
PHYSICAL REVIEW A, VOLUME 65, 012320
From classical state swapping to quantum teleportation
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~Received 29 May 2001; published 14 December 2001!

The quantum teleportation protocol is extracted directly out of a standard classical circuit that exchanges the
states of two qubits using only controlled-NOT gates. This construction of teleportation from a classically
transparent circuit generalizes straightforwardly tod-state systems.
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Quantum teleportation@1# transfers the quantum state of
two-state system~Alice’s qubit, the source! to another re-
mote two-state system~Bob’s qubit, the destination! without
any direct dynamical coupling between the two qubits. To
this trick Alice, who in general does not herself know t
form of the state to be transferred, must possess a third q
~the ancilla! that initially is maximally entangled with Bob’s
qubit in the two-qubit state

1

&
~ u 0&u 0&1u 1&u 1&). ~1!

Depending on the outcomes of appropriate measuremen
the source and ancilla, Alice can send Bob instructions
enable him to transform the state of the destination into
originally possessed by the source. The term ‘‘teleportatio
is apt because the measurements that provide the inform
to recreate the state at the destination obliterate all traces
from the source.

If two qubits are allowed to interact, however, then th
states can be exchanged in a much less subtle way, with
help of three controlled-NOT ~cNOT! gates@2#. The action of
these gates can be understood in entirely classical terms.
is illustrated in Fig. 1.

That the classical@3# circuit in Fig. 1 does indeed exchang
states is readily confirmed by letting it act on a general co
putational basis stateu x&u y&. If x is the value~0 or 1! of the
control bit andy is the value of the target bit, then the actio
of a single controlled-NOT gate can be compactly summ
rized as

u x&u y&→u x&u y% x&, ~2!

where % denotes addition modulo 2. Ifu c&5u x& and u f&
5u y&, then the action of the three successive gates in Fi
is ~reading the figure from left to right!

FIG. 1.
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u x&u y&→u x% y&u y&→u x% y&u x&→u y&u x&. ~3!

This process makes perfect sense for classical bits, as we
for quantum superpositions of classical bits, to which it e
tends by linearity.

If the stateu f& in Fig. 1 is taken to beu 0&, then the
controlled-NOT gate on the left acts as the identity, so t
classical state-swapping circuit simplifies to

If the upper qubit~source! in Fig. 2 belongs to Alice and the
lower qubit~destination! to Bob, then this special case of th
general classical state-swapping circuit provides a consi
ably simpler version of what happens in quantum telepo
tion. But the classical circuit in Fig. 2 is not teleportatio
because it requires direct dynamical couplings between
qubits—couplings that teleportation manages to avoid by
use of an entangled pair of qubits and the classical com
nication of quantum measurement outcomes.

This paper illuminates the way in which quantum m
chanics obviates the need for the direct dynamical coupli
in Fig. 2, showing explicitly how this intuitive classical stat
swapping circuit leads directly to the transference of a s
between uncoupled qubits that constitute quantum telepo
tion. It is possible to eliminate all direct couplings betwe
the source and the destination because quantum qubits h
richer range of logical capabilities than do classical b
Only one indirect dynamical coupling between Alice a
Bob survives this process of elimination as the initial inte
action necessary to entangle Alice’s ancilla with the Bo
destination qubit. All other direct dynamical coupling is r
placed by classical communication.

The key to relate quantum teleportation to the appare
quite different way of exchanging a general state in Fig. 2
to replace the controlled-NOT gate on the left of Fig. 2 with
an elementary classical circuit, only slightly more elabor
than that of Fig. 1, that changes the direct coupling of
controlled-NOT into four couplings, all acting only through
the intermediary of an unaltered ancillary qubit.

FIG. 2.
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To confirm this identity note that the four gates on the rig
act on the eight computational basis statesu x&u y&u z& ~with
u x& the input state on the top left,u z& on the bottom, andu y&
in the middle! as follows@4#:

ux&uy&uz&→ux&uy% x&uz&→ux&uy% x&uz% y% x&

→ux&uy&uz% y% x&→ux&uy&uz% x&. ~4!

