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Effect of the surface on the electron quantum size levels and electrong factor in spherical
semiconductor nanocrystals
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The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an
eight-band effective-mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is
modeled through the boundary condition imposed on the envelope wave function at the surface. We show that
the spin-orbit splitting of the valence band leads to the surface-induced spin-orbit splitting of the excited
conduction-band states and to the additional surface-induced magnetic moment for electrons in bare nanocrys-
tals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman
splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size
dependence of the ground-state electrong factor in CdSe nanocrystals has allowed us to determine the appro-
priate surface parameter of the boundary conditions. The structure of the excited electron states is considered
in the limits of weak and strong magnetic fields.
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I. INTRODUCTION

The modern technique of nanocrystal growth has crea
high optical quality nanocrystals with narrow siz
distribution1,2 that can be also chemically doped.3 This al-
lows one to study the level structure of the nanocrys
using interband optical spectroscopy,4–6 tunneling spec-
troscopy,7,8 and the far-infrared intraband spectroscopy3,9

Important additional information about the origin of the
levels and their symmetry could be obtained by using opt
magnetospectroscopy of the intraband and interband tra
tions and tunneling magnetospectroscopy, as was done m
years ago in the case of atoms, hydrogenlike shallow def
and excitons. There is the other group of experiments, s
as magneto circular dichroism,10 spin-flip Raman
scattering,11 time-dependent Faraday rotation,12,13 EPR and
ODMR measurements,14–16 and magnetophotolum
inescence,17 where the magnetic field is an essential comp
nent of the experimental technique. Interpretation of all th
experiments requires the knowledge of electron and hole
ergy spectra in magnetic fields.

A wide class of semiconductor materials can be prepa
in nanocrystal form. In most cases they have a spher
shape and can be bare semiconductor nanocrystals or o
type heterostructure nanocrystals composed of an inner s
conductor core coated with several spherical shells of dif
ent semiconductors.18–20 Technology allows one to vary th
radius of the nanocrystal core from 10–40 Å in a control
manner. The energy spectra of the nanocrystals are for
by the discrete quantum size levels~QSLs!. The QSLs of the
confined electrons in the conduction band are character
by the value of the orbital momentuml and the total angula
0163-1829/2003/67~15!/155312~11!/$20.00 67 1553
d

ls

l
si-
ny
ts

ch

-
e
n-

d
al
on-

i-
r-

ed

ed

momentumj 5 l 61/2, similar to the bound electron states
atoms.21 In a zero magnetic field, the levels are degener
with respect to the projection of the total momentumj.

The spectra of the nanocrystals in an external magne
field H are well described as an atomic Zeeman effect
diamagneticH2 contribution to the spectra could be n
glected because the nanocrystal radiusa is considerably
smaller than the magnetic lengthL5Ac\/eH, wheree is the
absolute value of a free-electron charge,c is the speed of
light. In a reasonable magnetic-fieldH,10 T the diamag-
netic contribution to the QSLs;(a/L)4!1. However, the
effect of the external magnetic field on the electron QS
depends on the zero-field spin-orbit splitting,Dc , of the lev-
els with differentj 5 l 61/2 ~One can find a description of th
similar effect for atoms in Ref. 21!. If Dc is larger than the
Zeeman energy, the weak magnetic field splits the elec
levels

DEj
65mBgj

6mH, m52 j ,2 j 11, . . . ,j , ~1!

wheremB5e\/2m0 c is the Bohr magneton,m0 is the free-
electron mass,m is the projection of the total momentum o
the magnetic-field direction andgj

6 is the effectiveg factor
of the corresponding state, that is an analog of theLandé
factor for atoms. IfDc is small, the Zeeman splitting can b
described as the sum of the spin and orbital contribution

DEl5mBgsszH1mBgl l zH, ~2!

where sz561/2 and l z52 l ,2 l 11, . . . ,l are the electron
spin and angular momentum projections on a magnetic-fi
direction correspondingly, andgs and gl are the spin and
orbital g factors of the electron in the corresponding state.
bare nanocrystals made of semiconductors with a sim
©2003 The American Physical Society12-1
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parabolic conduction-bandgs is equal to the bulk electron
effectiveg-factor gc andgl5m0 /mc , wheremc is the bulk
electron effective mass.

Spin-flip Raman-scattering studies of CdS nanocrysta11

however, have demonstrated the dependence of the gr
1S electron stategs on the excitation energy, and thus on t
energy of the electron state. The variation ofgs with energy
can be connected with the energy dependence of the
electrong factor.11 The eight-band Kane model, that is us
to describe the electron energy spectra in most direct
semiconductors, gives the following dependence of the e
tron g-factor gc(E) on its energy,E,22,23

gc~E!5g* 2
2Ep

3

D

~Eg1E!~Eg1D1E!
. ~3!

