAS We shall see in Sec. II D, this symmetry simplifies the
the multipole relations of Eq2), which incorporate the ma- formulation and decreases the computation time.
terial propertiedi.e., radius and optical constapht the in-
dividual cylinders, we derive the reflection and transmission
characteristics of the grating with embedded sources. By We now consider a stack of the gratings discussed in Sec.
substituting EC](lO) into Eq(2) we derive an expression for 11 B, but without sources. In this way we can create the two-
the outgoing multipole field coefficien® as a function of ~dimensional, semi-infinite array of cylinders shown in the
the “forcing terms,” namely, the fictitious sourc@sand the ~ gray regions in the Fig. 3. Between each layer, we represent

C. Reflection by a stack

incident plane wave field§ andf;. That is, the field by a plane wave expansion with upwdft) and
R R R downward(f”) components that we combine into a vector
B=G(RJ;f; +RILf 3+ TQ), (13) -
where <f+ ) :
G=(1- FAQS)‘l, Putting Q=0 in Eq. (14) and rearranging these expressions

allows us to relate the fields on either side of the layer in
terms of atransfer matrix7 [14]. The eigenvalue problem
for this matrix is equivalent to finding the Bloch modes of

andl denotes the identity matrix. Finally, by combining Egs.
(13) and(12), we deduce

fi =R+ Tefs +QiQ, the bulk structure; specifically, if
f~ f~
f5=Rof5 + Tof1 + QuQ, (14 7'<f+> =M<f+)'
where then the coefficient§* determine a Bloch mode with Bloch
R S - S vector k,, whose scalar products with the lattice vectors
Ro=KoGRJo,  Ro=KoGRJy, {e;,e;} are given by
R ~ ikoer — dagd  aiko€r —
Ti=1+KiGRJ; T;=1+K;GRJj, elott=ews, efr=p.
The downward propagating Bloch modes are combined to
Qi = Kng Qs = Kng. form the columns of the partitioned matrix
Here, the matriceRy and T are the plane wave reflec- (F_)_
tion and transmission scattering matrices, while the terms F*
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We are interested in determining the reflection properties f2=R.[(Ro— To)f*+ Q3Q],
of a semi-infinite PC, to model the structure in Fig. 3. We see
such a crystal extending infinitely in the/direction in gray ~ while Eq.(13) becomes
in the lower half of this figure. Just above this stack, the . . .
upward propagating wavi is a reflection of the downward B=G(RJf*+RIGFI+TQ).
propagating wave,. The reflection condition is that there
are no Bloch modes propagating upward fropy—The field
should then be composed only of downward propagating B=2Q (18)
Bloch modes. That is, '

Hence

( 5 ) (F‘) where
= c_, R
fa) \F' Z =Z(k ag) = G{RI1 - R.(Rg+ T T 'R..QF
wherec_ are the amplitudes of these Bloch modes. Eliminat- +RIFTL-R.AR-TITR.OZ+T
ing c_, we deduce o1~ R=(Ro=To)I"R-Qo *+ T}-
=R We have thus expressed the outgoing field around the central
27 ey cylinder in terms of the fictitious source it contains. Note that
whereR! =F*(F")~%. We can similarly find the reflection ma- Z incorporates the effects of scattering by the infinite number
trix R for the stack extending upward; indeed it can beOf surrounding cylinders and depends on the transverse wave

shown that, by up-down symmetry, numberk and ag=k,,, the x component of the Bloch vector.
det The other component of the Bloch vector is included through
RI=R_=R.. (16) Re..
A detailed description of this procedure was given earlier 2. One-dimensional defect (waveguide) modes

[14], and we do not discuss it further here. Earlier we mentioned that the construction of a defect

mode requires the superposition of all quasiperiodic solu-
tions, necessitating an integration over the first Brillouin
1. Solution of the inhomogeneous problem zone, a result we detail shortly. Before doing so, however,
we demonstrate that it is possible to proceed directly from
(18) to model a one-dimensional defect mode, i.e., a wave-
hguide mode, without the need for any integration.

