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oping better parallel assembly schemes for
nanowire integration (29).
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Transparent, Conductive Carbon
Nanotube Films
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Arthur F. Hebard,1 Andrew G. Rinzler1‡

We describe a simple process for the fabrication of ultrathin, transparent,
optically homogeneous, electrically conducting films of pure single-walled
carbon nanotubes and the transfer of those films to various substrates. For
equivalent sheet resistance, the films exhibit optical transmittance com-
parable to that of commercial indium tin oxide in the visible spectrum, but
far superior transmittance in the technologically relevant 2- to 5-micro-
meter infrared spectral band. These characteristics indicate broad applica-
bility of the films for electrical coupling in photonic devices. In an example
application, the films are used to construct an electric field–activated optical
modulator, which constitutes an optical analog to the nanotube-based field
effect transistor.

Transparent electrical conductors pervade
modern technologies, providing a critical
component of video displays, video and
still-image recorders, solar cells, lasers, op-
tical communication devices, and solid-
state lighting [for recent reviews, see (1,
2)]. We describe a class of transparent con-
ducting material based on continuous films
of pure single-walled carbon nanotubes
(SWNTs). These intrinsic electrical con-
ductors are formed into uniform, optically
homogeneous films of controllable thick-
ness that are thin enough to be transparent
over technologically relevant regions of the

electromagnetic spectrum. Use of the trans-
parent SWNT films (t-SWNTs) for current
injection into p-GaN and for blue light–
emitting GaN/InGaN diodes (light extract-
ed through the films) has recently been
demonstrated, together with patterning of
the t-SWNTs by standard microlitho-
graphic techniques (3). Here we elaborate on
the film production process, transfer to sub-
strates, film morphology, and electrical and op-
tical properties. We also demonstrate use of the
t-SWNTs as the active element of an optical
modulator. This constitutes an optical analog to
the SWNT-based field-effect transistor (FET),
modulating light transmission through the films
by application of electric fields.

Other methods of transparent nano-
tube film production include drop-drying
from solvent, airbrushing, and Langmuir-
Blodgett deposition. These alternatives,
however, present severe limitations in
terms of the film quality or production

efficiency (4 ). Our t-SWNT production
process is quite simple, comprising three
steps: (i) vacuum-filtering a dilute, surfac-
tant-based suspension of purified nano-
tubes onto a filtration membrane (forming
the homogeneous film on the membrane);
(ii) washing away the surfactant with puri-
fied water; and (iii) dissolving the filtration
membrane in solvent (4 ). Multiple tech-
niques for transfer of the film to the desired
substrate have been developed. The films can
be made free-standing over appreciable aper-
tures (�1 cm2) by making the transfer to a
substrate with a hole, over which the film is laid
before membrane dissolution (5, 6).

This filtration method has several ad-
vantages: (i) Homogeneity of the films is
guaranteed by the process itself. As the
nanotubes accumulate, they generate a fil-
ter cake that acts to impede the permeation
rate. If a region becomes thicker, the local
permeation rate and associated deposition
rate slow down, allowing thinner regions to
catch up. (ii) Because of their extreme ri-
gidity (for objects of such small diameters),
the nanotubes have long persistence
lengths. They consequently tend to lie
straight, gaining maximal overlap and in-
terpenetration within the film as they accu-
mulate (the curvature observed in Fig. 1D
is likely caused by van der Waals forces
dominating as the surfactant is washed
away). This yields maximal electrical con-
ductivity and mechanical integrity through-
out the films. (iii) The film thickness is
readily controlled, with nanoscale preci-
sion, by the nanotube concentration and
volume of the suspension filtered.

Examples of the transparent films are
shown in Fig. 1. Films of thickness 50 and
150 nm, as measured by atomic force mi-
croscopy (AFM) at step edges, display a
corresponding increase in optical density
(Fig. 1A). Films as large as 10 cm in diam-
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eter have been fabricated (Fig. 1B), but
they could readily be made larger still. Film
size is ultimately limited only by the di-
mensions of the filtration membranes,
which are available in rolls as large as 30
cm by 10 m (Millipore). The t-SWNTs are
highly flexible (Fig. 1C), with no observed
degradation in their conductance after re-
peated flexure. Figure 1D shows the AFM
image of a transparent nanotube film sur-
face. The t-SWNTs have nanoscale poros-
ity; however, for thicknesses greater than
�50 nm there are few straight, unobstruct-
ed paths through the network.

