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The finite element and transfer matrix methods are applied in the design of a Bragg grating acousto-optic
modulator. For simulation purposes, the device is taken as a single structure, composed of the silica horn
and the fiber Bragg grating. The approach allows the strain field to be completely characterized along the
whole structure and leads to a better understanding of the influence of the horn dimensions on the design
and performance of the modulator. Results obtained using the two methods show an excellent agreement
with experimental data in similar structures of the same dimensions.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The acousto-optic effect has been successfully used since the
early 80s in the design and construction of a variety of optical fiber
devices such as frequency shifters [1], tapers and couplers [2], fil-
ters [3,4] and modulators [5]. Particularly, acoustic waves can be
employed to modulate the spectrum [6] and switch the wave-
length [7] of fiber Bragg gratings (FBG). For instance, when an
acoustic extensional wave of high frequency propagating along
the fiber is coupled into a FBG inscribed in its core it causes the for-
mation of a standing mechanical wave, creating compression and
rarefaction zones within the grating planes. The resulting periodic
strain modulation causes additional bands to appear on both sides
of the grating reflection spectrum. This phenomenon, known as
superlattice modulation, was first reported in [8]. The modulation
of the FBG can also be understood as a periodic chirp induced by
the acoustic wave and has found application in tunable reflectors
[9] and in Q-switched DFB lasers [10].

The study of the acousto-optic (AO) mechanism requires the
understanding of acoustic waves propagating in fibers, which are
usually modeled as thin, uniform rods [11]. Several models have
been developed to compute the strain caused in the fiber by the
application of a load. However, if the structure under analysis pre-
sents an arbitrary cross-sectional shape one needs to adopt an
accurate numerical method, such as the finite element method
(FEM) [12,13]. This method has been applied in several areas and
particularly to study the behavior of strain in polarization main-
ll rights reserved.
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taining fibers [14]. At the same time one needs to consider how
the resulting strain impacts the power exchange of the electromag-
netic modes propagating in the fiber. Usually the effect is studied
with the help of the coupled-mode theory [15], in which the strain
contribution is incorporated into an effective change of the dielec-
tric permittivity of the fiber through a longitudinal strain distribu-
tion function [16], which should be known beforehand. The
coupled-mode theory can also be applied for obtaining information
on the spectral behavior of fiber gratings [17,18]. For cases where
the grating is chirped one can use the transfer matrix method
(TMM) for arriving at the reflection and transmission spectra
resulting from the mode coupling, whereby the grating is divided
into discrete uniform sections. The resulting spectrum is then ob-
tained by multiplying an array of matrices, each of which is asso-
ciated with these sections.

In this work, we apply the FEM and TMM for designing a fiber
Bragg grating AO modulator (FBG-AOM). In practice, the modulator
is made of several parts put together using different materials and
processing techniques. However, for design purposes, we consider
the modulator as made of a single block as seen in Fig. 1. As the
structure presents a variable shape along the longitudinal axis,
the FEM is best suited to study the problem with the required accu-
racy. The FEM approach allows the strain field caused by the acous-
tic wave to be completely characterized along the structure while
the TMM is used to obtain the spectrum of the corresponding
chirped grating. A similar theoretical approach is used to calculate
the spectral response of a fiber Bragg grating sensor embedded in a
host material system [14].

The real AO modulator is made of a length of silica fiber, in
which the grating is inscribed. The region where the grating is

mailto:roberson_assis@cpgei.cefetpr.br
http://www.sciencedirect.com/science/journal/00304018
http://www.elsevier.com/locate/optcom


Fig. 1. Schematic diagram of the BG-AOM under excitation of an acoustic wave.
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located presents a diameter smaller than the fiber out diameter in
order to enhance the acousto-optic interaction excited by the
acoustic wave. The length of fiber with the grating is then inserted
into a silica horn, which has a piezoelectric (PZT) element in the
form of a disc attached to its larger diameter (see Fig. 1). The func-
tioning of the device has been explained and experimentally dem-
onstrated in [4,19–21]. The acoustic wave is generated by the
oscillating PZT and is coupled to the optical fiber by means of the
silica acoustic horn [6,22].
2. Methodology

The methodology applied to simulate the behavior of the device
consists of two steps. First the strain field in the whole structure
(horn, taper and FBG) is obtained by using the FEM. Further, the
calculated strain field is used in the TMM algorithm to obtain the
reflected FBG spectrum.

