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Resonance frequency shift in a cavity with a thin conducting film
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Abstract

We show that a very thin conducting film (whose thickness can be much smaller than the skin depth), placed nearby a wall of an electromagnetic
cavity, can produce the same shift of the resonance frequency as a bulk conducting slab, provided the displacement of the film from the wall is
much bigger than the skin depth. We derive a simple analytical formula for the frequency shift and compare it with exact numerical calculations
and experimental data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of shift of resonance frequencies of electro-
magnetic cavities due to small variations of geometry and ma-
terial properties of the walls or internal parts of the cavities was
considered long ago [1–3], and some results can be found in
monographs or textbooks on classical electrodynamics [4,5].
Various applications were considered, e.g., in Refs. [6–10]. Our
interest to the problem of frequency shift in cavities originated
from the planned experimental verification of the dynamical
Casimir effect (DCE) [11,12], i.e., the phenomenon (not ob-
served up to now) of photon creation from the initial vacuum
state due to the motion of boundaries.
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The main idea of the experiment is to simulate the motion
of the cavity wall by means of periodical creation of an ef-
fective electron–hole “plasma mirror” at the surface of a thin
semiconductor slab, attached to a cavity wall and illuminated
by a sequence of short laser pulses. Another scheme of simulat-
ing the dynamical Casimir effect, where periodical changes of
the cavity eigenfrequency can be achieved by changing the sur-
face impedance of a superconducting film illuminated by laser
pulses, was proposed recently in [13].

The feasibility of experiment [11] depends (beside many
other factors) on the thickness G of a highly conducting
“plasma mirror” which must be created. At first glance, one
could suppose that this thickness must exceed the skin depth

(1)δs = c/
√

2πσω

corresponding to the conductivity σ of the “mirror” (we use the
CGS units; ω is the frequency of the electromagnetic field in
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rad/s). On the other hand, it is clear that G ∼ α−1, where α is
the absorption coefficient of the laser beam inside the semicon-
ductor slab. For typical values α ∼ 103–104 cm−1 [11] we have
G ∼ 10–1 µm, that is of the same order of magnitude as the skin
depth of good metals (such as Cu, which has σ ∼ 5 × 1017 s−1

or, equivalently, the specific resistance ρ ∼ 2 µ� cm) for fre-
quencies belonging to the GHz band, which correspond to
cavities with dimensions of a few centimeters. To create a
film of such a thickness with metallic concentration of carri-
ers (n ∼ 1022 cm−3) in a semiconductor material with energy
gap Eg ∼ 1 eV and total area S ∼ 10 cm2 [12] one needs laser
pulses with energy W ∼ nδsSEg > 1 J, which is, of course, un-
realistic.

Fortunately, these naive estimations are not correct. As was
shown in [11], one needs much smaller (by several orders of
magnitude) energy to create a conducting film, whose elec-
trodynamical properties are indistinguishable from the proper-
ties of metallic mirrors. Another important (and perhaps un-
expected) discovery is the fact that a thin film behaves as an
ideal mirror (in the sense of the value of the frequency shift),
even if its thickness is several orders of magnitude smaller than
the skin depth, provided the film is displaced from the cavity
wall by the distance D which is much bigger than δs (being,
nonetheless, much smaller than the dimensions of the cavity
or resonance wavelength). The frequency shift depends, as a
matter of fact, not on the ratios G/δs and D/δs as independent
parameters, but on their product A = 2GD/δ2

s . The film be-
comes a “mirror” if A > 1. This phenomenon seems to be not
reported in the available literature [1–10]. Therefore the aim of
our Letter is to give a simple theory and to support it by exper-
imental data.

2. Calculation of the frequency shift

The formulas for the frequency shift given in [1–5] (and
used, e.g., in [8–10]) cannot be applied directly to the case con-
cerned, because they were derived under the assumption that
changes of parameters or fields are small, while in our case the
dielectric constant inside a thin film can vary by many orders of
magnitude. Nonetheless, the frequency change is small due to
presence of other small parameters, and for cavities with sim-
ple geometrical shapes this shift can be calculated by solving
the field equations.