Figure 2 shows the transmittance spec-
trum for a 240-nm-thick, free-standing film
over a broad spectral range and that for a
50-nm-thick film (on quartz) over a more
limited range. The nanotubes are charge
transfer– doped (acceptor-doped) by the ni-
tric acid treatment used in their purification
(7, 8). This depletes electrons from va-
lence-band van Hove singularities (see in-
set), reducing the rate of electronic transi-
tions responsible for the absorption bands
labeled S1, S2, and M1 (9). Heating the
films to 600°C in inert gas desorbs the
dopant, yielding the curves in which these
absorption intensities are maximized (black
curves). The transmittance going toward
the far-infrared (IR) is limited by free car-
rier absorption (7 ). Such assignment is con-
sistent with the lower transmittance in the
mid-IR for the unbaked (hole-doped) film
and with the increased transmittance there
accompanying the loss of free carriers upon
baking (dedoping). The as-prepared 50-nm
film has transmittance greater than 70%
over the visible part of the spectrum. In the
near-IR at 2 �m, this film has transmittance
greater than 90%. Use of Beer’s law to
scale the transmittance of the (unbaked)
240-nm film to a thickness of 50 nm indi-
cates that the transmittance should remain
�90% to just beyond 5 �m. Hence, such a
film can be anticipated to have a window
of �90% transmittance in a 2- to 5-�m
spectral band.

The sheet resistance of the as-prepared
50-nm film was measured to be 30 ohm/
square (resistivity 1.5 � 10�4 ohm�cm).
Given the lack of index-matching antire-
flection coatings, this is a remarkably high
transmittance for such low sheet resistance.
For comparison purposes, the state-of-the-
art mixed-oxide spinel NixCox–1O3/4 is
more resistive (resistivity 3 � 10�3

ohm�cm) with a lower transmittance of 78%
at 5 �m, achieved only after correcting for
reflection losses, which is necessary be-
cause of the high refractive index of the
material (10). Dedoped (baked) films are
more transmissive further into the IR at the
expense of some transmittance in the visi-
ble, and have resistivity about an order of

magnitude higher than that of as-prepared,
unbaked films. Note that the as-prepared
films are not maximally doped, hence the
30 ohm/square sheet resistance does not
represent a lower limit.

For transparent conductors, the plasma
frequency marks the onset of high IR reflec-
tion. The dependence of the plasma frequen-
cy on carrier density, which also plays a
critical role in the material’s conductivity,
results in a trade-off between conductivity
and IR transparency. Much of the extensive
research effort in traditional transparent con-
ducting oxides focuses on changing the oxy-
gen content or impurity doping during growth
to modify the carrier concentration. The win-
dow of transparency is thereby optimized to

the target spectral region while minimizing
any trade-off in decreased conductivity. For
the nanotubes, the ease of chemical charge-
transfer doping to obtain such transparency-
versus-conductivity optimization (via expo-
sure of the nanotubes to vapors of appropriate
chemicals) provides an additional advantage
for the t-SWNTs. Moreover, charge transport
in these t-SWNTs is p-type, unlike the far
more common transparent conducting oxides
[e.g., indium tin oxide (ITO)], which are
n-type. This should permit new complemen-
tary applications and alternative photonic
coupling schemes (3).

Chemical charge-transfer doping, which
adds or removes electrons from the
nanotubes, shifts their Fermi levels. Such

Fig. 1. Transparent SWNT
films. (A) Films of the in-
dicated thickness on
quartz substrates. (B) A
large, 80-nm-thick film
on a sapphire substrate
10 cm in diameter. (C)
Flexed film on a Mylar
sheet. (D) AFM image of
a 150-nm-thick t-SWNT
film surface (color scale:
black to bright yellow, 30
nm). The text in (A) to (C)
lies behind the films.

