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An improved theoretical model is built to discuss the second-harmonic generation �SHG� with high
efficiency in a microcavity. Meanwhile, the configuration of the cavity is optimized according to it.
It is found that when the length of the cavity leads to a � phase mismatch between fundamental and
second-harmonic wave, the cavity reaches its optimum working condition. The SHG efficiency has
been calculated for a 10.6 �m laser in a 106.3 �m �111� GaAs cavity. © 2011 American Institute
of Physics. �doi:10.1063/1.3544056�

Second-harmonic generation �SHG� is always a focus
because of the applications in coherent green and blue lasers,
high density information storage, ophthalmology, etc.1 Lots
of nonbirefringent materials, such as semiconductors2 and
organic molecules,3 have large second-order susceptibility.
However, it is still a technological challenge to realize phase
matching or quasi-phase-matching �QPM� in most of the ex-
isting materials.

To overcome these limitations and to enhance the con-
version efficiency, the development of non-phase-matching
method has been reported.4,5 In 1966, Ashkin et al. pointed
out that a cavity could improve the SHG efficiency6 due to
the enhancement of fundamental wave �FW� by resonance,
which is proved by experiments.7,8 In their calculation, the
concrete nonlinear process is simplified as a loss of FW to
satisfy the energy conservation. Though ignoring details of
SHG, it fitted the experiment well.9 In 1995, Rosencher et al.
built an approximate theory for SHG in Fabry-Pérot cavity,
considering the specific processes,10 but it is only suitable for
low pump power condition and violates energy conservation
when high conversion efficiency is achieved. This is because
the amplitude of the FW in the cavity is calculated separately
without considering the energy conversion from FW to the
second-harmonic wave �SHW�.

In order to discuss the high efficiency scenario, a more
accurate theory is needed, in which both the concrete process
and energy conservation are contained. Here, we considered
a resonant cavity for FW, in which the SHW resonates
weakly or even passes the working media only twice. This
assumption leads to a relatively weak SHW compared to FW,
so that an undepleted-pump approximation can be applied,11

assuming a uniform amplitude of the FW of the cavity.12 To
guarantee the energy conversion, one can simply impose it as
a condition by letting the energy output from the cavity equal
to the input.

As demonstrated in Fig. 1, the cavity for SHG is a piece
of nonlinear media M with dielectric mirrors F1 and F2 on

both parallel sides. The length L of M meets the resonance
condition for FW. The refractive index of M is nF for FW
and nS for SHW. The FW is normally incident from the F1;
the SHW is emitted from F2. The reflectance and transmit-
tance of F1 for FW are RF and TF, respectively. The reflec-
tance of F1 for the SHW should be near 100% to avoid SHW
output from F1. Meanwhile, the reflectance of F2 for FW
should be near 100% to avoid leak of FW from F2 and for
SHW the transmittance and reflectance of F2 are TS and RS,
respectively. RS should be small to promise the weak reso-
nance of SHW.

As an optimal case, the efficiency of the cavity is as-
sumed to be 100%. The amplitude of the incident FW and
that of the reflected FW from F1 are A1 and �RFA1, respec-
tively. The amplitude of FW transmitted the medium and
reflected by F2 is −�TF

�nF /n1AF, where AF is the amplitude
of FW in the cavity. �The minus sign results from the �
phase shift, which is chosen for convenience without losing
generality.� Because of the resonance of FW, A1 and AF are
both real numbers. Once FW is incident into the cavity, nei-
ther transmission nor reflection is allowed. To avoid reflec-
tion, the destructive interference between the FW reflected
by F1 and the one reflected by F2 is utilized, as described in
Eq. �1�,
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FIG. 1. The schematic structure of the resonance cavity for SHG with high
efficiency. �F1 and F2 are optical dielectric mirrors; M is the working media;
A1 and A2 stand for the amplitudes of the FW and SHW out of the cavity,
respectively; AF means the amplitude of the FW; and ALS and ARS are the
amplitudes of SHW at the interface of F1 and M and the interface of M and
F2, respectively�.
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�TF
�nF/n1AF − �RFA1 = 0. �1�

The conservation of energy is expressed in Eq. �2�. ASR
is the amplitude of SHW at the interface of M and F2. Here,

2�0cn1	A1	2 = 2�0cn2	�TS
�nS/n2ASR	2. �2�

The amplitude of the SHW can be calculated via Eq. �3�;
ES is the electric field intensity of the SHW and def f is the
effective value of second-order susceptibility. Here,

�2ES −
nS

2

c2

�2ES

�t2 =
1

�0c2

�2

�t2 �2�0def f�EF�2� . �3�

Considering the standing wave condition for FW, the
solution can be expressed as Eq. �4�,

ES = �AF
2
exp�i�2kFz − 2�t�� + exp�i�− 2kFz − 2�t���

+ AS1 exp�i�kSz − 2�t�� + AS2 exp�i�− kSz − 2�t�� ,

�4�

where

� = 2def f/��nF�2 − �nS�2� . �5�

The boundary condition for SHW at the interface of F1
and M is shown in Eq. �6a�, and the interface of F2 and M is
described by Eq. �6b�. The minus signs also come from the �
phase shift. Here,

AS1 + �AF
2 = − �AS2 + �AF

2� , �6a�

AS2e−ikSL + �AF
2e−i2kFL = − �RS�AS1eikSL + �AF

2ei2kFL� .

�6b�

Because of the standing wave condition for FW, each phase
item can be multiplied by exp�i2nkF ·L��=1�.

Combining Eqs. �1�, �2�, and �6�, one obtains Eqs. �7�,

�RF

TF
= � 1

	A1	
TFnF

RF
�n1TSnS

·
1

�
· 
 ei2�kL − �RS

ei2�kL − 2ei�kL + 1

�1/2

,

	ASR	 =
TFnF

RFTSnS
·

1

�
· 
 ei2�kL − �RS

ei2�kL − 2ei�kL + 1

 . �7�

Here, �k=2kF−kS and 	ASR	 is the amplitude of the SHW
at the right interface. The result indicates that the higher
second-order susceptibility results in weaker FW to achieve
high efficiency.

Now it is necessary to discuss the amplitudes of FW and
SHW because of the limitation imposed by the laser damage
threshold.

Because AF is proportional to �RF /TF when A1 is a con-
stant, it is enough to discuss the value of �RF /TF as the first
equation in Eq. �7� shows, and the picture is shown in Fig. 2.
AF reaches its minimum when �kL= �2m+1�� �m is an in-
teger�. This is because the SHW travels a length of L in the
cavity with phase mismatch of �2m+1��; reflected by F1

with a � shift, it will travel a length of L again. This process
is very similar to that of QPM in superlattices and the only
difference is the direction of the electric field of SHW alter-
nates rather than the orientation of nonlinear susceptibility.
Meanwhile, larger RS leads to weaker AF under the double
resonance with �2m+1�� phase mismatching. Yet, large RS

will lead to the collapse of the above approximation.

Equation �2� shows that when A1 is constant, the smaller
the value of RS, the weaker ASR will be. Hence, as RS in-
creases, AF and ASR exhibit different trends.

When c=2m�, the value of Eq. �7� diverges, although
this is also a double resonance model. This is because the
phase mismatch equates to 2m� and the amplitude of SHW
is equal to zero besides the interface of M and F2.

One may be confused by the absence of boundary con-
dition for FW. In a strict theory, the energy conversion
should be met automatically with right boundary conditions.
Yet, they are not compatible with each other under
undepleted-pump approximation. Considering strict bound-
ary condition, one gets the result of Rosencher. When one
loosens the boundary conditions, two things should be kept
in mind. One is that the amplitude of the FW is determined
by the energy conversion equation; the other is that the SHW
wave is relatively weak, so that it does not influence much
the phase of the FW, which is very close to the phase in a
cavity without the nonlinear process �as will be discussed
later�.

