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From classical state swapping to quantum teleportation

N. David Mermin
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501
(Received 29 May 2001; published 14 December 2001

The quantum teleportation protocol is extracted directly out of a standard classical circuit that exchanges the
states of two qubits using only controlledT gates. This construction of teleportation from a classically
transparent circuit generalizes straightforwardlydtstate systems.
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Quantum teleportatiofil] transfers the quantum state of a | ) y)— | x@y)| y)—| x@y)| X)—| y)| X). 3
two-state systenAlice’s qubit, the sourceto another re-
mote two-state systeriBob’s qubit, the destinatiorwithout ~ This process makes perfect sense for classical bits, as well as
any direct dynamical coupling between the two qubits. To ddor quantum superpositions of classical bits, to which it ex-
this trick Alice, who in general does not herself know thetends by linearity.
form of the state to be transferred, must possess a third qubit If the state| ¢) in Fig. 1 is taken to bg 0), then the
(the ancilla that initially is maximally entangled with Bob’s controlledNOT gate on the left acts as the identity, so the
qubit in the two-qubit state classical state-swapping circuit simplifies to

5100+ 1/ 1) & % X |0

Depending on the outcomes of appropriate measurements on
the source and ancilla, Alice can send Bob instructions that

enable him to transform the state of the destination into that ’ O> _| X NI>
originally possessed by the source. The term “teleportation”

is apt because the measurements that provide the information
to recreate the state at the destination obliterate all traces of it

from the source. , _If the upper qubitsource in Fig. 2 belongs to Alice and the

If two qubits are aIIowe.d to interact, however, then t.he'rlower qubit(destination to Bob, then this special case of the
states can be exchanged in a much less subtle way, with tQ;E‘enerr:ll classical state-swapping circuit provides a consider-
help of three controlledior (CNO_T) gat_es[Z]. The_ action of ably simpler version of what happens in quantum teleporta-
Fh‘?se gates can pe understood in entirely classical terms. Thﬁ%n. But the classical circuit in Fig. 2 is not teleportation,
is illustrated in Fig. 1. because it requires direct dynamical couplings between the

qubits—couplings that teleportation manages to avoid by the
|\|I> ] X X | |¢> use of an entangled pair of qubits and the classical commu-
nication of quantum measurement outcomes.

This paper illuminates the way in which quantum me-
chanics obviates the need for the direct dynamical couplings
in Fig. 2, showing explicitly how this intuitive classical state-

’ q)> X N}‘> swapping circuit leads directly to the transference of a state

between uncoupled qubits that constitute quantum teleporta-
tion. It is possible to eliminate all direct couplings between
the source and the destination because quantum qubits have a
richer range of logical capabilities than do classical bits.
Only one indirect dynamical coupling between Alice and
Bob survives this process of elimination as the initial inter-
action necessary to entangle Alice’s ancilla with the Bob’s
destination qubit. All other direct dynamical coupling is re-
placed by classical communication.

The key to relate quantum teleportation to the apparently

uite different way of exchanging a general state in Fig. 2 is
OLY)= 3] yex), 2 ?o replace the CO%II’OHGNOT ggtegon ?he left of Fig. 2 V\?ith
an elementary classical circuit, only slightly more elaborate
where @ denotes addition modulo 2. |f#)=|x) and| ¢)  than that of Fig. 1, that changes the direct coupling of the
=|y), then the action of the three successive gates in Fig. tontrollednoOT into four couplings, all acting only through
is (reading the figure from left to right the intermediary of an unaltered ancillary qubit.

FIG. 2.

FIG. 1.