2.1. The finite element method

The finite element method was introduced in the late 1950s in
the aircraft industry [13]. The main advantages of the method are:
its widespread acceptance in the scientific and industrial commu-
nity, the capability of modeling complex geometries, the consistent
treatment of differential-type boundary conditions, and the possi-
bility to be programmed in a flexible and general purpose format.
Standard finite element approximations are based upon the Galer-
kin formulation of the weighted residuals method. In this approach
the difference between the finite element solution and the analyt-
ical solution is minimized with respect to the approximation func-
tions [12].

Fig. 2 shows the 1-D discretization of the FBG-AOM, whose
main parts are shown in Fig. 1. The structure is composed of N
one-dimensional elements of length Dz = LD/N separated by nodes,
where LD is the total length of the FBG-AOM. Each element is asso-
ciated with a value that represents the area of the structure at that
section.

The differential equation of motion that represents the acoustic
wave propagation in the structure is given by
Fig. 2. Discretization of the FBG-AOM in linear elemen
E
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where u is the axial displacement, which is dependent on the posi-
tion z and on the time t, and ou/oz is the longitudinal strain e. The
term A(z) accounts for the variable size of the structure along the
z axis. E is the Young modulus and q is the density, assumed to
be 72.5 GPa and 2200 kg/m3 for the silica, respectively. In the anal-
ysis the damping of the acoustical wave in the structure is
neglected.

The initial and boundary conditions are given by

AE du
dz

� �
z¼0 ¼ PðtÞ ¼ PDC þ P0 expðjxtÞ

uðLD; tÞ ¼ 0

(
: ð2Þ

The external excitation P(t) is applied as the combination of a con-
stant load (PDC) and a harmonic load of frequency x and amplitude
P0 generated by the PZT.

A classical linear basis approach for the finite elements is used
in this work. After the one-dimensional discretization, the final
matrix form of the problem is given by

M€uþ Ku ¼ P: ð3Þ

In this expression, M and K are the mass and stiffness matrices
of the structure, obtained by the superposition of the mass and
stiffness matrix of each element, which are given by

½Me
ij� ¼

qAeDz
2

1 0
0 1

� �
ð4Þ

and

½Ke
ij� ¼

AeE
Dz

1 �1
�1 1

� �
; ð5Þ

respectively. The superscript e represents an element with particu-
lar properties. Furthermore, u and €u in (3) represent the nodal dis-
placement and acceleration vectors, respectively. The vector P is the
nodal generalized force and has a null value, except for the first
component, associated with the node at z = 0. For the simulation,
the applied load is assumed as being a concentrated point load at
the base (larger diameter) of the silica horn. Considering the excita-
ts. Each element has a characteristic function area.
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tion in the form of P = PDC + P0 exp(jxt) and assuming that the sys-
tem behaves linearly, the solution of the problem can be found solv-
ing the following equations:

M€uDC þ KuDC ¼ PDC; ð6Þ
M€ut þ Kut ¼ P0 expðjxtÞ: ð7Þ

Eq. (6) represents the contribution of the component PDC, which is
understood as a static pre-tension applied to the structure before
the onset of the acoustical wave. Therefore, the acceleration is null
and (6) can be reduced to

uDC ¼ K�1PDC: ð8Þ

On the other hand, since the time dependent load generated by
the piezoelectric is harmonic, the solution for (7) has the form
ut = u0 exp(jxt). This way, (7) will be reduced to

ð�x2Mþ KÞu0 ¼ P0: ð9Þ

Note that u0, the displacement vector solution, is highly dependent
on the amplitude P0 and frequency x of the acoustic excitation.
Thus, the complete solution will be given by

u ¼ uDC þ u0: ð10Þ

Once the displacement field is obtained, the strain field in each
one of the finite elements can be found by differentiation, as

ee ¼ ueþ1 � ue

Dz
: ð11Þ

In this case, as the finite element is linear, ue+1 and ue are the dis-
placements in the local nodes e + 1 and e, respectively.