We consider a cylindrical cavity of length L with an arbitrary
cross section and the axis parallel to the x-direction, supposing
that the main part of the cavity is empty, except for a thin slab
of a thickness D � L, which consists of two parts: a conduct-
ing thin film of thickness G with a complex dielectric constant
ε̃s = ε1 + iε2 (which obey the conditions ε2 � 1 and ε1 ∼ 1)
and a transparent background of thickness D − G with a real
dielectric constant εb . We assume that the dielectric permeabil-
ity of the slab does not depend on the transverse coordinate r⊥.
Thus the dielectric function inside the cavity depends on the
longitudinal coordinate x as follows,

(2)ε(x) =
{1 for −L < x < 0,

ε̃s for 0 < x < G,
εb for G < x < D.
Let us suppose first that the cavity walls are made from an ideal
conductor, so that we can use the ideal boundary conditions
Et |wall = 0 for the tangential component of the electric field.

We consider the fundamental TE mode with the only com-
ponent of the electromagnetic field parallel to the slab surface.
It satisfies the three-dimensional scalar Helmholtz equation (we
assume that the magnetic permeability of the slab is the same
as in the vacuum)

(3)ΔE + (Ω/c)2ε(x)E = 0,

where Ω is the field eigenfrequency to be found. The solution to
Eq. (3) can be factorized as E(x, r⊥) = ψ(x)Φ(r⊥), where the
function Φ(r⊥) obeys the two-dimensional Helmholtz equation

(4)Δ⊥Φ + k2⊥Φ = 0, Φ|wall = 0,

so the problem is reduced to solving the one-dimensional
Helmholtz equation

(5)ψ ′′ + [
(Ω/c)2ε(x) − k2⊥

]
ψ = 0

with the boundary conditions

(6)ψ(−L) = ψ(D) = 0.

In the case of the dielectric function (2), the function ψ(x) can
be written as follows,

(7)ψ(x) =
{

F1 sin[k(x + L)] for −L < x < 0,

F2 sin(k2x + φ2) for 0 < x < G,

F3 sin[k3(x − D)] for G < x < D,

where

(8)k2
2 = (

k2 + k2⊥
)
ε̃s − k2⊥, k2

3 = (
k2 + k2⊥

)
εb − k2⊥,

and the constant coefficient k is related to the field eigenfre-
quency Ω as

(9)Ω = c
(
k2 + k2⊥

)1/2
.

The value of the longitudinal wave number k can be found from
the equations which are the consequences of the continuity con-
ditions for the functions ψ(x) and ψ ′(x) at the surfaces x = 0
and x = G:

(10)tan(kL) = k

k2
tan(φ2),

(11)tan(k2G + φ2) = k2

k3
tan

[
k3(G − D)

]
.

Solving Eq. (11) with respect to phase φ2 and putting the solu-
tion into Eq. (10), we arrive at the equation

(12)tan(kL) = k

k2

k2 tan[k3(G − D)] − k3 tan(k2G)

k3 + k2 tan[k3(G − D)] tan(k2G)
.

In the most general case, the transcendental algebraic equation
(12) should be solved numerically. However, in the case of a
thin slab, it is possible to obtain a simple approximate explicit
analytical solution. For this purpose, we make the following
transformations. First, we introduce dimensionless parameters

(13)Δ = 2D/λ, g = G/D, η = λ/(2L),
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Fig. 1. The real and imaginary parts of the shift of the longitudinal wave number ξ − ξ0 versus the dimensionless thickness of the conducting layer g = G/D. Note
that Re(ξ − ξ0) > 0, whereas Im(ξ − ξ0) < 0.
where λ is the wavelength corresponding to the fundamental
eigenfrequency of the ideal cavity of length L, i.e.,

λ = 2π
[
(π/L)2 + k2⊥

]−1/2
, k⊥ = 2π

λ

√
1 − η2.

Obviously, g < 1 and η < 1, and our main assumption is Δ �
1 (thin slab). Since the dielectric constant of the transparent
background slab εb cannot be very big, k3D ∼ Δ � 1. Thus we
can replace the function tan[k3(G − D)] by its argument. After
this simplification, the coefficient k3 drops out, together with
parameter εb . Now we write the longitudinal wave number k as

(14)k = (π/L)(1 + ξ).