That the classicdl3] circuit in Fig. 1 does indeed exchange
states is readily confirmed by letting it act on a general com
putational basis statex)| y). If x is the valug(0 or 1) of the
control bit andy is the value of the target bit, then the action
of a single controlledtoT gate can be compactly summa-
rized as
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I emphasize that Fig. 5 is merely a cumbersome way of
FIG. 3. constructing the classical circuit of Fig. 2, with the direct
coupling on the left of Fig. 2 replaced by the four gates on
the left, mediated by an ancillary qubit whose state is unal-
To confirm this identity note that the four gates on the righttered, and the direct coupling on the right replaced by the
act on the eight computational basis stdtes y)| z) (with ~ three gates on the right, which by exploiting the quantum-
| x) the input state on the top leftz) on the bottom, an¢ly) ~ MechanicaH gates make it possible to interchange control

in the middle as follows[4]: and target qubits. o _ . .
To further convert the circuit of Fig. 5 into teleportation,

we must first eliminate the unacceptable leftmost coupling

[y

XYY Z)— | X)y®x)|Z)—|X) |y D X)| 20y D X) between the source and the ancilla. This can be done by
taking the statd y) of the ancilla to beH| 0), which the
—[Iy)zey®x)—[x)[y)zex). 4 magic of quantum mechanics—this is the second place

where it appears—allows to be invariant under klwer op-

Thus the circuit on the right of Fig. 3 does indeed act aration. Because
indicated on the left, performing a controllehT operation XH| 0)=H] 0) 6)
on the qubits associated with the tégontro) and bottom '

(targe wires, while acting as the identity on the qubit asso-the leftmost controlleck gate in Fig. 5 always acts as the

ciated with the middle wire. . identity, and can be removed from the circuit. So Fig. 5
Quantum mechanics first appears when we interchanggecomes

control and target in the controlledsT gate on the right of
Fig. 2, using the quantum circuit identity

W) H o)

= = o) —{H] X b
|

FIG. 4. ’0> 1X] FI%l ] Z] ‘\If>

To see that Fig. 6 represents quantum-teleportation note

This follows from the fact that the unitary, self-inverse, Had-Nat We can aiso remove the final Hadamard transformation
on the upper wire in Fig. 6, provided we change the final

amarq operatorl—l=1/\/§(aX+a_Z) takes eigenstates X state of the qubit associated with that wire frgm) to
= oy into eigenstates of = o, with corresponding eigenval- H=1 0)=H| 0)=| x). Because the remaining Hadamard
ues, and vice versa gate on the upper wire commutes with the controhed-
gate that immediately precedes it on the lower two wires, we
may also exchange the order of these two gates. The result is

H 100+ 1), [Dez(0-11), 6 v H "

together with the fact that controlled-gate has the same |
action regardless of which qubit is the target and which the’ > ﬂ l’ |X>

control [5]. The utility of this interchange emerges below.

So if we introduce an ancilla in a stgtg), to be specified
in a moment, we can replace the two gates in Fig. 2, with the‘ 0> l, X |\|I>
equivalent circuits of Figs. 3 and 4, to get FIG. 7.
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This is precisely the reversible quantum-teleportation circuithe controlledX gate immediately preceding it comes from
described by Brassard, Braunstein, and CKBEC) [6]. We  the last of the four controlled- gates on the right of Fig. 3.
have thus made a direct passage from the classical circuit goth these interactions can be replaced by classical commu-
Fig. 2, which requires coupling between source and destinanication of measurement results from Alice to Bob, by mov-
tion to swap their states, to the BBC quantum-teleportationng the measurements to the earlier stage of the process men-
circuit of Fig. 7, which, as reviewed below, can be furthertioned above, which it is possible to do for the following
modified to remove all remaining coupling. reason.

| repeat BBC's description of the connection between the  Quite generally the effect of a controlled unitary operation
circuit of Fig. 7 and teleportation, to indicate what has be-on any number of qubits followed by a measurement of the

come of the couplings originally present in Fig. 2 and tocontrol qubit is unaltered if the measurement of the control
show that the four controlledoT gates arising from the qubit precedes the controlled operatidi®]

classical expansion in Fig. 3 of the first controlledT gate
in Fig. 2 now play roles in three distinct stages of the quan- m m
tum teleportation procedd].

