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The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an
eight-band effective-mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is
modeled through the boundary condition imposed on the envelope wave function at the surface. We show that
the spin-orbit splitting of the valence band leads to the surface-induced spin-orbit splitting of the excited
conduction-band states and to the additional surface-induced magnetic moment for electrons in bare nanocrys-
tals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman
splitting of all quantum size energy levels including the grour@l electron state. The fitting of the size
dependence of the ground-state eleciydactor in CdSe nanocrystals has allowed us to determine the appro-
priate surface parameter of the boundary conditions. The structure of the excited electron states is considered
in the limits of weak and strong magnetic fields.
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[. INTRODUCTION momentumj =1=1/2, similar to the bound electron states in
atoms?! In a zero magnetic field, the levels are degenerate
The modern technique of nanocrystal growth has createtith respect to the projection of the total momentpm
high optical quality nanocrystals with narrow size The spectra of the _nanocrystals in an external magnetic-
distribution? that can be also chemically dopgdhis al- ~ field H are well described as an atomic Zeeman effect. A
lows one to study the level structure of the nanocrystal€iamagneticH contribution to the spectra could be ne-
using interband optical spectroscdby, tunneling spec- glected because the nanocrystal radauss con3|d_erably
troscopy!® and the far-infrared intraband spectroscdfy. Smaller than the magnetic length= yc/i/eH, whereeis the
Important additional information about the origin of these @PSolute value of a free-electron chargeis the speed of

levels and their symmetry could be obtained by using opticalldNt- In @ reasonable magnetic-field<10 T the diamag-

magnetospectroscopy of the intraband and interband trandi€tic contribution to the QSLs-(a/L)"<1. However, the
ect of the external magnetic field on the electron QSLs

tions and tunneling magnetospectroscopy, as was done ma _ : . o
years ago in the case of atoms, hydrogenlike shallow defecffPends on the zero-field spin-orbit splittidg,, of the lev-

and excitons. There is the other group of experiments, suclS With differentj =1+ 1/2 (One can find a description of the
as magneto circular dichroist, spin-flip  Raman similar effect for atoms in Ref. 21If A, is larger than the

scattering'! time-dependent Faraday rotatith> EPR and Zeeman energy, the weak magnetic field splits the electron

ODMR 7rneasuremenf§,‘16 and  magnetophotolum- levels

inescencé! Wherg the magnetic field is an ess_entlal compo- AEji:,ungimH, m=—j,—j+1, ...}, 1)

nent of the experimental technique. Interpretation of all these

experiments requires the knowledge of electron and hole etvhereug=efi/2mg ¢ is the Bohr magnetormy is the free-

ergy spectra in magnetic fields. electron masan is the projection of the total momentum on
A wide class of semiconductor materials can be preparethe magnetic-field direction angj™ is the effectiveg factor

in nanocrystal form. In most cases they have a sphericalf the corresponding state, that is an analog of lthade

shape and can be bare semiconductor nanocrystals or oniofactor for atoms. IfA. is small, the Zeeman splitting can be

type heterostructure nanocrystals composed of an inner sendescribed as the sum of the spin and orbital contributions,

conductor core coated with several spherical shells of differ-

ent semiconductor€~2° Technology allows one to vary the A= 1p0sSH+ negilH, @

radius of the nanocrystal core from 10—40 A in a controlledwheres,= +1/2 andl,=—1,—1+1,... | are the electron

manner. The energy spectra of the nanocrystals are formespin and angular momentum projections on a magnetic-field

by the discrete quantum size levé@SL9. The QSLs of the direction correspondingly, ands and g, are the spin and

confined electrons in the conduction band are characterizestbital g factors of the electron in the corresponding state. In

by the value of the orbital momentuhand the total angular bare nanocrystals made of semiconductors with a simple
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parabolic conduction-band is equal to the bulk electron surface-induced spin-orbit term for the electron states whose
effective g-factor g, andg,=m,/m., wherem, is the bulk  magnitude is proportional ta\|f.(a)|?a®. This surface-
electron effective mass. induced spin-orbit interaction leads the additional magnetic
Spin-flip Raman-scattering studies of CdS nanocrystals, moment of the electrons in an external magnetic field in
however, have demonstrated the dependence of the groumehalogy with the additional relativistic magnetic moment of
1S electron statg, on the excitation energy, and thus on the the electrons in atonf<:?® This is conducive to the nonzero
energy of the electron state. The variationggfwith energy  surface contribution to the electranfactor that controls the
can be connected with the energy dependence of the bulknear Zeeman splitting of the QSLs. The fitting of the ex-
electrong factor! The eight-band Kane model, that is used perimental size dependence of the electgofactor in the
to describe the electron energy spectra in most direct gaground stat¥ has allowed us to determine the appropriate
semiconductors, gives the following dependence of the eleq@arameter of the general boundary conditions for bare CdSe

tron g-factor g¢(E) on its energyE,>*?® nanocrystals. The spectra of excited electron states has been
considered in the two limits of the relation between the zero-
. 2Ep A field spin-orbit splitting and the electron energy in magnetic
9(B)=0"— =~ (Eg+E)(Eg+A+E)" (3 field similar to consideration conducted for atofhs.