Fig. 2. Transmittance spectra
for two t-SWNT films (doped
and dedoped) of thickness 50
nm (on quartz) and 240 nm
(free-standing). The curves
with greater transmittance
(upper left) are for the 50-nm
film. Gray curves denote the
charge-transfer, hole-doped
films; black curves denote
those films after dedoping. In-
set shows the DOS for a repre-
sentative (12,8) semiconduct-
ing nanotube (solid curve) and
a superimposed (10,10) metal-
lic nanotube (dashed curve)
within a tight binding model.
Arrows between singularities
represent electronic transitions
responsible for the S1, S2, and
M1 absorption bands. Deple-
tion of the first singularity (filled electronic states in gray) results in the loss of the corresponding
electronic transition (dashed arrow) and loss of the associated S1 absorption intensity. The t-SWNT
films consist of a mixture of semiconducting and metallic nanotubes with a distribution of
diameters and chiral angles. The (n,m) index dependence of the spacing between van Hove
singularities modulates the transition energies to yield the broad absorption bands seen in the
spectra (also labeled S1, S2, and M1). Bundling of the nanotubes further broadens the observed
absorption bands.
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Fermi level shifts need not be induced
chemically; they can also be induced by
electric fields. In a nanotube-based FET
(NFET), a semiconducting nanotube is
electrically coupled to source and drain
terminals while the field between the nano-
tube and an isolated gate electrode shifts
the nanotube Fermi level, modulating its
carrier concentration (11–14 ). In an elec-
trolyte-gated NFET, the gate electrode is
provided by an electrolyte in contact with a
remote electrode (15, 16 ). Applying a po-
tential between the nanotube (via the
source/drain terminals) and the remote
electrode establishes an electric double lay-
er consisting of the excess charge drawn
onto the nanotube from the source/drain
terminals compensated by the near-lying
cloud of oppositely charged electrolyte
ions. As long as the gate voltage is kept
below potentials at which redox reactions
occur, the ionic cloud of the electric double
layer behaves like an exceptionally near-
lying gate electrode.

Figure 3 shows a device schematic that
constitutes an optical analog to the electro-
lyte-gated NFET—that is, it modulates
light transmission through the device as a
function of the electrolyte “gate” potential
(17 ). The device consists of two adjacent
t-SWNT films (each 150 nm thick) depos-
ited onto a sapphire substrate. For electrical
contact, each film has palladium metal (18)
sputtered across one end. A U-shaped rub-
ber gasket between the bottom portion of
the substrate and a glass plate forms a
reservoir into which the non–metal-coated
end of each t-SWNT film extends (a clamp
holding the plates together is not shown).
While they are positioned horizontally, the
films are saturated with the ionic liquid (IL)
1-ethyl-3-methylimidazolium bis(trifluoro-
methylsulfonyl)imide. When the assembly
is tipped up to lie vertically, excess IL
drains into the reservoir. Because the IL
wets the nanotubes, a thin layer, bridged by
the IL drained into the reservoir, remains
associated with each film. Monochromatic
light from the sample beam of a Perkin-
Elmer Lamba 900 spectrophotometer is
passed through only one of the SWNT
films. The second film provides a “gating”
counterelectrode with nanoscale surface
area comparable to that of the optically
probed film. A counterelectrode with
smaller surface area would limit the capac-
itance, decreasing the charging efficiency
of the probed film. The density of electron-
ic states (DOS) for the nanotubes (Fig. 2,
inset) illustrates the idea behind the device.
A negative potential applied to the gating
(counterelectrode) film depletes electrons
from the van Hove singularity associated

with the S1 electronic transitions for the
probed film. This results in a loss of the
corresponding absorption and increased op-
tical transmission through the device at the
associated wavelength.

Figure 4 shows the optical transmittance
for the optical NFET (O-NFET) illustrated
in Fig. 3 as a function of voltage applied
between the films. At the S1 absorbance
maximum (1676 nm), the transmittance is
modulated from 44% to 92% between
“gate” (counterelectrode) potentials of
�1.8 V (19–23). Further in the IR at 3080
nm, the modulation is from 97% to 75%
over the same voltage range. Relative to the
changes in the S1, S2, and M1 bands,
transmittance changes at wavelengths
greater than �2000 nm occur in the oppo-
site direction with voltage. Negative coun-
terelectrode potentials draw excess holes
onto the probed film, increasing the free
carrier absorption and reducing the trans-
mission, whereas positive counterelectrode
potentials reduce the hole concentration,
decreasing the free carrier absorption and
increasing the transmission. These modula-
tions in the transmittance are fully revers-
ible, with no degradation observed after
hundreds of cycles (24 ).

For the S1, S2, and M1 absorbance
bands, the SWNT DOS (Fig. 2, inset)
would suggest a symmetry between posi-
tive and negative applied potentials. Nega-
tive gate potentials should deplete the
initial transition-state (valence band) singu-
larities, decreasing the absorption intensi-
ties. Positive gate potentials should fill the
terminal-state (conduction band) singulari-
ties. With fewer terminal states available

Fig. 3. Optical analog to the electrolyte-gated
NFET (O-NFET).