D. Formulation for defect modes

We now determine the outgoing fie(@) in terms of the
fictitious sourcegQ) in Fig. 3. In Sec. Il B, we derived Eg.
(14) to describe the scattering properties of the grating wit

embedded sources in terms of the plane wave fields abov% To do this, we seB=0, as in Sec. Il A, thereby setting the
and below the grating, while in Sec. Il C we deduced the, sponsgoutgoing field from the central cylinder to zero.

reflection conditions imposed by the semi-infinite stacks org:ggﬁ,sa I{hcey (I)Irnedrﬁrssgﬁn(g:(s;F;gzqoodv'gzlIzoeh;?ledtﬁg%gg;g to
these coefficients, i.e., ' y

cylinder but all cylinders of the grating. We thus derive a
;=Rif,, fI=R;f;. mode of the waveguide structu(€ig. 3) characterized by a

i ) nontrivial solution of
By combining these results we derive

- s +o+ + ZQ =0. (19)
f1 = RL(Rofy + Tof 2 + QoQ),

For a fixed frequencyi.e., a givenk), we may vary thex

f5=RL(Rof5 + Tof1 + QoQ). (17) component of the Bloch vectogg,, so thatZ becomes sin-
) ) gular. That is,
Although Eqgs(17) can be solved simultaneously, in general,
it is convenient to exploit the up-down symmetry, thereby defz(k,ap)]=0.
realizing a substantial increase in the computational effi-
ciency of the method. We define The sourc& for which the outgoing field vanishes around
each grating cylinder is found from the null space of
fS=2(f +f3), fa=1(f-f)), Z(k, a), from which the mode can be reconstructed.
Similarly we can model a waveguide obtained by altering
0= %(Qg +Qp), = %(Qg -Qy), the central row of“cylinde_rs,_ e.g., varying the_ir optical con-
stants or their radii. To mimic the altered cylinders, the ex-
B+ JB=g-3t ternal fields must satisfy the equivalent of Eg), but with-
0—vo 0 0—vo 0-

out the fictitious source, for the new cylinder radius and
Employing the results of up-down symmetry mentioned inindex, namely,
the previous two subsections, E(7) is replaced by the A
symmetrized and antisymmetrized forms B=R,A. (20

= R.[(Ro+ To)f*+QgQ], Combining Eq.(20) with Egs.(2) and(18), we obtain
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[(1 _élé—l)z +|§1|§_l'IA']Q=O. cluded in the solution of the field problem. For notational
convenience, we combine these into a single vector; for in-
Again, a is varied to make this matrix singular, and the null stance we replaca by
space produce® which defines the mode. (AE>
3. Two-dimensional defect modes AX
To model a mode of a point defect, we must employ thepartitioned into two blocks containing a vector of electric
second key idea, namely, its construction from the Superpcﬂem coefficientsAE and a vector of magnetic field coeffi-
sition of the solutions of all quasiperiodic field problems cientsAX. Here we have introduced =Z,H, whereZ, is the
formed by integrating ovet, within the first Brillouin zone.  vacuum impedance, 6 andK have the same units. Simi-
The superposed solution thus satisfies the Helmholtz equéarly, all of the above matrices double in dimension; for in-
tion and the boundary conditionsvhich depend only on stance, in block matrix notation, the Toeplitz matrix of lattice
k and not onay) and is associated with an averaged fic-Sums,S, is replaced by
titious source distribution which, in cylinderj, is )
Q[ ™3, expliapjd)dag. This is the crucial step in the method, ( )

=7/

with the Brillouin zone integration maintaining the source in 0 S

the central cylinde(j =0) which is independent oy, while Rather than being diagonal, the boundary condition ma-
eliminating all the other sources due to the Bloch factortrices of (2) are now composed of diagonal blocks; for in-

gold. -
. . . stanceR is replaced by
The superposed solution, corresponding to a single source
(Fig. ) in the central cylinder, thus follows by integrating (@EE @EK>
B(k, ao) = Z(k,ap)Q(K) (21) RKE RKK /'
over the first Brillouin zone with the averaging operator where each submatrix is diagonal, in the case of circular
q (™ cylinders. Their exact forms are given in Ref40,18§. It
— dag. should also be noted that the magnitude of the in-plane com-
27 ) _ra ponent of the wave vector is now given by
We thus derive Kt = Vn2k2 - 32,
B(k) = Z(KQ(K), (22)  In general, the matriceREK andRKE do not vanish and thus