The paper is organized in the following way: In Sec. Il we

HereE, is the band-gap energy is the spin-orbit splitting  describe the eight-band Hamiltonians that include the exter-
of the top of the valence band, is the energetic Kane nal magnetic-field effects. In Sec. Il we derive the general
parameter, andg* =g,+Ag, where gy=2 is the free- boundary conditions for the conduction-band component of
electrong factor and|Ag|<1 is the contribution of remote the envelope function at the abrupt surfasee Sec. Il A
bands to the bulk electrog factor. The second term in Eq. and analyze the surface effect on the electron QSLs in a zero
(3) describes the negative contribution of the valence bandnagnetic field(see Sec. Il B. The effect of the weak exter-
(with A>0) into the electrorg factor. It decreases with in- nal magnetic field on the electron QSLs is considered in Sec.
creasing the energy of QSLs caused by the reduction of th®/. The size dependence of the electron ground-gjdéetor
nanocrystals size. Thus, the energy dependencg(&) in  in bare CdSe nanocrystals has been calculated and the value
Eq. (3) is conducive to the size dependenceygin Eq. (2), of the surface boundary parameter has been determined by
that has been measured recently in bare and core-shell Cdfiing experimental data in Sec. IV B. The symmetry of the
nanocrystalg? electron excited states in an external magnetic field is studied

The size dependence of, for the ground B electron in the low and strong magnetic-field regimese Sec. IV €
state in the spherical heterostructure has been calculated Trihe results are summarized and discussed in Sec. V.
Ref. 24 within the eight-band Kane model. It has been shown
that in a spherical heterostructure formed by two semicont. EFFECT OF A WEAK MAGNETIC FIELD ON THE QSLS
ductors,A and B, g5 is the sum of the weighted volume WITHIN THE EIGHT-BAND MODEL:
contributions of each material and the interface contribu- PERTURBATION APPROACH
tions: gs=0gs(A) +9<(B) +gag. The interface terngug IS
proportional to the square of the conduction-band component
of the wave-functiorf . at theA/B heterointerface. This cal- The energy-band structure of the cubic semiconductors
culation shows clearly thay; is very sensitive to the value of near the center of the first Brillouin zone can be well de-
the wave function at the heterointerface and to its leakag&cribed within the eight-banki- p model?*=*!In the homog-
under the barrier and thus to the boundary conditi®@®s)  enous semiconductor, the full wave function can be pre-
imposed on the wave function at the heterointerface. In Refsented as the expansidh:
24, the size dependence of the electgafiactor is calculated
using standard BCs that assumes a continuityf o0&t the _ c
interface. This leads to the vanishing of the interface term ®(0 ﬂ:Eﬂ/z \Ifﬂ(r)|8>uu
gag in the bare semiconductor nanocrystals, that are modeled
by the infinite potential barr_ier i_n the Ia_yQ because the n 2 2 T (D|R)U,, ()
standard BC at the surface in this casds 0. w=T12 a=xzz “H* K

However, the standard BCs are not always justified even _ . .
for infinite potential barrierésee, for example, Refs. 2526 Whereui, andu-,;; are the eigenfunctions of the spin op
In general, the wave-functiofy, does not vanish at the sur- €ratorS=1/2¢, whereo={oy, 0,0} are the Pauli matri-
face of bare semiconductor nanocrystals and satisfies tH€S,|S) is the Bloch function of the conduction-band edge at
general boundary conditions that are the characteristics of tH&€e I' point of Brillouin zone representing the eigenfunction
particular surfacé®?%The effect of a semiconductor surface of internal momentuml =0, and |[R,)=|X), |R,)=]Y),
on the light absorption in indirect band semiconductor/R;)=|Z) are the Bloch functions of the valence-band edge
nanocrystals has been studied in Ref. 25 and was found to & thel’ point of Brillouin zone. The combination of these
significant. functions: 1,(/§(|Rx>ti|Ry>) and |R,) are the eigenfunc-

In this paper, we study the effect of the general boundaryions of the internal momenturn=1 with projections*1
conditions on the QSLs of an electron in zero and wealand 0 on thez axis, respectively(see Refs. 30,32 The
external magnetic fields. We show that there is an additionamooth functionsW¢,(r) are the components of the

A. The eight-band model
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conduction-band spinor envelope functmﬁz(géﬂfm), and this representationi T)W?= —i[TX W], whereT is an ar-

WO A1), WhLyplr), Who (1) are thex,y,z components bitrary vector. The terms proportional t in Hamiltonian

of the valence-band spinor envelope vector (8) describe the effect of the spin-orbit coupling ame «"
— E,/6E4,* wherex" is the magnetic Luttinger paramefér.

v, L SPPRIN P R One can find thaik = —2/3 from the relatiorf>3 k= (-2
v, = we e we [ — ¥ +2v5+395)/3, where the effective-mass Luttinger
Y parameters? y7,5, can be presented agg~E,/3E, and

In the presence of external magnetiC field the E|ght'»y|é% ')’I';'% Ep/6Eg in the approximation used abo%_
component envelope functiolr (r)={¥°(r),¥"(r)} is the
solution of the Schmdinger equatiof?

-

B. Linear Zeeman effect as a perturbation

o (WO [ Following the perturbation approach developed in Ref.
H (k) P =E P | 24, we present the Hamiltonigh) as
o Aoy inPOkK H(k)=H(p)+H'(pH), 9
H(k)= PN (5) -
—iiPUyk  HY(k) where the HamiltoniarH® describes the electron states in

Here the energyE is measured from the bottom of the zero magnetic field,

conduction-bandk= (1/%)[p+ (e/c)A], wherep=—i#AV is o . . L

the momentum operator anl=(1/2)[HXxr] is the vector 2_moU2p2 iPUzp

potential of the magnetic field. Thex22 unit matrix, U, HO(p) = ,
and the Pauli matricesr,, o,, ando,, are acting on the —iPU,p EA“‘(})_ E +EA)02
spinor components of the wave functiong=+1/2). P 3 93