The controlledNoT gate on the left in Fig. 7, along with
the Hadamard gate immediately to its left, used to eliminate
the fourth controlledNoT gate from Fig. 3, serve to turn the
state of the ancilla and destination into the maximally en-
tangled state 1/2(|0)|0)+|1)|1)). After these two gates FIG. 9.
have acted, Alice keeps the ancilla and Bob takes the destj- ) ) .
nation to a faraway place. Only after this does Alice need td1€r€ the heavy horizontal wire represeftsadditional qu-

acquire the source, in the stdt&), which may or may not bits, andU represents a unitary transformation acting on any
be known to her. ’ ' or all of those qubits, controlled by the single qubit repre-

The effect of the next controllesoT gate and Hadamard S€nted by the light wire. _ _
gate of Fig. 7 on the source and ancilla, both in Alice’s The measurement anq the .controlled-unltary operation
possession, is to transform unitarily the four mutually or-COMMute because an arbitrary input state) of the N+1
thogonal maximally entangled states of the Bell bf8Jsnto ~ AuPIts is necessarily of the form
the four computational basis states . If Alice’s two
qubits were tc? be measured in th§c>c|>r)r/1>putational basis after | W)=a| 0)] Po)+b[ 1)] dy), ()
the action of the first four gates, the measurement could, 2 9 ) i
therefore, be viewed as a coherent two-qubit measurement fjere(al*+|b[*=1, [0) and| 1) are computational basis
the Bell basis, taking place immediately after the first twoStates of the control qubit, arjdb,) and| &) are normal-
gates[9].

ized (but in general nonorthogonaktates of the otheN

Such measurements in the computational basis, which af@/Pits. An immediate measurement on the control qubit takes
the third and final place where quantum mechanics enters tHe? ) into | 0)] (D0>2W'th probability |al?, or into | 1)] &)
process, can be introduced, though initially at the wrongith probability[b| [11]. In the first case, subsequent appli-
stage of the process, by noting that in the final state on th&ation of a controlledd gate has no further effect; in the
right of Fig. 7. Alice’s two qubits are each in the pure stateSecond case it produces the steoU| &;).
| x), completely disentangled from Bob's. As a result, the ©On the other hand an immediate application of the
state of Bob's qubit is entirely unaffected if Alice measurescontrolledy operation take$ W) into
each of her qubits. So we can safely add two measurements
to Fig. 7 without disrupting the transfer of}) from Alice’s a| 0) Do) +b| 1)U[ d4) 8

qubit to Bob's, . .
and a subsequent measurement of the control qubit takes this

10> or | 1) state into| 0)| @) with probability|a|?, or | 1)U| &) with
0/ or |1 probability |b|2. Thus the two output states are the same and
occur with the same probabilities, regardless of the order in
@_ ‘0> or | 1> which the measurement and controllddsperations are per-
formed.
Figure 9 allows Fig. 8 to be rewritten as

W

X A
FIG. 8, "2

Not only do these measurements occur too late in thj
process, but there also remain in Fig. 8 two other interaction 0
between Alice’s qubit or her ancilla and Bob’s, besides the
controlledNOT gate that originally entangles her ancilla with |0>
his destination. The controlled-gate on the right comes
directly from the controlled gate on the right of Fig. 2, and FIG. 10.

10) or 1)

0 or [1)
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which shifts the actual measurements to the position of the
hypothetical measurements mentioned above. Since the \|I> X — | 0>
controlledX or controlledZ gates in Fig. 10 now follow a
measurement of the control bit, their action is identical to
applying theX or Z to the target qubit if and only if the
outcome of the corresponding measurement is 1; i.e., the | ‘
controlled operation can be executed locally by Bob depend- O> X \|I>
ing on what Alice tells him about the outcomes of the two
measurements she made on her own qubits.

To summarize, we can look at the teleportation protocoland
of Fig. 10, and ask what became of the original three cou-
plings in the general classical state-swapping protocol of Fig.
1. The coupling on the left of Fig. 1 vanished by virtue of the
initial choice| 0) for the state of the destinatidhottom wire
of Fig. 10. The middle coupling of Fig. 1 survives in the
three controlledvoT gates coupled to the ancillaniddle =
wire) in Fig. 10[12]. Two of the three controlledioT gates
that remain do indeed provide links from Alice’'s qubits to

FIG. 11.