Obviously, if Δ � 1, then also |ξ | � 1. Therefore we write
tan(πξ) = πξ in the left-hand side of Eq. (12), putting at the
same time ξ = 0 in the right-hand side (because this side is
small even for ξ = 0). Besides, we suppose that the conductiv-
ity of the thin film is high enough, so that we can neglect the
parameters ε1 and 1 − η2 in the coefficient k2, replacing it by
the value k2(ξ = 0) = (2π/λ)

√
iε2. After these simplifications

we arrive at a simple formula

(15)ξ = η
Δ(g − 1) − tan(ΔgR)/R

1 + Δ(g − 1)R tan(ΔgR)
,

where

(16)R = π
√

iε2.

In the CGS units we have ε2 = 4πσ/ω, where σ is the con-
ductivity of the film and ω is the real frequency of the field.
The skin depth is given by the formula δs = c/

√
2πσω. Conse-

quently,

(17)ΔRe(R) = D/δs, Δg Re(R) = G/δs.

Actually, we need the difference between (15) and the value

(18)ξ0 = − D

D + L
= − ηΔ

1 + ηΔ
≈ −ηΔ,

corresponding to the empty cavity of length D + L. Neglecting
corrections of the order of Δ2, we obtain the following formula
for the shift of the longitudinal wave number after inserting a
slab with a thin conducting film:

(19)ξ − ξ0 = η
Δg − [(ΔR)2(1 − g) + 1] tan(ΔgR)/R

.

1 + Δ(g − 1)R tan(ΔgR)
The corresponding small shift of the resonance frequency
equals

(20)χΩ ≡ (Ω − Ω0)/Ω0 = η2(ξ − ξ0).

Now let us analyze various special cases. If g = 1 (i.e., the
conducting film is put on the cavity wall without any interme-
diate background), then

(21)ξ − ξ0 = η
[
Δ − tan(ΔR)/R

]
,

and we see that a reasonable frequency shift can be observed
only under the condition D/δs > 1, which seems quite natural.
If D/δs � 1, then the conductivity of the slab does not manifest
itself, and the frequency shift is extremely small, being propor-
tional to Δ3. A similar dependence on the slab thickness takes
place in the case of a thin slab with not very big real dielectric
constant, considered in Ref. [14]. Using the formula

(22)tan(a + ib) = tan(a) + i tanh(b)

1 − i tan(a) tanh(b)
,

one can easily see that the frequency shift tends to the limit
value χmax = η3Δ (corresponding to the ideal conducting plate
of the thickness D put on the wall) if D/δs � 1.

A more interesting special case is g � 1 and G/δs � 1.
Then the tangent function in (19) can be replaced by its argu-
ment, and we arrive at the formulas

(23)Re(ξ − ξ0) = ηΔA2

A2 + 1
, Im(ξ − ξ0) = − ηΔA

A2 + 1
,

where

(24)A = ε2g(πΔ)2 ≡ 2GD/δ2
s .

In Fig. 1 we show the dependence of real and imaginary parts
of the shift ξ − ξ0 on the relative thickness of the conducting
film with respect to the total thickness of the slab g = G/D for
the following values of other parameters:

Δ = 1/15, η = 0.55,

εb = 2, ε1 = 10, ε2 = 4 × 106.

These numerical values correspond to the TE101 mode of the
rectangular cavity with dimensions 110 × 71 mm, (resonance
frequency 2.5 GHz), the thickness of transparent slab D =
4 mm, and resistivity of the film ρ = 200 µ� cm (10 times
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the resistivity of bulk Pb at the room temperature). The value
g = 10−6 corresponds to G = 4 nm, g = 10−5—to G = 40 nm
and g = 10−4—to G = 400 nm. We compare the approximate
expressions (23) with the difference between the exact numeri-
cal solution of Eq. (12) and exact value in Eq. (18). We see that
the analytical approximation is very good.

The influence of a finite (but high) conductivity of the cav-
ity walls can be taken into account with the aid of the known
formula [2–5] for the complex frequency shift

(25)δΩw ≡ Ω − Ωid = − ic

2
√

ε̃w

∮ |Ht |2 dS∫ |H|2 dV
,

where ε̃w = ε1w + iε2w is the complex dielectric constant of
the material of the walls, Ωid is the eigenfrequency of the ideal
cavity, and the magnetic field vector H(x, r⊥) corresponds to
the ideal cavity. Eq. (25) holds if ε2w � 1. The presence of the
slab has a very small influence on the value of δΩw , because
the magnetic field remains practically the same, except for the
small region occupied by the slab (only if |ξ | � |ξ0|). Conse-
quently, the relative change of the volume integral is of the order
of Δ (actually, even smaller). The same is true for the surface in-
tegrals over all sides of the cavity, except for the side x = L+D