. the electric and magnetic fields problems are coupled. In the
where the overbar denotes an averaged quantity. fin-ol incid h b&FK and RKE
We may now proceed, as in the waveguide case, to finGg2S€ Of in-plane incidence, however, b&R" andR™ van-
ish, and thus all matrices in the formulation are of block

the modes of a defect structure with the central cylinder re=> X .
moved or altered, by solving diagonal form, leading to decouplefl, and H; polarized

solutions.
ZQ=0, From this point on, the formulation is almost identical to

that of Sec. Il B onward, the only exception being the rela-

or tions resulting from up-down symmetry; because the mag-

fon s netic field is a pseudovector, it is reversed when we reflect in
[((1-RRTHZ+RRTTIQ=0, the xz plane. Thus Eq(15) and(16) become

respectively. The free space wave numkeor equivalently R;=YR{Y, T;=YT{Y, RL=YR.Y,

the normalized frequency
where

f=kd/(2m), (23 1o

is varied to make the relevant matrix singular. Again, the null Y = (O _ 1>,

space determine®, from which the fields may be recon-

structed. written as a block matrix partitioned into electric and mag-

netic plane wave coefficients.
The search routine for defect modes in three-dimensional
problems is slightly different, being tailored to the practice
Thus far, we have assumed an in-plane solution for eitheusually adopted for PCFs. Whereas, in the two-dimensional
E, or H, polarization, so only one of the fields hag @om-  case we varied the free space wave nuniydor a PCF we
ponent, which is constant iz. However, in the three- fix k and vary the propagation constator equivalently the
dimensional case, as occurs when solving propagation proteffective index
lems for PCFs, the fields have a@*? dependence. This _
- H Nett = B/k’
causes the components of the two fields to couple at the
cylindrical interfaces and requires that both quantities be into make the relevant matrix singular.

E. Three-dimensional fields
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IIl. IMPLEMENTATION

The theory of Sec. Il was implemented numerically to
model defects in PCs and PCFs. First this requires the infi-
nite dimensional matrices to be truncated; that is, the cylin-
drical harmonic index and plane wave order indgx which
range from <o to o, are restricted to

-NysIsN; -NyspsN,. (24

Central to the method presented in Sec. Il B was the calcu-
lation of the matrix

5-0.5

—(1_pco-1
G=(1-RS™. (25) FIG. 4. Squared modulus of the electric field inppolarized
However. the matri)d—IiS is poorly conditioned for nu- waveguide mode calculated with the FSS method, plotted over one
merical i,nversion. By studying the asymptotic behavior 0]cperiod in thex direction. Circles at the top indicate the cylinders.

~ . The corresponding result obtained by RSaftidsoLvediffers by a
the elements oR andsS, it can be seen that for the purposes .,avimum of 1 part in 18
of calculation, Eq(25) should be replaced by

=0.2d, surrounded by air. One row of cylinders is removed
to form a waveguide. At a normalized frequency fef0.4
[see Eq(23)], the FSS method found &, polarized mode
with Bloch componentyy=1.825 28(Fig. 4). The value of

ap obtained by another code, developed by Boté&tnal.
[13,2Q, that combines a multipole calculation with a Bloch
mode analysis, agreed to the six figures shown. This value of
apwas used as the input for a supercell calculation, using the
RSoft moduleBandsoLve[21], which returned a normalized
frequency of 0.400 06. The relative discrepancy<di.02%6

is mainly due to the number of plane waves used in the
supercell calculation, namely 32256; increasing this to
64x 512 reduced the discrepancy 100.00%%. In contrast,

our calculation obtained results accurate to 11 significant fig-
ures using multipole series truncation Nf=6 and plane