HereEg is the band-gap energy,D is the spin-orbit splitting
of the top of the valence band,Ep is the energetic Kane
parameter, andg* 5g01Dg, where g052 is the free-
electrong factor anduDgu!1 is the contribution of remote
bands to the bulk electrong factor. The second term in Eq
~3! describes the negative contribution of the valence b
~with D.0) into the electrong factor. It decreases with in
creasing the energy of QSLs caused by the reduction of
nanocrystals size. Thus, the energy dependence ofgc(E) in
Eq. ~3! is conducive to the size dependence ofgs in Eq. ~2!,
that has been measured recently in bare and core-shell C
nanocrystals.13

The size dependence ofgs for the ground 1S electron
state in the spherical heterostructure has been calculate
Ref. 24 within the eight-band Kane model. It has been sho
that in a spherical heterostructure formed by two semic
ductors,A and B, gs is the sum of the weighted volum
contributions of each material and the interface contri
tions: gs5gs(A)1gs(B)1gAB . The interface termgAB is
proportional to the square of the conduction-band compon
of the wave-functionf c at theA/B heterointerface. This cal
culation shows clearly thatgs is very sensitive to the value o
the wave function at the heterointerface and to its leak
under the barrier and thus to the boundary conditions~BCs!
imposed on the wave function at the heterointerface. In R
24, the size dependence of the electrong factor is calculated
using standard BCs that assumes a continuity off c at the
interface. This leads to the vanishing of the interface te
gAB in the bare semiconductor nanocrystals, that are mod
by the infinite potential barrier in the layerB because the
standard BC at the surface in this case isf c50.

However, the standard BCs are not always justified e
for infinite potential barriers~see, for example, Refs. 25,26!.
In general, the wave-functionf c does not vanish at the su
face of bare semiconductor nanocrystals and satisfies
general boundary conditions that are the characteristics o
particular surface.25,26 The effect of a semiconductor surfac
on the light absorption in indirect band semiconduc
nanocrystals has been studied in Ref. 25 and was found t
significant.

In this paper, we study the effect of the general bound
conditions on the QSLs of an electron in zero and we
external magnetic fields. We show that there is an additio
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surface-induced spin-orbit term for the electron states wh
magnitude is proportional toDu f c(a)u2a3. This surface-
induced spin-orbit interaction leads the additional magne
moment of the electrons in an external magnetic field
analogy with the additional relativistic magnetic moment
the electrons in atoms.27,28 This is conducive to the nonzer
surface contribution to the electrong factor that controls the
linear Zeeman splitting of the QSLs. The fitting of the e
perimental size dependence of the electrong factor in the
ground state13 has allowed us to determine the appropria
parameter of the general boundary conditions for bare C
nanocrystals. The spectra of excited electron states has
considered in the two limits of the relation between the ze
field spin-orbit splitting and the electron energy in magne
field similar to consideration conducted for atoms.21

The paper is organized in the following way: In Sec. II w
describe the eight-band Hamiltonians that include the ex
nal magnetic-field effects. In Sec. III we derive the gene
boundary conditions for the conduction-band componen
the envelope function at the abrupt surface~see Sec. III A!
and analyze the surface effect on the electron QSLs in a
magnetic field~see Sec. III B!. The effect of the weak exter
nal magnetic field on the electron QSLs is considered in S
IV. The size dependence of the electron ground-stateg factor
in bare CdSe nanocrystals has been calculated and the v
of the surface boundary parameter has been determine
fitting experimental data in Sec. IV B. The symmetry of t
electron excited states in an external magnetic field is stud
in the low and strong magnetic-field regimes~see Sec. IV C!.
The results are summarized and discussed in Sec. V.

II. EFFECT OF A WEAK MAGNETIC FIELD ON THE QSLS
WITHIN THE EIGHT-BAND MODEL:

PERTURBATION APPROACH

A. The eight-band model

The energy-band structure of the cubic semiconduc
near the center of the first Brillouin zone can be well d
scribed within the eight-bandk•p model.29–31In the homog-
enous semiconductor, the full wave function can be p
sented as the expansion:30

F~r!5 (
m561/2

Cm
c ~r!uS&um

1 (
m561/2

(
a5x,z,z

Ca m
v ~r!uRa&um , ~4!

whereu1/2 and u21/2 are the eigenfunctions of the spin o
eratorŜ51/2ŝ, whereŝ5$ŝx ,ŝy ,ŝz% are the Pauli matri-
ces,uS& is the Bloch function of the conduction-band edge
the G point of Brillouin zone representing the eigenfunctio
of internal momentumI 50, and uRx&5uX&, uRy&5uY&,
uRz&5uZ& are the Bloch functions of the valence-band ed
at theG point of Brillouin zone. The combination of thes
functions: 1/A2(uRx&6 i uRy&) and uRz& are the eigenfunc-
tions of the internal momentumI 51 with projections61
and 0 on thez axis, respectively~see Refs. 30,32!. The
smooth functionsC61/2

c (r) are the components of th
2-2
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conduction-band spinor envelope functionCc5(C21/2
c