=—i(S|p,|Z)/my is the Kane matrix element describing the (10

coupling of the conduction and valence banjd&e Kane
energy parameteEp=2moP2, was introduced in Eq(3),
respectively. The off-diagonal matrix element in E¢p) acts

on the W* as a scalar product-kw’=k, ¥y +k, v

and the Hamiltonian$i’ describes the effect of a weak ex-
ternal magnetic field. Linear in the magnetic field terms of

H'(p,H) can be written as

+k, ¥ . The conduction-band part of the Hamiltonia#€, . . e . " A,
acting on the spinor functio®® has the form H'(pH)=ugHG+_{AVi=ugH(G+G'), (11
.~ . ah?. .. 1 - — i
AR = 22 0k2+ = g* ua(oH), ©) \ivher(Aa{oa,b} 1_/2(ab+ ba) denotes an anticommutator and
2mg 2 V=gH"(p)/dp is the envelope velocity operator. The opera-

whereg* is defined in Eq(3), anda takes into account the torsG andG’ are defined as
contribution of remote bands to the energy-dependent elec-

tron effective-massm;(E). In cubic and zinc-blende semi- lg*(frn) 0
conductors, this dependence has the following form: . 2
G= 1 , (12
Mo _ B 2 1 | 0 (im0,+5go(am)
m.(E) 3|Eq+E E4tE+A
In this paper, we focus only on the electron QSLs with en- . __mg
ergies 6<E<E,. This allows us to neglect hereafter tke a(Ln) IP—=[nxr]
terms in the valence-band part of the Hamiltonik#i, and G'= U,, (@13
to present it in the spherical approximation®%s? _ip%[nx ] 0
f
N 1 I U RN
HY(k)=— Eg+§A+(1+3K)(|H) U,+ §A(Ia) wheren=H/H is the unit vector directed along the external

magnetic field, and. = (1/%)[rx p] is the envelope angular
- momentum operator.
+ §“B90(‘7H)- ® Generally, the calculation of the linear Zeeman effect for
A the carriers confined in a three-dimensiofaD) external
Here the HamiltoniarH” should be considered as the2 potential of arbitrary shape is a straightforward theoretical
matrix acting on the spinor vectoP" rather than the &6 problem. The same procedure is used for an impurity poten-
matrix Hamiltonian acting on the six component wave func-tial and for a zero-dimensional quantum dot of an arbitrary

tion as in Ref. 32. Correspondingly={i,,i,,i,} in Eq.(8)  shape. Using the unperturbed Hamiltonféhone has to find
is the vector operator. It is straightforward to show that infirst the energy level&, and the corresponding eigen func-

155312-3



A. V. RODINA, AL. L. EFROS, AND A. YU. ALEKSEEV PHYSICAL REVIEW B67, 155312 (2003

tions ¥, ={W°, W} of the carrier in the external confining Ap \B 1 N
potential. Then, the effect of the magnetic field can be found (0] =a=7 | —a=5 (W), 7 V)
perturbatively,

+(rVV, V]| =0, (19

r=a

AE, = ugH[(W, |G| W) +(¥,|G'|¥))], (14

where the wave functions should be normalized,|¥,)  wherea is the nanocrystal radius ang=r/r (in spherical

=1. Substituting¥, into this expression we obtain coordinatesr is defined as=(r,0,¢)). This general re-
quirement of Eq(19) should be satisfied for two arbitrarily
AE\=AE.+AE,+AE¢qup, (15  chosen eigenfunction¥’, and ¥, of the HamiltonianH°

defined in Eq.(10) with energiesE, andE, , respectively.
where the contribution of the valence and conduction bandSubstituting the explicit expressions for the normal compo-
to Zeeman effechE; andAE, correspondingly are nents of the envelope velocities V=7 9H%dp into Eq.
(19) one obtains

C_

1 - A
(WG (W) + (W a( ) WE), (16

H i
He 170 ra= | (W57 VIR — W 7 VW)
AE, — 1 P on) | W (Tn) | 1 2myP
=2 (et e W)+ (W), (7 +ﬁ(ﬂm¢ﬂwwﬂ o,
r=a
and the coupling correction is given by (20
AEcoup moP . Using equatiorH®¥ =EW one can express the components
“aeH :<‘I’C|i—ﬁ Uo[nXr][¥v) of the spinor vectoNr’ throughVW¥¢,
B
o MoPy oy woo e M0 gy
_ . . ' ih R
In prllnC|pIe, this stralg.ht.forward approach allowg us to flnq +——[ge(E)—g* [oXx V¥E], (21)
the linear Zeeman splitting of the energy levels in any arbi- 4moP

trarily shaped heteronanostructure. However, the calculations :
of the zero-field wave-functiond, for arbitrary shape het- Where ihe energy-dependent electron efiective-mgE)

erostructure is a rather cumbersome procedure and, cons%r—]dlg'?ﬁtorQC(E)l are_detflnedqlrg Eqs(.?t)handb(S), r_(ftspec—
quently, the Zeeman splitting calculation that uses thesdVely- The normal projec ion4¥*) can then be written as

wave functions is very complicated. In the present paper,

Cc
from hereafter, only spherical semiconductor nanocrystals g (r)= f (a_ Mo )‘NI — Ag(E)
are considered. The high symmetry of these quantum dots 2mgP me(E)) ar  4moPr
allows us to calculate the Zeeman splitting of the QSLs. ~ A
X(oL)We, (22
Ill. ENERGY LEVELS OF THE ELECTRON where Ag(E)=g* —g.(E). Substituting Eq.(22) into Eq.
CONFINED (20) one obtains the general requirement for the conduction-
IN BARE SPHERICAL NANOCRYSTALS band component of the envelope wave function at the NC