2.2. The transfer matrix method

Bragg gratings are fabricated exposing the core of an optical fiber
to ultra-violet radiation. The result for an uniform grating is an effec-
tive refraction index (neff) perturbation in the core described by

DneffðzÞ ¼ D�neffðzÞ 1þ v cos
2p
K

� �� 	
; ð12Þ

where D�neff is the average change of the effective refraction index
(also called modulation index), v is the fringe visibility (assumed
unitary in this paper) and K is the grating nominal pitch.

As the grating imposes a dielectric perturbation to the wave-
guide, it forces coupling between the propagating modes. The the-
ory of coupled-modes [15,16] is a useful and well proven tool for
describing this behavior. A set of coupled first-order differential
equations given by

dR
dz
¼ jr̂RðzÞ þ jjSðzÞ; ð13Þ

dS
dz
¼ �jr̂SðzÞ � jj�RðzÞ; ð14Þ

is used to describe the propagation, where R(z) and S(z) represent
the propagating and counter-propagating modes, respectively. In
these equations r̂ represents the general ‘‘dc” self-coupling coeffi-
cient, which is written as a sum of two parameters:

r̂ ¼ dþ r: ð15Þ

The term d, called detuning, is defined as

d ¼ 2pneff
1
k
� 1

kD

� �
; ð16Þ

where kD � 2neffK is the ‘‘design wavelength” for a Bragg scattering
within an infinitesimal variation of the effective index ðDneff ! 0Þ,
i.e., a grating that is infinitely weak. The parameter r and j are gi-
ven by the equations below,
r ¼ 2p
k

D�neff ; ð17Þ

j ¼ p
k

D�neff : ð18Þ

This description represents the situation for a uniform grating,
where the average refraction index change is constant. However,
the onset of the acoustical wave causes a chirp in the grating, mak-
ing its pitch nonuniform. In this case, the reflection and transmis-
sion spectra from the two-mode coupling can be calculated by
considering a piecewise approach, whereby the grating is divided
into discrete uniform sections that are individually represented
by a matrix. The solution is found by multiplying the matrices
associated with each one of the sections. The characteristic equa-
tion is solved by making the matrix determinant equal to zero
and the resulting polynomial enables the eigenvalues to be found.

The grating of length L can be treated as a quadripole, as shown
in Fig. 3. R and S represent the co-propagating and counter-propa-
gating modes, respectively. For convenience, the amplitude R(0) of
the incident wave is normalized, in such a way that the maximum
value is equal to unit at the origin (z = 0).

Splitting the grating in M uniform sections and defining Ri and Si

as amplitudes of the fields across the section i, the propagation
through the section is described by the equation

Ri

Si

� �
¼ FB

i

Ri�1

Si�1

� �
; ð19Þ

where FB
i is a 2 � 2 matrix given by

FB
i ¼

coshðcBDzÞ � j r̂
cB

sinhðcBDzÞ �j j
cB

sinhðcBDzÞ

j j
cB

sinhðcBDzÞ coshðcBDzÞ þ j r̂
cB

sinhðcBDzÞ

" #
;

ð20Þ

where Dz is the length of the ith uniform section and cB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � r̂2
p

:

The coefficients r̂ and j have local values at the ith section.
Since the matrices for each section are known, the application of

the boundary conditions, R(0) = 1 for z 6 0 and S(L) = 0 for z P L, al-
lows the final equation to be described as

Rð0Þ
Sð0Þ

� �
¼ FB RðLÞ

SðLÞ

� �
)

1
Sð0Þ

� �
¼ FB RðLÞ

0

� �
; ð21Þ

where

FB ¼
YM
i¼1

FB
i : ð22Þ

Writing FB
i in the form of

FB
i ¼

f11 f12

f21 f22

� �
ð23Þ

and substituting it in (21), the result is
Fig. 3. Bragg grating in the core of an optical fiber.
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1
Sð0Þ