1
the destination. Bqt one gaten the left of Fig. 10 operates @ @
only to create the initial entanglement of the ancilla with the
destination, while the other gaten the righj operates only FIG. 12.

through Alice’s telling Bob, depending on the result of her i i ,
measurement on the ancilla, whether or not to apply the Ve generalize the Hadamard transformatibon a single
transformatiorX to the destinatiofil3]. The coupling on the qubit to the quantum Fourier transfoffon a singled-state
right of Fig. 1 survives as the transformatid@grapplied to the system
destination or not by Bob depending on what Alice tells him
about the result of her measurement on the source. 1

So you can take the BBC circuit of Fig. 7 and look back Fly)—— 2 e2mizyld| z), (11)
to its classical ancestrgFig. 1) or forward to conventional Vd Z
teleportation(Fig. 10, seeing the same controllesT gates
play entirely different roles, depending on which way you
want to view the circuit, rather like an optical illusion or a
piece of kinetic sculpture. Depending on how you put the
punctuation marks into a sequence of operations, you can get 1
a process that is either entirely classical or deeply quantum Fhily)— —= > e 2mizyld| z), (12)
mechanical. Vd

This view of teleportation as a quantum-mechanical de-
construction of a trivial classical state-swapping circuit gen-
eralizes readily from qubits td-state systemg&udits. If we
are dealing with al-valued classical register, we can gener-
alize the controlledvoT gate to the controlled bit rotation

and its inverse

Note thatF| 0)=F'| 0) is invariant under an arbitrary bit
rotation so that

[This is the generalization of E¢6) from qubits to quditd.
where © now denotes addition moduld. This extends by A maximally entangled state is prepared by
linearity to a unitary operation on quantutrstate systems,
which is only self-inverse whed=2. In the general case the
inverse is

1
<cX><F®1>|0>|0>=ﬁ§ | 2)| 2). (14)

X [ ) yy=|x)yOx), 0=xy<d, (100 An appropriate generalization tod-state systems of
controllede, operation is

where© denotes subtraction modutb The classical circuits '
of Figs. 2 and 3 thus become cZ:| x)| y)—e 2™V x| y), (15
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which remains symmetric in control and target qubits and =1t
has the inverse ’ > IEI |X>
i it
cZ"[ )| y)— &™) x)| ). 1 |0y {F] X %
In the above definitions afX, cX', ¢z, cZ', the state on
the left is the control and the state on the right is the target. i+ it
More generally, in the relations below, letX);; denote aX ’0> Ill X |\|f>
operation in which staté is the control and statgis the FIG. 14
target, and letk); denote a Fourier transform acting on state T
i
One easily verifies that where
| x)=F|0)=F'| 0). (20)
(0X) 1A F) o= (F)o(CZ) 1 (17) One can go from this to the generalization of Fig. 10

and, therefore,

10D, 1),...

cX1o=(F)2(cZ)1AF1),, (18)

[0), 1)

so
[

(XN 12= (F)o(€Z") 1o F1) = (F)o(cZ")a(FN)2, (19 FIG. 15,
which has the circuit representatidgthe generalization of
Fig. 4) [14], since the remark10], that measurement of several control
qubits commutes with multiqubit controlled operations, ap-
+ + plies equally well tod-state systems even whehis not a

power of 2.

The teleportation circuit of Fig. 15 fod-state systems
neatly encapsulates the protocol for teleportihgtate sys-
tems spelled out in the original teleportation pajddr along

with its relation to the protocol of Fig. 10 for teleporting
qubits.

FIG. 13.
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| 0)| 0), | 0) 1), |1)]0), |1)| 1), as the identity of the the state of the top wire is0) then neither of theioT opera-
state of the control qubiindicated by a black dot in Fig.)is tions act on the middle wire so the two lower self-inverse
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circuit diagrams operations on the left act first while in equa-
tions operations on the right act first.