» surface:
A. General boundary conditions for the envelope wave

functions . i% Mo JU* Mo (N,;
We will consider bare semiconductor nanocrystals which J:(a)= ( 5; - g )
; : - 2mg| \ m(E,) or m(E,) ar
surface can be modeled by an impenetrable barrier. To find
unperturbed envelope wave functions that are described by 1 . T
the Hamiltonians of Eq(10) in the bulk region one should +§(‘PnAg(Eh)("L)\pA
impose an appropriate boundary conditions on these func-
tions at the nanocrystal surface. For the impenetrable barrier o Al
the general boundary conditiof@BCg have been shown in — VX Ag(E,)(al)¥7)
Ref. 26 to guarantee the vanishing of the normal to the sur-
face component of the envelope flux density matrix. In aEquation(23) must be fulfilled at each point of the surface. It
spherical nanocrystal the normal envelope flux density mais satisfied for all arbitrary chosen energy stateand 7 if
trix J}7(r) should vanish at any point of the nanocrystalsand only if the boundary conditions fdr$ as well as for\Iffi
surface, are given hy

|r=a=0. (23)
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. mg JV(r,0,¢) wherej=1x1/2 andC}i'f“ml;jZ’mz are the Clebsch-Gordan co-
Vi (r=a,0,¢)=Tag efficients. Substituting Eq27) into Eq. (24) one can write
me(E) ar L : ;
the general boundary condition for the radial wave-functions
1 . n (1),
+EAg(E)(a-L)\I’°(r,®,<p)) . (20 )
r=a
+ My . +et
whereT is a real number constant independenEafnday is fr(@)=Tag gy i (A+ ki Ti(@)], (29

the lattice constant. We assume that the surface of the nano-
crystal also possesses the spherical symmetry and is charaghere
terized by the same BCs at any point of the surface. In this |
case parametér in the GBCs of Eq(24) is independent of Sk ==-Ag(E), 1=0,12, etc. (30)
angles® and ¢. 2a

B. Electron energy levels: for the states witlj=1+1/2 and

The surface-induced spin-orbit splitting

B +
Let us consider the effect of the GBCs of Eg4) on the ok == A9(B), 1=123, etc. (31
electron QSLs in the absence of a magnetic field. Using Eg.
(21) that expresses the valence-band componigntof the  for the states withj=I—1/2. The conventionally used stan-

wave function through its conduction-band compon#tit  dard BCs for the impenetrable barrier assume vanishing of
one can derive the bulk Schtimger equation describingg®  the wave-function?® at the nanocrystal surface, and thus
inside a semiconductor nanocrystal: correspond tarap=0. In general, however, the conduction
band component of the wave function does not vanish at the
surface. Furthermore, it has been shown in Ref. 26 that the
boundary condition witilay=0 is incorrect in cases where
interband coupling is important. The appropriate value of
Ta, should be determined from the fitting to the experimen-
tal data.

The solutions of EQ.(26) can be written asf; (r)
=(Cy /a3’2)1,(¢>, ar/a), wherej, are spherical Bessel func-

h? .
S 2\ C _ c
2mC(E)U2V Ve(r)=EW(r). (25
One can see that each spin componen¥bfis a solution of
the standard bulk Schdinger equation with the energy-
dependent effective-massi,(E). Equation (25 does not
contain a spin-orbit term and its solution can always be pre-

sented ad(r)Y,,(0,¢), wherel andl|, are the angular
t d 'z | t aci ions, C” is the normalization constant determined by the
momentum and angular momentum projection, corresponds i F(We2+ W) dv=1, and ¢, is connected

ingly, YHZ(@,(p) are the spherical harmonics, and the radial Wwith the energy E of the eleciron level, E

function f,(r) satisfies to the following equation: =42 o ,f/ZmC(E)a An equation that determmaﬂ is ob-

52 tained by substitution of; (r) into the BCs of Eq(29),
———=Af(r)=Ef/(r 26
2m (E) | |( ) |( ) ( ) ao Mg
Ji(@rn)[1— ki Tag]= Hin ji—1(in)
A (92+2 9 |(|+1) a m(E) 21+1
ot T T T I+1
' — o). (32

At the same time the GBCs of E(R4) mixes two elec-
tron spin sublevels, and all electron states are characterizede nth solution of this equation defines the energy of the
now by the total angular momentujm L+ S. As a result®  nth electron level with the angular momenturand the total
is an eigen spinor of the operator of the total angular moangular momentun) =1=1/2. In the case of the standard
mentum, BCsTa,=0, and the solutiop; , is thenth zero¢| n Of the
. spherical Bessel functiong. The general BCs W|thTa(J
V=17 (1Qm(®,¢), (27)  #0 takes into account the effect of the surface on the elec-

where(; | .(©,¢) are the spherical spinorsandm are the tron energy levels that is im_port_ant in small nanoc_r_ystals. In
total angUIar momentum and its projection, respectively, anéargl_e na/rmcry;t]als | tsatlsfymg tlhe ¢ cond|t|((j)r:rz]a

| is the angular momentum of the electron state. The twg™| 1 20l (Mo/Mc), the solu ionsg;., are close tap), and the
radial functionsf,i describe the two electron states with effect of the surface on the confined electron states is negli-

=1=%1/2 (note that the states described fyy exist only for gible.