� �
¼

f11RðLÞ
f21RðLÞ

� �
: ð24Þ

From (24) one concludes that RðLÞ ¼ 1
f11

. Therefore, the reflected
amplitude for each wavelength can be found as

fðkÞ ¼ Sð0Þ
Rð0Þ ¼

Sð0Þ
1
¼ f21

f11
; ð25Þ

and the reflected power will be given by rðkÞ ¼ jfðkÞj2.
Similarly, the transmitted amplitude will be given by

sðkÞ ¼ RðLÞ
Rð0Þ ¼

RðLÞ
1
¼ 1

f11
; ð26Þ

and the transmitted power by tðkÞ ¼ jsðkÞj2

3. Computational simulation

Fig. 4 shows the steps of the algorithm. First, one is concerned
with the input of the FBG-AOM dimensions, such as the radius
and the length of the silica horn, the length of the taper and the
length of the Bragg grating. In the second step the Finite Element
Method is used to model the device, whereby a desired load is ap-
plied to the base of the silica horn. The result is the strain field cal-
culated along the structure. However, only the strain field in the
FBG region is used as the input to the transfer matrix method.
The shift of the design wavelength along the z-axis as a function
of the strain field is assumed as

kDðzÞ ¼ kD0 þ ð1þ ð1� peÞeðzÞÞ; ð27Þ

where pe is the photoelastic coefficient and e(z) is the strain field
calculated in the previous step through Eq. (11). It is important to
note that this equation establishes the connection between the
two methods. Finally, in the fourth step the TMM method gives
the reflected and transmitted FBG spectra.

The structure is designed using 16,000 nodes/m. Each point
along the structure corresponds to one element node. The dimen-
sions of the structure employed in the calculation are shown in
Fig. 5 and are taken from [10].

The quantity of nodes in the FBG region depends on its length.
For example, for L = 5 cm, there are 800 elements in the grating re-
gion, which is enough to obtain an accurate strain field for frequen-
Fig. 4. Block diagram of the FBG-AOM simulation.

Fig. 5. Dimensions
cies up to 5 MHz. For higher frequencies the number of nodes per
meter must be increased. The number of sections in the TMM is
chosen to be the same as the number of elements used in the
FEM for the grating region.

4. Results and discussion

Fig. 6a details the dimensions of the FBG-AOM used in the FEM
model. The total structure size is 0.164 m, whereby the Silica horn
is 0.07 m long. The taper diameter varies from 125 lm to 100 lm
in 0.012 m and the FBG is 0.05 m long. Fig. 6b shows the resulting
strain field along the structure length, calculated with the FEM. In
the example, the discrete structure is excited with a 1 MHz acous-
tic wave of load amplitudes P0 = 1.5 N and PDC = 0 N, respectively.
Particularly, the strain field in the grating is observed between
the nodes located at 0.092 m and 0.142 m, as shown by the vertical
dashed lines in Fig. 6a.

The behavior of the structure can be studied under the influence
of parameters such as the frequency of the acoustical wave, the ap-
plied load or its dimensions. Using the dimensions given in Fig. 5
the following sections detail the behavior of the reflected grating
spectrum as these parameters are varied.

4.1. Frequency variation

Fig. 7 shows the grating spectra calculated using the transfer
matrix method. Fig. 7a shows the grating spectrum when no acous-
tical wave is applied. By exciting the structure with acoustical
waves of different frequencies the grating spectrum is split show-
ing other characteristic wavelengths. For the case shown in the fig-
ure the preload PDC is chosen to be null and the amplitude of the
of FBG-AOM.

Fig. 6. (a) Diameter of the BG-AOM as function of the length. (b) Strain field along
the FBG-AOM when is excited by a 1 MHz acoustic wave with P0 = 1.5 N.