behind the slab with the area S1. Thus the relative change of the
value of the surface integral cannot exceed, by an order of mag-
nitude, the ratio S1/Stot, where Stot is the total area of the cavity
surface. Actually, this change is even smaller, if one takes into
account the real magnetic field distribution (only a few percent
for the geometry used in the experiment). Therefore we can ne-
glect the variation of δΩw . Then, using Eqs. (20) and (23), we
arrive at the following formulas for the real and imaginary parts
of the relative shift of the frequency Ω = ω − iγ with respect
to the frequency ω0 of the empty cavity:

(26)χ ≡ ω − ω0

ω0
= η3ΔA2

A2 + 1
, κ ≡ γ − γ0

ω0
= η3ΔA

A2 + 1
.

Obviously, γ /ω0 is half the inverse quality factor of the cavity.
Thus the total inverse quality factor depends on A as follows,

(27)
1

Q
= 1

Q0
+ 2η3ΔA

A2 + 1
,

where Q0 is the quality factor of the empty cavity.

3. Experimental results

We used a rectangular copper cavity with dimensions 112 ×
71 × 22 mm, so that L + D = 11.2 cm and η = 0.54. The
measured resonance frequency of the TE101 cavity fundamen-
tal mode was ν0 = ω0/(2π) = 2.47935 GHz and the unloaded
quality factor Q0 ≈ 7000 (with an accuracy δQ about 30–40).
To study the problem of the frequency shift we prepared 4 mm-
thick plexiglass slabs (so that Δ = 1/15) and evaporated copper
films of different thicknesses. The slab obtained with this proce-
dure was set over the 71×22 mm cavity wall, where the electric
field of the fundamental mode is approximately zero. Note that
plexiglass has a dielectric constant between 2.2 and 3.4 and it
can be considered transparent in our problem. To measure the
Fig. 2. Experimental setup for the measurement of the parameters of the cavity
ν and Qexp.

frequency shift and quality factor of the cavity we used the ex-
perimental setup shown in Fig. 2. First the cyclic frequency ν is
found through the critical coupling condition, where frequency
and position of the loop are adjusted in such a way that the
power reflected by the cavity is minimum. When this condition
is satisfied, the relation Qexp = 2πτEν is valid and the quality
factor can be measured through the time of the electric field τE

stored in the cavity.
For the chosen geometry, the numerical value of parameter A

(24) depends on the film thickness G (expressed in nanometers)
and the resistivity of deposited metal ρ (expressed in µ� cm) as

(28)A = 8G/ρ.

The maximal frequency shift according to formula (26) must be
equal

(29)(ν − ν0)max = η3Δν0 = 27.5 MHz.

The measured frequency shift was 28 MHz for the thickness
G = 250, 125, 75 nm, in total accordance with (29), because
A � 1 for these values of G, even if ρ is bigger than the re-
sistivity of bulk copper at room temperature ρ = 1.7 µ� cm
(which corresponds to the conductivity σ = 5 × 1017 s−1 in
the CGS units). The expected frequency shift has been obtained
for a minimum value of G = 75 nm, which is about 20 times
smaller than the calculated skin depth at the resonance fre-
quency ν0 (δsw ≈ 1.3 µm).

For smaller values of G the applicability of formula (26) is
questionable, because it is obtained within the frameworks of
macroscopic electrodynamics, whereas the mean free path of
electrons in copper at room temperature is about lCu ≈ 40 nm
[15]. This was confirmed experimentally as with an evaporated
25 nm film the cavity mode TE101 resonance could not be de-
tected, this showing partial transmission through the evaporated
film of the electromagnetic field.

Note that the quality factor is more sensitive to variations of
parameter A than the frequency shift. In Table 1 we compare
the measured Q factor with theoretical values obtained from
formula (27) for different film thicknesses. The resistivity ρ has
been measured separately for each evaporated film as it appears
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Table 1
Experimental and theoretical Q-factors for copper films

G (nm) ρ (µ� cm) ν Qex Qth

250 1.7 2.50863 6220 6350
120 1.8 2.50867 5770 5500
75 7.5 2.5086 2930 2470

that the conductivity of evaporated copper differs significantly
from the bulk conductivity [16]. The agreement between ex-
perimental and theoretical data seems quite satisfactory. The
difference can be explained by an insufficient knowledge of the
exact value of resistivity of evaporated films, because the mea-
surements of ρ were done by applying a constant voltage to the
film, whereas ρ in formula (28) should be taken at the frequency
2.5 GHz.