The electron states with=1+1/2 andj =1 — 1/2 have dif-
|>f1) We use the definition of the spherical spinors as Inferent energies for=1 as&:result of th(Je general BCs of Eq
Ref. 34 ]

(29). This difference describes the surface induced spin-orbit
splitting of the excited stated.=E,, 1o— E,_1,». It can be
o , (29 shown thatA. is positive if the spin-orbit splitting of the
Cl2-1720,me 12Y1m+ 172 valence band\>0.

j,m
C1/2,1/21 m— 12Y1,m-1/2
ijl,m:

155312-5



A. V. RODINA, AL. L. EFROS, AND A. YU. ALEKSEEV PHYSICAL REVIEW B67, 155312 (2003

Radius a (A) creasep the energy of all states in comparison wilta,

03 22 18 16 14 12 =0. The relatlv_e order of_ th®5, and P4, §ta§es Wlth the
T ' total momentunj = 3/2 andj = 1/2 always coincides with the
i relative order of the valence-band subbands characterized by
the same total momentum. The value of the spin-orbit split-
ting A, however, remains for all excited states much smaller
than the averaged enerdy,=(IE,_1+ (I +1)E;; 112)/(2l
+1) of the level with the orbital momentuin

If |5k Tag|<1, the averaged energids, and corre-
sponding wave numberg, , can be found from the simpli-
fied BCs given by Eqs(29) and (32 with &k;”=0. The
energy correctiond E;" coming from the smalbk;"#0 can
be found perturbatively. In the Appendix we obtain the fol-

N
[=)

o
3

Electron Level Energy (eV)

% 18 lowing energy corrections:
%070 20 a0 40 50 60 70 52
2 [R-2 *_ * 2,52 *
(@) 10000/ a® (A AE =5 IfT (a)%a®sk
Radius a (A) 12 UTS.|

g o0 2 s 16 1 12 :4_mof [Ag(BE)¥™* (olL)W7]-dS (33
> ///

“E’ ol (b) 7 where dS=r?sin(®)dO@de. Note that althoughe,’,= ¢,
~ CdSe L7 = ¢, n, the normalization constant,” #C, . However, in
< gl 1P /’ the considered approximation they can be replaced with high
o | 7 accuracy by the averaged const&t=C,"=C, that is de-
£ sl // termined by the approximate normalization condition,
f=3 S

w S e a a

o [iterzars [Clayprrar-1, (34)
£ I Pt 0 0

O| 2F ///.4"“

c L 2 2

= L ¢ h m I(1+1

(% 0/ 1 1 I 1 1 L |(I)||2:2mE (a_m(oE)> <|f|/|2+ ( 2 )|f||2)’

10 20 30 40 50 60 70 0=p c r

(b) 10000/ a° (A'Z) that neglects the second term in E@I). Thus, if

|6k Tag|<1, A.<E,, the energy levels of the excited

FIG. 1. The effect of general boundary conditions on the groundstatesEf with j =1+ 1/2 are the eigen energies of the effec-
1S and first excited P energy levels(a), and on the spin-orbit . . N
tive HamiltonianH, ,

splitting between P, and 1P, levelsA, (b) in bare CdSe nanoc-
rystals. The size dependencies are calculated for the standard BCs . .

with the surface parametefa,=0 A (solid line), for Tay,= HiQ 2 10),m=Ef Q1) m,
—0.6 A (dashed lings and forTay,=0.6 A (dotted lines. The bulk
parameters of CdSe used in calculations are described in the text.

H;=EU AJE)(La), (35)

2t 2I¥1
Figure 1 shows the effect of the general BCs on the en- . . o .

ergygof the ground $ (1=0) and thge first excited R (| vv_here the energy-dependent spin-orbit splitting(E,) is

—1) electron states in bare CdSe nanocrystals. The surfac8Ven by

induced spin-orbit interaction splits the last state into two

states with the total angular momentyns 3/2 (P4, state

andj=1/2 (P, statg and the size dependence of this split-

ting Ac=E(1P3,) —E(1P) is shown in Fig. 1b). The cal-

culations have been performed for the following bulk param- _ 3 2_ 2:2

eters of CdSeE,=19.0 eV andn.(0)=0.116m, from Ref. ol B)=2g(B) T (@)= Ag(B)CITi(1.0) 37)

35,E4=1.839 eV,A=0.42 eV, andy.(0)=0.68 from Ref.

36, that result ilm=—1.07 andg* =1.96. One can see that The approximate expressions of E¢36) and (37) describe

even a small surface parameter introduced by the GBCghe exact splittingA (E;) of the 1P states in CdSe nanoc-

|Tay|=0.6 A, significantly affects both ground and excited rystals shown in Fig. (b) with high accuracy(the largest

states in small nanocrystals. The positinegative value of  error in the smallest nanocrystals is about 2% Ta,=

the surface parameteFa,>0 (Tay<0) increases(de- —0.6 A). It is important to note here that while the matrix

2

1
AC(EI):(I"__ Zzsur(El)v (36)

2)2mya
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elements of the spin-orbit operatof:&) are nonzero only —_ Ja 2 2
for =1, Eq.(37) defines also the surface paraméigy;, for 9= |, ge(Epredrlfi ()%, (41)
thel=0 Ssymmetry states.
The dimensionless parametEg,,, is proportional to the — (2 2 2
spin-orbit splitting in the valence-bankl and to the square 9=/, mo/me(E)redrlfi(r)[%, (42

of the wave function at the surface. It describes the surface- . . . .
induced spin-orbit coupling of the conduction electron QSLs €SPectively. The first two terms in Eq40) describe the

in bare semiconductor nanocrystals. In bulk semiconductordveraged volume energy of the sgiR=—uggs(E)S and

the integration in Eq(33) results in zero spin-orbit splitting orbital u = — ugg|(E;)L magnetic moments in an external
of the conduction-band states because it must be carried ottagnetic field, and the last term describes the energy of the
at the remote bounding surface where the wave function isurface-induced magnetic momew{,,(E,) given by
vanishing. 3, =0 if one assumes the vanishing of the “

conduction-band component wave function at the surface of Psur=— Tstur(El)[TX(g'X ). (43
spherical nanocrystals. This assumption is never justified if

the coupling between conduction-band and valence-bantihis magnetic moment arises from the surface-induced spin-
components is significant. Thus, the spin-orbit splitting of theorbital term of Eq.(35), which is modified by the Larmor
electron QSLs is caused by the admixture of the valenceprecession of the electron in an external magnetic field. In-
band states near the surface. deed, the surface energy telf,,,= — (us,H) can be ob-
tained directly by replacing-iV— —iV+(e/ch)A in the
spin-orbit perturbation term (@)= —i([rxV]eo) of Eq.