Fig. 7. FBG reflected spectrum when a 1.5 N fixed load and no pre-load (PDC = 0)
excitations are applied with (a) no acoustic wave, (b) frequency at 2 MHz and (c)
4 MHz.

Fig. 9. FBG reflected spectrum when a 1 MHz acoustical excitation is applied with
(a) P0 = 2.5 N and PDC = 0 N, (b) P0 = PDC = 2.5 N. The maximum FBG strain is
e = 1.7924 � 10�4 in case (a) and must as double for case (b).
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harmonic load is chosen as P0 = 1.5 N. This corresponds to the sit-
uation where the PZT actuator works in the stretching and com-
pression regime, with symmetric displacement amplitude as seen
in Fig. 7b.

At 2 MHz (Fig. 7b), simulation results show peaks at kB1 =
1549.77 nm, kB2 = 1550.10 nm and kB3 = 1550.35 nm. The spectrum
broadening is estimated as Dk = kB3 � kB1 = 0.58 nm. As the acous-
tic frequency rises the side peaks get further apart (see Fig. 7c),
but with lower reflectivity. At 4 MHz, Dk = 1.16 nm. Note that the
center wavelength kB2 = 1550.10 nm remains stationary. Fig. 8
shows the linear behavior of the acoustic frequency versus Dk,
where the circles are experimental data retrieved from [21]. The
graphic shows the main correlation between the experimental data
and the theoretical result obtained with the present method.

4.2. Load variation

The load is related with the voltage applied to the PZT actuator.
Keeping the frequency fixed at 1 MHz, the preload PDC and the
amplitude of the sinusoidal load P0 are changed. Only the situation
where positive voltage is supplied to the PZT actuator is consid-
ered. This can easily be achieved by setting an offset voltage in
the RF generator.

Fig. 9a shows the reflected spectrum when P0 and PDC is 2.5 N
and 0 N, respectively. Comparing with the previous case (see
Fig. 7a and b) more side bands appear, however the central wave-
Fig. 8. Acoustic frequency versus spectrum broadening Dk. The circles represent
experimental results from [21].
length remains stationary. When the constant component PDC is
also set equal to 2.5 N the spectrum presents the same bands
shown in Fig. 9a, however, it is shifted laterally in relation to the
central band (see dashed line) in Fig. 9b. This is a consequence of
the positive load generated by the PZT actuator, which causes a
negative strain in the structure.

If the P0 and PDC are set to a higher value, such as 4 N and 0 N,
respectively, more side bands appear but the central band is
strongly attenuated, as seen in Fig. 10a. The situation for
P0 = PDC = 4 N is shown in Fig. 10b, where the lateral shift is larger
as compared to the case in Fig. 9b. If the device could be put to
work in the stretching regime the behavior would be the same,
but the spectrum would shift to the higher wavelength region, as
a result of a positive strain in the structure.

Preliminary results of this behavior are described in [23,24].
Most PZT actuators supply low loads as a result of the applied

voltage. If high push loads (i.e., high compression stress) are used,
buckling of the structure occurs and additional apparatus must be
added to the system in order to avoid it. For example, in [25] sup-
porting blades are used to avoid buckling of the grating.

4.3. Influence of the dimensions

One of the advantages of the present methodology is to assert
the influence of the horn dimensions and the varying diameter of
Fig. 10. FBG reflected spectrum when a 1 MHz acoustical excitations is applied
with (a) P0 = 4 N and PDC = 0 N, (b) P0 = PDC = 4 N. The maximum FBG strain is
e = 2.8678 � 10�4 for the case (a).