G=C[CY1-RS)CT Y,

where( is the diagonal matrix defined by
I q

C":<k+a) i

2
This allows us to calculatg (k, ag) numerically.

To obtainz we approximate the Brillouin averaging by a
numerical integration

Z(k) =~ >, W|Z(k,§x|) ,
1=0

where(w;, %) are chosen according to some integration rule

We generally use Gaussian quadratures, which are wel|ave series truncation &.=3.
suited to the behavior of the integrand. However, assume P
momentarily that the trapezoidal rule withpoints is used to

B. PCF modes

replace the integral; then we leave, in effect, sources in every
Nth cylinder. Therefore, although the theory we have pre- The FSS method has been used to find modes in PCFs,
sented deals with a truly infinite structure, the structure weysing the parameter,=9, N,=4, andN=80. The wave-
then ultimately model has evefyth cylinder along the cen- |ength was chosen small enough that the modes were well
tral row missing or altered. Nevertheless, unlike a supercelyonfined. This allowed them to be compared to those of a
calculation, the method can calculate defect modes with exinite structure, calculated using other multipole software de-

tremely large spatial extent, as we discuss in Sec. VI.
Our theory has been implementedNBTHEMATICA [19],

with the lattice sums calculated inFORTRAN routine linked

to the MATHEMATICA routines using thevATHLINK toolkit

veloped by Kuhlmey22,23. The latter was also used to plot
the modes.

In all cases the PCF structure consisted of air holes in
silica, the latter having a refractive index of 1.45. Figure 5

[19]. This implementation is thus a successful prototype, buhows the fundamental modes of an infinite structure and a

not one that has been optimized for efficiency. All calcula-

finite structure with seven rings, both with hole radias

tions reported here were undertaken using a 2.4 GHz Pen-0 124 and at wavelengtih =0.1331. The effective indices

tium 4 workstation running under Microsoft Windows XP,
with timings referring to this system.

IV. VERIFICATION

A. Waveguide mode

In Sec. Il D 2 we investigated a waveguide mode in order

were found to be 1.449 226 451 3 for the infinite structure
and 1.449 226 452 0110713 for the finite structure. The
loss of the finite structure mode, which is proportional to
Im(ngg), is very low. This indicates that the mode is well
confined, explaining the good agreement between the effec-
tive indices found.

Figure 6 shows the same comparison for the second

to verify numerically the fictitious sources concept on whichmode, but with hole radiua=0.25 and at a wavelength
the method relies. Consider a square lattice structure, cor=0.3d. The effective indices were now 1.436 222 for the in-

sisting of dielectric cylinders of index=3 and radiusa

finite structure and 1.436 225+61078 for the finite struc-
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FIG. 6. As in Fig. 5 but for the second mode aad0.25, \
=0.3d, andn=1.5.

FIG. 5. Thez component of the Poynting vectst<E XH of  technique by calculating a poorly confined defect mode near
the fundamental mode in an infinite structutep) and a finite  the edge of the band gap. Because of the large spatial extent
structure with seven ringébottom for a=0.121, A=0.1331, and  of the mode, such a calculation using existing methods can-
n=1.5. not achieve the same accuracy.

We consider the same square lattice as that from which
ture. The imaginary part of the latter is larger than for thethe waveguide structure was obtained. The central cylinder
fundamental mode, and the difference in the real parts of theadius is reduced to 0.7 With the parametersl;=6, N,
effective indices between is correspondingly greater. =3, and a Gaussian integration wiN=40 points, the FSS

To ensure that the parameters chosen above are sufficiemgethod took less than 3 min to find a defect mode at nor-
we varied them and observe the stabilityngf (Table ). All malized frequency 0.321 035 154 @5ig. 7). A convergence
but the final calculation used the trapezoidal rule for the nustudy demonstrated that the result is accurate to the 11 fig-
merical integration; the last employed Gaussian quadraturesres shown.