(35. The origin of the surface-induced electron magnetic
moment is similar to those of an additional relativistic mag-
A. Surface-induced magnetic moment of the confined electrons netic moment of the electron in atoms, and their values are
. - derived in a similar waysee, for example, Refs. 21,27)28

_ Letus consider now the energy of the electron Q®;S, | js necessary to note that the surface-induced magnetic mo-
|fn atwealil,ma{%r,]cet:;v?elq' SU%St'tEt'”%Zt%e Zedrcz-zﬁl(;lq ‘t""':lve'ment;usur does not vanish for the states with 0 even when
unctions ¥ = , given by Egs. an into .. _ . : . . ¥

Egs.(16) and(18), we obtain for the energy correctiahE It arises from the spin-orbit coupling tern. &).

%AEc“‘AEcoupa B. Size dependence of the ground-state electron g factor

IV. THE FINE STRUCTURE OF ELECTRON QSLS
IN A MAGNETIC FIELD

1 All electron states that hav&symmetry are Kramers dou-
AE= uaH| Z(W¥Clg(E) on)|we blets that are degene_rat_e Wlt_h respect to its spin projection.
o [2< |9:(E) (o) ¥°) The external magnetic field lifts this degeneracy and splits
m these states into two levels with energy,
o

mc(E)

+ (W (L] we)

+AEg,,, (38 1
EO(H):EOiEILBgs(EO)Hy (44)

where we neglectE, corrections of Eq.(17) as being \yhere the+ signs correspond to the electron states with

smaller by the factoE, /(E,+Eg). The second term of EQ. gpins parallel and antiparallel to the magnetic-field direction.

(38) describes the unexpected surface contribution to thehe spin effectivey factor can be obtained from E40) as
electron magnetic energy,

— 1
9s(Eg) =0s(Eo) + _Esur- (45)
AE —@f 45t Ag(E,) (W [rX[oxr]]¥o) °

sur 4 r 9(E)( i ' The effective electrory factor for the S electron states in

(399  spherical heterostructureg,(Eg), was first obtained in Ref.

24 where the standard BCs at the heterointerface were used
The effective Hamiltonian describing the fine structure of theto describe the size dependence of the electydactor. In
electron state with the orbital momentuimin a magnetic  the case of the bare semiconductor nanocrystals the standard
field can be written a8l,+H,,, whereH, is defined by Eq. BC at the surfacd fo(a)=0] would lead to zero surface
(35) and the effect of a weak magnetic field is described bycontribution to the effective electrop factor. We have ex-
amined here the effect of the general BC of E2ZP) on the
R _ ~ _ R electron effectiveg factor in CdSe nanocrystals. The
HH=§MBgS(E|)(aH)+,uBg|(E|)(LH) weightedg factor of the states witls symmetry in Eq.(45)
can be written as

[N

1 -~ a
FareraB)(lox ). 40 B)=go+ | Al TaE) -0l (40

Here the weighted spig, and orbitalg, g factors are given where the correctionAE, of Eq. (17) to theg, of Eq. (41)
by have been added. Figure 2 shows the size dependence of the
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. FIG. 3. The size dependence of the dimensionless surface pa-
f fIG.' 25 Thecs(;zse dependen::el of tTe lgrtozr?sk:\rt]e eI:ect:jorgd BCrameterESL,, of Eq. (37) for the ground B (I =0) and first excited
a'(t:hoihm arf'e € nant(();:rys;%s ca:lgul.a N f orT e_sia(r)l GaR TP (I=1) states in bare CdSe nanocrystals. The dashed and dotted
Wi € surlace parametera,~ (soli .|ne), or Tap=="0. curves are calculated with the surface parameTaag=—0.6 A
(dashed ling and forTay,=0.6 A (dotted ling. The empty squares _ .

. _ andTa,=0.6 A, respectively.
show the experimental data from Ref. 13. For comparison we also
show the energy dependence of the bulk electron g-fag(iE) R _ . o
calculated at the energy of theSklectron leveldash-dotted line  tion g,ugH <A, splits the levels according to projectian

and bulk value of the electrog factor (short dash-dotted line of the full momenturmj on the magnetic field as
ground-state electrog factor, gs(Ey), calculated using the + '_ +
standard BC witHTag|=0 and the general BC withT ay| Sjm E'+AC(EI)2| T1 " Hed) (E)mH “0
=0.6 A. One can see that the experimental size dependen%ar i —1+1/2 and
of the electrorg-factor taken from Ref. 13 is described very J
well by the general BC with the negative paramele= [+1
—0.6, while the use of the positive parameter brings the Ejm= El—AC(E,)er,ung‘(EQmH (48
theoretical curve far away from the data.