Fig. 13. Maximum strain in the grating as a function of its diameter. The taper
increases the strain exponentially.
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the taper on the strain observed along the structure, allowing for
the optimization of each one of its parts. Applying a constant load
of P0 = 1 N (PDC = 0 N) and keeping the total length of the structure
fixed at 0.164 m, changes in the dimensions of the silica horn and
taper region modify the strain field seen by the grating. Fig. 11
shows the strain behavior as a function of the diameter (lower hor-
izontal axis) and of the length (upper horizontal axis) of the silica
horn. A modification of the horn dimensions causes changes in the
device resonance frequencies. Numerical results show that an in-
crease of the silica horn base diameter causes an increase in the
stiffness and mass of the system, making the displacement and
strain fields decrease along the FBG. On the other hand, a change
of the silica horn length does not cause significant variations in
these fields, as shown in Fig. 11. For a given device dimension
the strain also varies with the PZT excitation frequency. Fig. 12
shows this behavior for the dimensions detailed in Fig. 5. One notes
that the strain is higher for certain operation frequency that coin-
cides with the resonance frequencies of the device. The FBG diam-
eter can also be modified and, consequently, the taper region. In
practice, this can be achieved by etching the fiber cladding till
the desired diameter is reached. The taper is needed to enhance
the acousto-optic interaction. Fig. 13 shows the variation of the
maximum strain as a function of the fiber diameter in the grating
region. The relationship between the taper and the maximum
strain is also exponential.
Fig. 11. Strain behavior versus the silica horn diameter and length.

Fig. 12. Strain variation versus the PZT excitation frequency.
If the FBG length is modified, the acousto-optic interaction
length will change. This results in the peak reflectivity change of
the secondary lobules, kB1 and kB2. For instance, Fig. 14 shows the
relationship between the reflectivity of kB1 and the FBG length.

Given an applied load, a set of similar curves can be used to
optimize the design of the BG-AOM. Therefore, the strain can be
adjusted according to adequate changes of the structure dimen-
sions. For example, for a strain of e = 1.7924 � 10�4 at 1 MHz, set-
ting P0 = 2.5 N (with the silica horn dimensions at 3 mm and
70 mm in diameter and length, respectively) gives the same results
Fig. 14. Peak reflectivity of kB1 as function of the FBG length.

Fig. 15. Comparison of (a) the experimentally obtained spectrum from [21], (b)
with the simulated for the structure excited with a 1 MHz acoustic wave at P0 = 1 N.
(c) Superposition of both (a) and (b) spectra.
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as if designing the silica horn with 2 mm diameter and 70 mm in
length for P0 = 1.714 N, reducing the need for a higher applied load.

It also important to note that the taper itself does not modify
the behavior concerning the separation between the side and the
central peaks, as seen in Fig. 7, but only increase or decrease their
reflectivity, i.e., the results shown in Fig. 8 are still the same with or
without the taper.

The accuracy of the method can be verified by comparing the
simulation with the experimental data available in the literature,
such as the data obtained by Delgado-Pinar et al. [21]. Taking the
dimensions of the structure presented by those authors, Fig. 15a
shows the experimentally obtained spectrum by exciting the struc-
ture with a 1 MHz acoustic wave. Fig. 15b shows the simulated
spectrum calculated using the two methods. As the strain value
was not available in [21], simulations were performed with varying
applied loads in order to fit the spectrum obtained experimentally.
The best result was achieved with an applied load of P0 = 1 N.
Fig. 15c shows the superposition of both spectra. One observes that
the spectra overlap very well concerning the central and the side
peaks. The discrepancy in the side peaks reflectivity as compared
to the same ones of the experimental result still reveals that the ta-
per dimension needs to be adjusted.

5. Conclusions

The methodology presented here allows the design of a FBG-
AOM, considering all components of the photonic structure (horn,
taper and grating). The finite element and the transfer matrix meth-
ods present the advantage of asserting the strain along the whole
structure making it possible to determine the influence of the struc-
ture dimensions (horn, taper and FBG sizes) on the grating reflected
spectrum for an acoustical wave propagating along its axis. Further-
more, the physical characteristics of the structure can be adjusted in
order to obtain the desired strain and spectrum. The approach takes
into account the load induced by the acoustical wave, which can be
associated with the characteristics of the PZT actuator used for its
excitation (for example, the maximum pull and/or push load and
maximum displacement delivered by the actuator).

The simulation results obtained using the method correlate well
with experimental data in similar structures presenting the same
dimensions [6,20,21], which demonstrates that the method is very
accurate to solve the problem.
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