Thus the circuit on the right of Fig. 3 does indeed act
indicated on the left, performing a controlled-NOT operation
on the qubits associated with the top~control! and bottom
~target! wires, while acting as the identity on the qubit ass
ciated with the middle wire.

Quantum mechanics first appears when we intercha
control and target in the controlled-NOT gate on the right of
Fig. 2, using the quantum circuit identity

This follows from the fact that the unitary, self-inverse, Ha
amard operatorH51/A2(sx1sz) takes eigenstates ofX
5sx into eigenstates ofZ5sz with corresponding eigenval
ues, and vice versa

H: u 0&↔~ u 0&1u 1&), u 1&↔
1

&
~ u 0&2u 1&), ~5!

together with the fact that controlled-Z gate has the sam
action regardless of which qubit is the target and which
control @5#. The utility of this interchange emerges below.

So if we introduce an ancilla in a stateu x&, to be specified
in a moment, we can replace the two gates in Fig. 2, with
equivalent circuits of Figs. 3 and 4, to get

FIG. 4.

FIG. 3.
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I emphasize that Fig. 5 is merely a cumbersome way
constructing the classical circuit of Fig. 2, with the dire
coupling on the left of Fig. 2 replaced by the four gates
the left, mediated by an ancillary qubit whose state is un
tered, and the direct coupling on the right replaced by
three gates on the right, which by exploiting the quantu
mechanicalH gates make it possible to interchange cont
and target qubits.

To further convert the circuit of Fig. 5 into teleportatio
we must first eliminate the unacceptable leftmost coupl
between the source and the ancilla. This can be done
taking the stateu x& of the ancilla to beHu 0&, which the
magic of quantum mechanics—this is the second pl
where it appears—allows to be invariant under theNOT op-
eration. Because

XHu 0&5Hu 0&, ~6!

the leftmost controlled-X gate in Fig. 5 always acts as th
identity, and can be removed from the circuit. So Fig.
becomes

To see that Fig. 6 represents quantum-teleportation n
that we can also remove the final Hadamard transforma
on the upper wire in Fig. 6, provided we change the fin
state of the qubit associated with that wire fromu 0& to
H21u 0&5Hu 0&5u x&. Because the remaining Hadama
gate on the upper wire commutes with the controlled-NOT

gate that immediately precedes it on the lower two wires,
may also exchange the order of these two gates. The res

FIG. 6.

FIG. 7.

FIG. 5.
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FROM CLASSICAL STATE SWAPPING TO QUANTUM . . . PHYSICAL REVIEW A65 012320
This is precisely the reversible quantum-teleportation circ
described by Brassard, Braunstein, and Cleve~BBC! @6#. We
have thus made a direct passage from the classical circu
Fig. 2, which requires coupling between source and dest
tion to swap their states, to the BBC quantum-teleportat
circuit of Fig. 7, which, as reviewed below, can be furth
modified to remove all remaining coupling.

I repeat BBC’s description of the connection between
circuit of Fig. 7 and teleportation, to indicate what has b
come of the couplings originally present in Fig. 2 and
show that the four controlled-NOT gates arising from the
classical expansion in Fig. 3 of the first controlled-NOT gate
in Fig. 2 now play roles in three distinct stages of the qu
tum teleportation process@7#.

The controlled-NOT gate on the left in Fig. 7, along with
the Hadamard gate immediately to its left, used to elimin
the fourth controlled-NOT gate from Fig. 3, serve to turn th
state of the ancilla and destination into the maximally e
tangled state 1/A2(u0&u0&1u1&u1&). After these two gates
have acted, Alice keeps the ancilla and Bob takes the d
nation to a faraway place. Only after this does Alice need
acquire the source, in the stateu C&, which may or may not
be known to her.

The effect of the next controlled-NOT gate and Hadamard
gate of Fig. 7 on the source and ancilla, both in Alice
possession, is to transform unitarily the four mutually
thogonal maximally entangled states of the Bell basis@8# into
the four computational basis statesu x&u y&. If Alice’s two
qubits were to be measured in the computational basis a
the action of the first four gates, the measurement co
therefore, be viewed as a coherent two-qubit measureme
the Bell basis, taking place immediately after the first tw
gates@9#.