The size dependence of the bulklike energy-dependent o j—| —1/2. The effective electrog factors

factor, g.(Eg), calculated with the help of Ed3) for Ta,

=0 is also shown in Fig. 2. One can see that the bulk _ 2j—1— 2j+

g-factorg, fails to describe the experimental data even in the gj+ =2—jgs(E.) + Z—jg,(E,) + mEsu,, (49
largest dots. At the same time, the difference betweengwo
curves calculated witffa,=—0.6 A andTay,=0 is not very )
large. This is because the general BCs affects the elegtron g = 1 E(E )+ 2j+3 E(E )— 2j+1 s
factor in two ways: indirectly, through the change of the =1 2(j+1)°% " 2(j+1)*" " 8j(j+1) 75
zero-field energyE, decreasing or increasing the electrmn (50
factor, and directly, through the surface contribution . .
1/35,(1S), that is always positive. In the case of the nega—are the analogs c:f the Lande"factors for elggtrons in atoms in
tive Tag<O the GBCs decreases the energy of the grounéhe case of the "anomalous” Zeeman eff tThe.sgrface
electron state decreasing the electgofactor, and these two contributions to the electrog factors (<2.s,,) are similar to

effects partly compensate for each other. However, the su}-h ev\r/ﬁlglgv;ﬁ:ac (;(()arrr()e_ffzitleolgs flizeRisrﬁgtTJ’rze&s liting becomes
face contribution 1/3,,,(1S) calculated with Tay= PAtINg

—0.6 A is significant in small nanocrystalsee Fig. smaller than the energy of the orbital magnetic moment, the
' 9 y g% magnetic-field Zeeman term mixes the states with different

j=1=%=1/2. In this case the projections of the spin momentum
s, and orbital momenturh, on the direction of the magnetic
field are a more convenient notation for describing the elec-
_ _ _ tron state fine structure. The spin-orbit tet'§ and the ad-
The fine structure of the excited electron states in an exgitional surface momeng,,,H may, however, mix the states
ternal magnetic field is very sensitive to the relation betweenyith different values of thes,|, product.
Ac(E) and the energy of the orbital magnetic moment | et us consider the matrix elements of the surface mag-
giugH. In thelow-field regimewhen the magnetic energy is netic moment operatop,, on the eigen functions of one
smaller than the separation between the electron states wiingular momenturh Assuming that the states with different
j=1%=1/2, the external magnetic field satisfying the condi-I are not mixed, one can find

C. Symmetry of the confined electron excited states
in an external magnetic field

155312-8
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10 for the electrons in atori one can additionally neglect the

g Lbulk m /m (0)=8.62 off-diagonal elements of the spin-orbit operalt&®. The fine
s .0 structure of the electron level with orbital momentunis
S 8T described by
7
3 6l E E+2$ZIZA(E)+ (E,,|)H
I Ll,.8,~ 5141 S ,
= [ 18, BT 5 2l MBS s Byl
5 o _
S 4l + el 91(EDH, (54)
3 sl wherel,=—1I,...0,...] ands,=*=1/2 are the projection
é'_’ U/ of the electron angular momentum and spin on the magnetic-
- CdSe field direction and

1+

| Y RS | I | Y R | 2 2_
10 20 30 40 50 60 70 80 90 100 "+1+17-1

Radius a (A) O(Er.l2) = 05(B)+ (214+3)(21-1)

FIG. 4. The size dependence of the orbgdhctor,g,(1P), for . Thus the structures of the excited ,QSI,-S withl may be
the first excited state in bare CdSe nanocrystals calculated for tHdifférent in weak and strong magnetic fields and undertake

standard BCs with surface parameTea,=0 (solid line), for Tay the anticrossing in the intermediate magnetic figichilar to
=—0.6 A (dashed lines and for Ta,=0.6 A (dotted lines. For those known for aton?d). In nanocrystals the weak, interme-
comparison we also show the bulk energy dependence of the buitiate, and strong field regimes depend strongly on the nano-
orbital g factormy/m.(E) calculated at the energy of thélelec-  Crystal size as well as on its surface conditions.

tron level(dash-dotted lineand its value at the bottom of the con-

duction bandshort dash-dotted line V. DISCUSSION AND CONCLUSION

2sur(EI)- (55)

o] — 1422 We have studied the effect of general boundary conditions
y (the surface effegton the electron QSLs and their Zeeman
(21+3)(21—-1) ™ splitting in spherical bare semiconductor nanocrystals. The
above consideration that has been carried on in the eight-
band effective-mass model can be easily extended to de-
scribe spherically layered heterostructures and wide gap
(51) semiconductor nanocrystals, which are better described by
the fourteen-band modé¢see, for example, Ref. 38
wherei,j=x,y,z and §; is the Kronecker delta symbol. Comparing the results of our theoretical calculation with
Substituting Eq.(51) into (H[7X(exX7)])=(Ho)—(H7)  the experime_ntal size dependence of the eleayrfactor, we
X(r0), we rewrite the magnetic-field Hamiltoniagf,, of ~ have determined the surface paraméteg=—0.6+0.05 A

rirj
_2Y|,m(®1(10):
r

2
“@Fa) =1 i Yin(0.9),

Eq. (40) as in bare CdSe nanocrystals. Fitting the experimental data, we
used E,=19.0 eV, that has been obtained independently
N - from bulk measurementsand that describes better the ex-
Hi=1s05(E) (SH)+ e (E)(LH) perimental data thaB,=17.5 eV, previously used for CdSe
(SH)I:2+{(SL)(LH)} in Refs. 4,5. The surface paramefea, characterizes the