The above discussion assumes that the power and wave-
length of FW equal to the theoretical values and promise
100% efficiency. A more general case in which the wave-
length and amplitude of the incident FW deviate from the
ideal value should be considered.

For convenience, all the symbols below are generated by
adding an apostrophe on their counterparts without changing
meanings.

Then FW in the cavity is

EF� = 	AF� 	exp�i�kF� · x + ��� − 	AF� 	exp�− i�kF� · x − � − 2	�� .

�8�

Here, 	=kF� ·L and �=arctan
�RF · sin�2	� / �1
−�RF · cos�2	���. As mentioned above, all these phase pa-
rameters of FW are determined by a Fabry-Pérot cavity with-
out considering nonlinear interactions.

The FW reflected by the cavity Ar� is described by Eq.
�9�,

Ar� = �RF	A1�	 − �TF
�nF/n1	AF� 	 
 exp�i�� + 2	�� . �9�

Repeating the similar process of Eqs. �3�–�5�, �6a�, and
�6b�, the amplitude of the SHW is expressed by Eq. �10�.
Here, RS is set to be 0. Here,

FIG. 2. �Color online� The map of �RF /TF as a function of RS and �kL���.
�RF and TF are the reflectance and transmittance of F1, RS is the reflectance
of F2, L is the length of the cavity, and �k is the wave vector mismatch�.
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	ASR� 	 = �	AF� 	2 
 	ei�4	−�k�·L� − 1 − ei4	 + ei�k�·L	 . �10�

Conservation of energy can be expressed by Eq. �11�,

2�0cn1	A1�	
2 = 2�0cnS	ASR� 	2 + 2�0cn1	Ar�	

2. �11�

From Eqs. �9�–�11�, the efficiency � is described as
Eq. �12�,13

� + RF 
 �1 − 2
�4 �

�
 
 �
cos�2	 + �� +

��


 
 �
� = 1,

�12�

where �= �ei�4	−�k�·L�−1−ei4	+ei�k�·L� / �1−2e−i�k·L

+e−i2�k·L� and 
= 	A1� /A1	.
Now, let us take �111� GaAs �nF=3.2919, nS=3.3168,

and def f =10−10 m /V12� as working medium to calculate the
parameters of the cavity for a 10.6 �m laser. The length of
the cavity equals p�F /2nF, where p is the number of FW
antinodes in it. In order to select a working point close to the
near QPM region, p is set to be 66, corresponding to a length
of 106.3 �m.

Theoretically, this cavity can convert a 7.5 MW /cm2

FW into SHW with high efficiency when RF=0.99 and RS
=0. In experiment, the bandwidth of pump must be consid-
ered. Then the efficiency of the 106.3 �m GaAs cavity as a
function of RF and wavelength of a 7.5 MW /cm2 laser is
calculated and demonstrated in Fig. 3, which behavior is
similar to the numerical results of Klemens and Feinman,14

although the boundary conditions are not exactly the same.
When considering the bandwidth of the ultrafast laser, the
efficiency can be estimated as 75% for 1 ns pulse, 9.5% for
100 ps, 1.0% for 10 ps, and 0.13% for 1 ps.

Other effects, such as the third-harmonic generation, the
sum frequency of �+�� and �−�� waves, the intensity-
dependent refractive index, etc., which may also affect the
efficiency of the cavity, are not fully considered here.

Now, let us review the boundary condition for FW. Ac-
cording to the above calculation, AF has the order of
107 V /m, while � is in the order of 10−9 m /V, so AS has an
order of 105 V /m. The feedback from the SHW to FW has
the order of 103 V /m, which is too small to affect the phase
of FW at the boundary.

In conclusion, improvements have been made to the
structure of the cavity for SHG; especially the properties of
the dielectric mirrors for effective SHG are discussed. A
more accurate model is provided to determine the param-
eters, the intensities of FW and SHW. This model also illus-
trates the variations of the amplitude of FW and SHW as
functions of the parameters of the cavity and so provides a
guideline to determine the best working point. Finally, GaAs
is taken as an example to determine the necessary parameters
and the efficiency.
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