Such measurements in the computational basis, which
the third and final place where quantum mechanics enters
process, can be introduced, though initially at the wro
stage of the process, by noting that in the final state on
right of Fig. 7. Alice’s two qubits are each in the pure sta
u x&, completely disentangled from Bob’s. As a result, t
state of Bob’s qubit is entirely unaffected if Alice measur
each of her qubits. So we can safely add two measurem
to Fig. 7 without disrupting the transfer ofu c& from Alice’s
qubit to Bob’s,

Not only do these measurements occur too late in
process, but there also remain in Fig. 8 two other interacti
between Alice’s qubit or her ancilla and Bob’s, besides
controlled-NOT gate that originally entangles her ancilla wi
his destination. The controlled-Z gate on the right come
directly from the controlled-X gate on the right of Fig. 2, and

FIG. 8.
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the controlled-X gate immediately preceding it comes fro
the last of the four controlled-X gates on the right of Fig. 3
Both these interactions can be replaced by classical com
nication of measurement results from Alice to Bob, by mo
ing the measurements to the earlier stage of the process
tioned above, which it is possible to do for the followin
reason.

Quite generally the effect of a controlled unitary operati
on any number of qubits followed by a measurement of
control qubit is unaltered if the measurement of the con
qubit precedes the controlled operation@10#

Here the heavy horizontal wire representsN additional qu-
bits, andU represents a unitary transformation acting on a
or all of those qubits, controlled by the single qubit repr
sented by the light wire.

The measurement and the controlled-unitary opera
commute because an arbitrary input stateu C& of the N11
qubits is necessarily of the form

u C&5au 0&u F0&1bu 1&u F1&, ~7!

where uau21ubu251, u 0& and u 1& are computational basi
states of the control qubit, andu F0& and u F1& are normal-
ized ~but in general nonorthogonal! states of the otherN
qubits. An immediate measurement on the control qubit ta
u C& into u 0&u F0& with probability uau2, or into u 1&u F1&
with probability ubu2 @11#. In the first case, subsequent app
cation of a controlled-U gate has no further effect; in th
second case it produces the stateu 1&Uu F1&.

On the other hand an immediate application of t
controlled-U operation takesu C& into

au 0&u F0&1bu 1&Uu F1& ~8!

and a subsequent measurement of the control qubit takes
state intou 0&u F0& with probability uau2, or u 1&Uu F1& with
probability ubu2. Thus the two output states are the same a
occur with the same probabilities, regardless of the orde
which the measurement and controlled-U operations are per
formed.

Figure 9 allows Fig. 8 to be rewritten as

FIG. 9.

FIG. 10.
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which shifts the actual measurements to the position of
hypothetical measurements mentioned above. Since
controlled-X or controlled-Z gates in Fig. 10 now follow a
measurement of the control bit, their action is identical
applying theX or Z to the target qubit if and only if the
outcome of the corresponding measurement is 1; i.e.,
controlled operation can be executed locally by Bob depe
ing on what Alice tells him about the outcomes of the tw
measurements she made on her own qubits.

To summarize, we can look at the teleportation proto
of Fig. 10, and ask what became of the original three c
plings in the general classical state-swapping protocol of F
1. The coupling on the left of Fig. 1 vanished by virtue of t
initial choiceu 0& for the state of the destination~bottom wire
of Fig. 10!. The middle coupling of Fig. 1 survives in th
three controlled-NOT gates coupled to the ancilla~middle
wire! in Fig. 10 @12#. Two of the three controlled-NOT gates
that remain do indeed provide links from Alice’s qubits
the destination. But one gate~on the left of Fig. 10! operates
only to create the initial entanglement of the ancilla with t
destination, while the other gate~on the right! operates only
through Alice’s telling Bob, depending on the result of h
measurement on the ancilla, whether or not to apply
transformationX to the destination@13#. The coupling on the
right of Fig. 1 survives as the transformationZ applied to the
destination or not by Bob depending on what Alice tells h
about the result of her measurement on the source.