As we discuss further in Sec. VI, the stability of the root
confirms that the method is accurately modeling an infinite TABLE I. Effective indexne for the structure in Fig. 5 as a
structure. function of the numerical parametels andNj, [Eq. (24)], and the

Due to the high symmetry of the geometry, the fundamennumber of integration pointsl.
tal PCF mode studied is doubly degenerate. Our numericat

results are consistent with this: the effective indices obtained Np N Neff

for the modes differ only slightlyby roughly 3x ;0‘12), 4 80 1 449226451342261
which is smaller than the accuracy of the calculation.
4 80 1.4492264513

3 4 80 1.449226452014651
V. SPATIALLY EXTENDED MODES 9 3 80 1.449226451340456
The results in Sec. IV B, while validating the FSS 9 2 80 1.449226451345897
method, do not demonstrate the unique advantage that it a$ 4 40 1.449226451343528
fords, namely, in handling the difficult cases in which meth-g 4 120 1.449226451340771
ods which assume a finite structure, either explicitly or im-g 4 80 1.449226451340257

plicitly, fail. Accordingly, we show the strength of the
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¢ f

a
0.182 0.186 019

FIG. 9. Normalized frequency of the defect mode if one cyl-
inder in the regular square lattice is reduced to radiushe dotted
line indicates the lower edge of the band gip Inset shows a
closeup, indicating —f, versusa.

-10 -5 0 5 10 . N - S
niques or embedding in the model an explicit or implicit
FIG. 7. Electric field in arE, polarized defect mode for a single assumption of a finite structure. The method that we have
cylinder defect in a square symmetric lattice wak0.2d andn  outlined here is different in that it can model exactly defect
=3. Cylinders are placed on the grid of points with integer modes in structures which have a truly infinite cladding. It
coefficients. thus can handle those extreme situations in which the mode
becomes arbitrarily extended, such as near cutoff, for which

The mode can also be found using an RSofASOLVE alternative methods either fail completely or become either
g inefficient or inaccurate.

[21] calculation in comparable.time. However, th_e Same ac* yhile the theory is exact, in the sense that it models geo-
curacy cannot be achieved; Fig. 8 shows th(_e difference berhetrically infinite structures, any numerical implementation
tween the frequency of the supercell calculatloq and the fre|'ntroduces some truncation errors. The most significant po-
quency of the mode, as a function of supercell size. The threg, ia| source of error lies in the numerical evaluation of the
curves correspond to 8, 12, and 24 plane waves per unit C&fjjiouin zone integration. Recall from Sec. Il that if the
of the original lattice. It is clear that a very large supercell ISintegral is approximated by the trapezoidal rule, then we es-
required because of the spatial extent of the mode. sentially model a structure with missing or altered cylinders
Because the bulk of the computation time for the FSSplaced periodically along the central row. Thus, although the
method involves calculating, the hole radius can easily be method theoretically models an infinite structure, our nu-
varied at fixed frequency. For example, Fig. 9 shows thenerical implementation is apparently very similar to a super-
frequency of the above defect mode versus hole radius. U$€ll technique. Nevertheless, our modeled structure is truly
ing N;=6, N,=3, andN=80, the 60 data points for the figure infinite in the #y directions, and thus the computation time

took less than 7 min to produce. increases only linearly with the artificial peridd in the X
direction. In contrast, the computation time for supercell
VI. CONCLUSIONS methods must increase at least quadratically, since the matri-

ces scale in size quadratically witlh. Recall also that the

To date, all m_ethods for computlng defect mo‘?'es haV‘?:onvergence study of Sec. IV B found the root to be very
been approximations, relying either on perturbation techgisple when varying not only the number of integration
points, but also the integration rule; Gaussian quadrature has
Convergence of Supercell Method irregularly spaced points, and so does not model an equiva-
— T 7] 8planewaves lent supercell structure. Even at=1.6d, the highest wave-

© 12 plane waves length studied, a Gaussian rule with 80 points was sufficient
[ -—-- to find the effective index of the fundamental PCF mode to
L 24 plane waves seven figures of accuracy. We thus conclude that we are
- modeling a truly infinite structure.

With the method’s unique capabilities for handling spa-
tially extended modes demonstrated, we plan to apply the
i tool to study applications not accessible by other means. In
L particular, we intend to use it to study the endlessly single
mode property of PCFs and to clarify the issue concerning
the existence, or otherwise, of a cutoff of the fundamental
- mode. We also plan to extend the method to remove the

current restriction of a single defect, allowing us to study

more general defect geometries.

T T T LA L B B B R |
5 6 7 8 9 10 11 12 13 14 15
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