Fig. 4. (A) Spectral transmittance of the O-NFET as a function of applied
counterelectrode “gate” voltage. (B) Voltage-dependent transmittance at the S1
(1676 nm), S2 (932 nm), and M1 (656 nm) absorbances. (C) Four-probe resistivity
of the t-SWNT film versus the same counterelectrode “gate” voltages used in the
spectral measurements.
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for the transition, this should also decrease
the absorption intensities. The correspond-
ing behavior in an electronic NFET has the
Fermi level lying in the gap and the con-
ductance increasing for both positive and
negative gate potentials, in which case the
device is said to be ambipolar. The zero
voltage curve for the O-NFET does not
yield the maximum absorption intensities
for the S1, S2, and M1 bands, as would be
expected for the intrinsic Fermi level lying
in the gap. Rather, positive gate voltages
increase those absorption intensities,
whereas negative gate voltages decrease
those intensities. This p-doped–like behav-
ior (which has the Fermi level of the semi-
conducting nanotubes underlying the S1
valence singularity at 0 V) appears despite
the films having been dedoped (baked)
before saturation of the t-SWNT films with
the ionic liquid. One possible explana-
tion for this seemingly intrinsic p-type
behavior is equilibration of the chemical
potentials among the nanotubes, the Pd
electrodes, and the ionic liquid. Alterna-
tively, impurities in the ionic liquid may
lead to chemical charge-transfer doping of
the nanotubes.

The simple model provided by the DOS
(Fig. 2, inset) further suggests that the
changes in the S1, S2, and M1 absorbance
intensities should emerge sequentially as
the Fermi level progresses sequentially
through the corresponding valence band
singularities. That is, changes in S1 should
be complete before changes in S2 begin,
followed (once the latter has been fully
saturated) by changes in M1. As seen in
Fig. 4B, which plots the transmittance at
the S1, S2, and M1 absorbance peaks
against the gate potentials, the changes in
transmittance there clearly do not arise se-
quentially. This apparent inconsistency is
explained by the fact that the nanotubes are
bundled together in hexagonal close pack-
ing that excludes the large ionic liquid ions
from the interiors of the bundles. With
applied potential, ions of the double layer
attract electronic countercharges to the out-
ermost nanotubes of the bundles; these
charges in turn partially screen the interior
nanotubes from the ionic fields. Hence, for
a given potential under the electrostatic
equilibrium established, the Fermi level for
nanotubes on the exterior of a bundle can
lie below the M1 valence singularity while
that for the interior nanotubes can still lie
within the S1 valence singularity. Howev-
er, the low carrier density of the nanotubes
makes their screening less than perfect, so
that the S1 singularity— even for the inte-
rior nanotubes— can be nearly fully deplet-
ed, as indicated by the near-complete loss
of the S1 absorption at the counterelectrode
potential of –1.8 V.

We have also measured the four-probe
resistivity of the t-SWNT films, while they
are gated by the counterelectrode, at the
potentials used in the optical transmittance
measurements (25). When resistivity is plot-
ted against gate voltage (Fig. 4C), the change in
resistivity is consistent with a diminished carri-
er concentration as the Fermi level is gated
toward the gap of the semiconducting nano-
tubes with increasing positive gate voltage. The
saturation beyond 1.4 V corresponds to the
semiconducting nanotubes no longer contribut-
ing to transport through the film. This behavior
is also consistent with the saturation appearing
in the S1 optical absorption intensity between
1.4 and 1.8 V; once the Fermi level for all the
semiconducting nanotubes lies in the gap, the
absorbance has already been maximized.

The simultaneous high transparency and
good electrical conductivity of the t-
SWNTs can be understood on the basis of
three properties of the nanotubes: (i) low
carrier density; (ii) high electronic mobili-
ty; and (iii) the suppression of light absorp-
tion and reflection for polarization compo-
nents perpendicular to the nanotube axis,
which reduces the optical density of the
disordered SWNT films for unpolarized in-
cident light. Such films are likely to find
application as transparent conductors in the
IR, where our measurements show them to
have exceptional properties. It is too early
to tell if they can compete in the visible part
of the spectrum against ITO. Given their
flexibility, however (ITO is comparatively
brittle), they seem likely to at least find
niche applications in, e.g., flexible/foldable
displays. Devices like our O-NFET optical
modulator may find application in space-
craft thermal control and military camou-
flage countermeasures (26).
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