So you can take the BBC circuit of Fig. 7 and look ba
to its classical ancestry~Fig. 1! or forward to conventiona
teleportation~Fig. 10!, seeing the same controlled-NOT gates
play entirely different roles, depending on which way y
want to view the circuit, rather like an optical illusion or
piece of kinetic sculpture. Depending on how you put t
punctuation marks into a sequence of operations, you can
a process that is either entirely classical or deeply quan
mechanical.

This view of teleportation as a quantum-mechanical
construction of a trivial classical state-swapping circuit ge
eralizes readily from qubits tod-state systems~qudits!. If we
are dealing with ad-valued classical register, we can gen
alize the controlled-NOT gate to the controlled bit rotation

cX: u x&u y&→u x&u y% x&, 0<x,y,d, ~9!

where % now denotes addition modulod. This extends by
linearity to a unitary operation on quantumd-state systems
which is only self-inverse whend52. In the general case th
inverse is

cX†: u x&u y&→u x&u y*x&, 0<x,y,d, ~10!

where* denotes subtraction modulod. The classical circuits
of Figs. 2 and 3 thus become
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We generalize the Hadamard transformationH on a single
qubit to the quantum Fourier transformF on a singled-state
system

F:u y&→
1

Ad
(

z
e2p izy/du z&, ~11!

and its inverse

F†:u y&→
1

Ad
(

z
e22p izy/du z&. ~12!

Note thatFu 0&5F†u 0& is invariant under an arbitrary bi
rotation so that

~cX!~1^ F!u c&u 0&5u c&u 0&. ~13!

@This is the generalization of Eq.~6! from qubits to qudits.#
A maximally entangled state is prepared by

~cX!~F^ 1!u 0&u 0&5
1

Ad
(

z
u z&u z&. ~14!

An appropriate generalization tod-state systems o
controlled-sz operation is

cZ:u x&u y&→e22p ixy/du x&u y&, ~15!

FIG. 11.

FIG. 12.
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which remains symmetric in control and target qubits a
has the inverse

cZ†:u x&u y&→e2p ixy/du x&u y&. ~16!

In the above definitions ofcX, cX†, cZ, cZ†, the state on
the left is the control and the state on the right is the targ
More generally, in the relations below, let (cX) i j denote acX
operation in which statei is the control and statej is the
target, and let (F) i denote a Fourier transform acting on sta
i.

One easily verifies that

~cX!12~F!25~F!2~cZ!12 ~17!

and, therefore,

cX125~F!2~cZ!12~F†!2 , ~18!

so

~cX†!125~F!2~cZ†!12~F†!25~F!2~cZ†!21~F†!2 , ~19!

which has the circuit representation~the generalization of
Fig. 4! @14#,

Therefore, following the same sequence of expansion
in the case of two-state systems, we arrive at the genera
tion of the BBC circuit of Fig. 7,

FIG. 13.
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where

u x&5Fu 0&5F†u 0&. ~20!

One can go from this to the generalization of Fig. 10

since the remark@10#, that measurement of several contr
qubits commutes with multiqubit controlled operations, a
plies equally well tod-state systems even whend is not a
power of 2.

The teleportation circuit of Fig. 15 ford-state systems
neatly encapsulates the protocol for teleportingd-state sys-
tems spelled out in the original teleportation paper@1#, along
with its relation to the protocol of Fig. 10 for teleportin
qubits.

I thank Gilles Brassard and Igor Devetak for useful co
ments on an earlier version of this paper, and Chris Fuchs
asking why I found it interesting. This work was support
by the National Science Foundation, Grant No
PHY9722065 and PHY0098429.
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@1# C. H. Bennett, G. Brassard, C. Cre´peau, R. Jozsa, A. Peres, an
W. K. Wootters, Phys. Rev. Lett.70, 1895~1993!.