It was interesting to repeat these measurements with films
of a different metal, and we chose lead, that has bulk resis-
tivity ρ = 20 µ� cm. The measurements could be reproduced
for G = 250 nm and G = 75 nm, but for smaller thicknesses
of lead films the oxide already growing during the evapora-
tion process prevented any further analysis. For example, with
the G = 250 nm film, in which the measured resistivity was
still close to the bulk value, ρ = 28.4 µ� cm, the measured
frequency shift was 28.5 MHz, in accordance with the value
A = 70. Then formula (27) gives the theoretical value Qth =
2200, in agreement with the experimental value Qex = 2280.
The thickness of this film is 20 times smaller than the skin depth
corresponding to the measured value of ρ.

4. Conclusion

We have demonstrated, both theoretically and experimen-
tally, that a very thin conducting film, whose thickness is much
less than the skin depth, can produce the same frequency shift in
an electromagnetic cavity as a bulk conducting slab, provided
the distance between the film and the cavity wall is much bigger
than the skin depth. This result supports the idea of a possibility
of an experimental study of the dynamical Casimir effect using
semiconductor films with time-dependent conductivity.

A difference between the system studied here and the exper-
imental scheme [12] concerns the inhomogeneous conductiv-
ity of semiconductor films illuminated by laser pulses, which
strongly depends on the distance from the surface (due to the
exponential attenuation of the laser intensity inside the film).
But it was shown in [17] that formulas for the resonance fre-
quency shift, given by Eq. (26), remain valid for inhomoge-
neous plasma films as well, if one replaces the product ε2G in
the definition of parameter A (24) with the integral

∫
ε2(x) dx

across the semiconductor film. Another difference is that mea-
surements performed here have been done for conductivities
much larger than the expected conductivity of the semiconduc-
tor plasma films. For example, considering a thick film with
G = 1 µm, corresponding to the absorption length of 800 nm
light in GaAs at 5 K, one obtains for the impinging laser en-
ergy/pulse of W = 100 µJ and the surface area S = 10 cm2

the following estimation of the concentration of carriers cre-
ated inside this film: n ∼ W/(EgSG) ∼ 5 × 1017 cm−3 (where
Eg ∼ 1.4 eV is the energy gap of GaAs). Taking for a free car-
riers mobility the value b = 104 cm2/V s (which is realistic,
according to preliminary measurements), we can evaluate the
average resistivity inside the conducting film as ρ = 1/(nbe) ∼
10−3 � cm. Then formula (28) gives for the total thickness of
semiconductor slab D = 2 mm (which will be used in the exper-
iment) the value A = 4, which is still bigger than unity, so that
the frequency shift will be more than 90% of the value corre-
sponding to the ideal metallic boundary, according to Eq. (26).
The account of losses made in [17] also shows that the final
generation rate of “Casimir photons” will be positive and big
enough.

Acknowledgements

A.V.D. acknowledges the support of FAPESP (Brazil).
V.V.D. thanks CNPq (Brazil) and INFN (Italy) for the partial
support.

References

[1] J. Müller, Hochfrequeztechnik Elektroakustik 54 (1939) 157.
[2] J.C. Slater, Rev. Mod. Phys. 18 (1946) 441.
[3] H.B.G. Casimir, Philips Res. Rep. 6 (1951) 162.
[4] F.E. Borgnis, C.H. Papas, in: S. Flugge (Ed.), Encyclopedia of Physics,

vol. XVI, Springer-Verlag, Berlin, 1958, pp. 406–415.
[5] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, sec-

ond ed., Nauka, Moscow, 1982, Section 90.
[6] S.-H. Chao, IEEE Trans. Microwave Theory Tech. 33 (1985) 519.
[7] M. Tsindlekht, M. Golosovsky, H. Chayet, D. Davidov, S. Chocron, Appl.

Phys. Lett. 65 (1994) 2875.
[8] S. Grabtchak, M. Cocivera, Phys. Rev. B 58 (1998) 4701.
[9] D.-N. Peligrad, B. Nebendahl, C. Kessler, M. Mehring, A. Dulčić, M.
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