+ pe2sulEy) 2+3)2-1 (52)  electronic properties of the surface and should be considered

as the additional one to the set of parameters that describes

Here the spin electrog factor is given by the bulk properties of semiconductors. In CdSe nanocrystals

prepared by a different technigle, can be different.
— The extracted absolute value and the negative sign of
9s(E))=0s(E)) — mzsur(a)- (53 Ta,=—0.6 A is consistent with our theoretical expectations
for Tay in studied CdSe nanocrystals. Its value is very close
The matrix elements of the last term in H§2) are zero for  to the theoretical value of the surface parameter for semicon-
1=0. If 3¢,(E)<g,(E,) one can neglect the off diagonal ductors with a symmetrical band structtfré(Tao) =a*
elements of the operat§¢SL)(LH)} and replace them with =\/ﬁ2/2Epm0f~v0.45 A. It can also be shown within the
(SH)(Ln)2. This is the case for the first excitedPlstate in  eight-band effective-mass model, that the negative sign of
CdSe nanocrystalgfor comparison, see the correspondingthe surface parameter does not allow the existence of the
curves in Figs. 3 and)4In this case the last term of E(2) surface localized states with<<O (gap states(one can find
describes the surface contribution to the spin splitting of thesimilar consideration in Ref. 26Indeed, the CdSe samples
electron levels that depends on the projection of the orbitastudied in Refs. 12,13 show very high PL quantum efficiency
momentum on the magnetic fietd. and do not show deep gap transitions. The negative param-
In the strong field regimésimilar to the case of the “qua- eterTa, leads also to an additional nonparabolicity, bowing
sinormal” Zeeman effect or “complete” Paschen-Back effect the size dependence of the electron energy lelgels Fig. 1
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and therefore may describe the unexplained experimentahe manuscript. The work of A. V. Rodina was supported in
size dependence of theSlelectron level in small CdSe part by the Alexander von Humboldt Foundation, Deutsche
nanocrystals. Forschungsgemeinscha®FG) and the Swiss National Sci-
Using the GBCs we have found also the direct surfaceence Foundation. Al. L. Efros thanks the U.S. Office of Na-
contribution to the spin-orbit effects in zero and weak exter-val ResearcfONR), U.S. Department of Energ§pOE), and
nal magnetic fields. The surface contribution to the zero-fieldhe DARPA/QuIST program for financial support. A. Yu.
spin-orbit splitting is similar to the interface contribution ob- Alekseev acknowledges support from the Swiss National
tained in Refs. 39,40 for 2D electrons in planar quantumScience Foundation and of the Grant No. INTAS 99-1705.
wells by using the spin-dependent boundary conditions. It
has been pointed out in Ref. 39 that the interface contribution
to the Rashba spin-orbit term in the 2D Hamiltorffais
related to discontinuity of the band parameters at the semi-
conductor heterointerface and that this contribution is an ad-
ditional one to those connected with the space charge and/or We are interested in deriving a variation of the electron
the external electric field. The importance of the effects delevel energyE caused by a small variation of the parameter
scribed by the Rashba term for the 2D electrons confinethat characterizes the surface BC for the bulk wave-function
near the curved surfat&*® and cylindrical semiconductor f(r,s). The GBCs at the spherical surface of the nanocrystal
quantum dot¥ has been emphasized recently. The Rashbavith radiusr =a can be written as
spin-orbit term in our spherical dots is a direct consequence
of the GBCs for the envelope function. The same consider- f'(a,s)=f(a,s)A(s), (A2)
ation can be made for cylindrical dots or any other nano- . ]
structure geometrythe results will be published elsewhgre WhereA(s) is the real number constant. The functitfm, s)
The GBCs provide an important connection between thés the solution of bulk Schidinger equationDk?f(r,s)
constant that describes the magnitude of the spin-orbit term=E(s)f(r,s), where the constand is independent of.
and surface conditions in nanostructures. Taking a derivative of the Schdinger equation os, mul-
In conclusion we have shown an important influence of tiplying both parts of the resulting equation by and inte-
the semiconductor surface on the electron energy structure igrating it over the sphere volume, one can obtain as
bare spherical nanocrystals. The effect of the surface has
been modeled through the choice of the boundary condition JE
parameter that describes the nonzero value of the envelope s Da
function at the nanocrystal surface. The additional nonpara-
boljc!ty of the quantum size energy levels, the Spin'orbi.tTaking a derivative of Eq.(Al) and substituting
s_pl|tt|ng of thg electron quantum size levels, and the add"ﬁf’(a,g)/agz&A(g)/&gf(a,g)+A(g)af(a,g)/ag into Eq.
tional magnetic moment of the electrons have been shownatfﬁz) one arrives at the final expression for the energy varia-

APPENDIX: EFFECT OF THE SMALL SURFACE
PERTURBATION ON THE QUANTUM SIZE LEVEL
ENERGY IN SPHERICAL NANOCRYSTALS

2 —f’*—

as E (A2)

of of’ )
f*

r=a

be induced by the surface. The effects are significant in smalj "<
nanocrystals and their considerations require a multiband ef-
fective mass-approach because interband coupling is impor-

tant there. The analysis of the experimental data allows us to —=
determine the appropriate parameter of the boundary condi- s
tions that characterize the surface in studied bare CdSe Seng-ubstituting D =#2/2m () and  A(s)=my(E,)/

duct tals. . " . i c
conducior nanocrysta's mo[ 1/(Tag) +s] with s=—5k; (E) into this equation we
ACKNOWLEDGMENTS obtain Eq.(33) for the energy corre.ctlomE,— to the aver-
aged energy of the electron level with the orbital momentum
The authors thank I. A. Merkulov and B. K. Meyer for | caused by the small perturbation of the boundary conditions
helpful discussions and J. Tischler for a critical reading ofof Eq. (29).
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