@2# The unitary controlled-NOT gate operates on the computation
basis, i.e., the basis of classically meaningful stat
u 0&u 0&, u 0&u 1&, u 1&u 0&, u 1&u 1&, as the identity of the
state of the control qubit~indicated by a black dot in Fig. 1! is
u 0&, and flips the state (u 0&↔u 1&) of the target qubit~indi-
cated by the boxedX in Fig. 1! if the state of the control qubi
is u 1&.

@3# I call a quantum circuit classical if it is classically meaningf
when restricted to classically meaningful states, i.e., if ev
unitary gate takes computational-basis states into other c
putational basis states without introducing superpositions
,

y
-

r

phases. Because the circuit of Fig. 1 exchanges computatio
basis states and acts linearly on superpositions of input
also, of course, exchanges arbitrary quantum states.

@4# Alternatively one can note, in the computational basis, tha
the state of the top wire isu 0& then neither of theNOT opera-
tions act on the middle wire so the two lower self-inver
controlled-NOT operations act in direct succession, giving t
identity. But if the state of the top wire isu 1& then bothNOT

operations act on the middle wire, leaving its state unalter
and ensuring that exactly one controlled-NOT operation acts on
the lower wire regardless of that state.

@5# In either case controlled-Z gate acts as the identity on th
computational basis statesu 0&u 0&, u 0&u 1&, u 1&u 0& and mul-
0-5
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tiplies u 1&u 1& by 21.
@6# Gilles Brassard, Samuel L. Braunstein, and Richard Cle

Physica D120, 43 ~1998!; e-print quant-ph/9605035. BBC
prefer to expandZ asHXH.

@7# It is also necessary to retrace this familiar ground to confi
that it supports the generalization tod-state systems describe
at the end of this paper.

@8# The Bell-basis states are 1/A2(u0&u0&6u1&u1&) and
1/A2(u0&u1&6u1&u0&). It is easiest to see that the controlle
NOT and Hadamard gates have this affect by looking at
inverse transformation.

@9# Conventional expositions of teleportation do indeed expa
the state of Alice’s two qubits in the Bell basis after the e
tangled pair is formed, having her then make a coherent t
qubit measurement in that basis. But it is simpler analytica
when algebraically tracing the progress of a generalu c&
through the protocol, as well as more straightforward to imp
ment physically, to take seriously the circuit of BBC, lettin
Alice explicitly apply the next controlled-NOT and Hadamard
gates and follow this by independent qubit measurement
the ordinary computational basis. As BBC note, there is
need to mention the Bell basis at all.

@10# This is a straightforward extension to more than two qubits
the point made by R. B. Griffiths and C. S. Niu, Phys. Re
Lett. 76, 3228~1996!; e-print quant-ph/9511007, and invoke
by BBC. The same situation holds for a unitary operation c
01232
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trolled by the 2M different outcomes of a measurement onM

control qubits. Such an operation has the formU5( iPiUi

where thePi5u F i&^F i u project onto a complete orthonorma
set of statesu F i& of the control bits, andUi is the unitary
transformation on theN target bits associated with thei th mea-
surement outcome.~Since theUi are unitary and thePi com-
mute with all theUj and give a resolution of the identity into
orthogonal projections, it follows thatU is indeed unitary.!
Clearly performing the von Neumann measurement associ
with the Pi commutes with applyingU, in the sense that the
same final states arise with the same probabilities.

@11# This extension of the Born’s probability rule to cases in whi
only a subsystem is measured, which is crucial in quant
computation, receives surprisingly little explicit attention
most textbook introductions to quantum mechanics.

@12# The very first of the four controlled-NOT gates coming from the
expansion in Fig. 3 of the middle coupling of Fig. 1 was cr
cially rendered unnecessary by the initial choiceHu 0& for the
state of the ancilla.

@13# The remaining controlled-NOT gate in Fig. 10 links Alice’s qu-
bit only to her ancilla. It can be viewed, if one wishes, as a p
of the process of ‘‘measurement in the Bell basis.’’

@14# Note the unfortunate but firmly entrenched convention tha
circuit diagrams operations on the left act first while in equ
tions operations on the right act first.
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