C 1/2
c

), and
Cx61/2

v (r), Cy 61/2
v (r), Cz61/2

v (r) are thex,y,z components
of the valence-band spinor envelope vector

Cv5S C1/2
v

C21/2
v D 5H S Cx 1/2

v

Cx 21/2
v D ,S Cy1/2

v

Cy21/2
v D ,S Cz1/2

v

Cz 21/2
c D J .

In the presence of external magnetic field the eig
component envelope functionC(r)[$Cc(r),Cv(r)% is the
solution of the Schro¨dinger equation29

Ĥ~ k̂!S Cc

CvD 5ES Cc

CvD ,

Ĥ~ k̂!5S Ĥc~ k̂! i\PÛ2k̂

2 i\PÛ2k̂ Ĥv~ k̂!
D . ~5!

Here the energyE is measured from the bottom of th
conduction-band,k̂5(1/\)@ p̂1(e/c)A#, wherep̂52 i\“ is
the momentum operator andA5(1/2)@H3r# is the vector
potential of the magnetic field. The 232 unit matrix, Û2,
and the Pauli matrices,sx , sy , and sz , are acting on the
spinor components of the wave functions (m561/2). P

52 i ^Su p̂zuZ&/m0 is the Kane matrix element describing th
coupling of the conduction and valence bands@The Kane
energy parameterEp52m0P2, was introduced in Eq.~3!,
respectively#. The off-diagonal matrix element in Eq.~5! acts
on the Cv as a scalar product; k̂Cv[ k̂xCx

v1 k̂yCy
v

1 k̂zCz
v . The conduction-band part of the Hamiltonian,Ĥc,

acting on the spinor functionCc has the form

Ĥc~ k̂!5
a\2

2m0
Û2k̂21

1

2
g* mB~ŝH !, ~6!

whereg* is defined in Eq.~3!, anda takes into account the
contribution of remote bands to the energy-dependent e
tron effective-mass,mc(E). In cubic and zinc-blende sem
conductors, this dependence has the following form:

m0

mc~E!
5a1

Ep

3 F 2

Eg1E
1

1

Eg1E1DG . ~7!

In this paper, we focus only on the electron QSLs with e
ergies 0,E,Eg . This allows us to neglect hereafter thek2

terms in the valence-band part of the Hamiltonian,Ĥv, and
to present it in the spherical approximation as:30,32

Ĥv~ k̂!52FEg1
1

3
D1~113k!~ ÎH!GÛ21

1

3
D~ Î ŝ!

1
1

2
mBg0~ŝH!. ~8!

Here the HamiltonianĤv should be considered as the 232
matrix acting on the spinor vectorCv rather than the 636
matrix Hamiltonian acting on the six component wave fun
tion as in Ref. 32. Correspondingly,Î5$ Î x , Î y , Î z% in Eq. ~8!
is the vector operator. It is straightforward to show that
15531
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this representation (ÎT)Cv52 i @T3Cv#, whereT is an ar-
bitrary vector. The terms proportional toD in Hamiltonian
~8! describe the effect of the spin-orbit coupling andk5kL

2Ep/6Eg ,29 wherekL is the magnetic Luttinger parameter.32

One can find thatk522/3 from the relation:29,33 kL5(22
2g1

L12g2
L13g3

L)/3, where the effective-mass Luttinge
parameters,32 g1,2,3

L , can be presented as:g1
L'Ep/3Eg and

g2
L'g3

L'Ep/6Eg in the approximation used above.29

B. Linear Zeeman effect as a perturbation

Following the perturbation approach developed in R
24, we present the Hamiltonian~5! as

Ĥ~ k̂!5Ĥ0~ p̂!1Ĥ8~ p̂,H!, ~9!

where the HamiltonianĤ0 describes the electron states
zero magnetic field,

Ĥ0~ p̂!5S a

2m0
Û2p̂2 iPÛ2p̂

2 iPÛ2p̂
1

3
D~ Î ŝ!2S Eg1

1

3
D D Û2

D ,

~10!

and the HamiltoniansĤ8 describes the effect of a weak ex
ternal magnetic field. Linear in the magnetic field terms
Ĥ8(p̂,H) can be written as

Ĥ8~ p̂,H !5mBHĜ1
e

c
$A,V̂%[mBH~Ĝ1Ĝ8!, ~11!

where$a,b%51/2(ab1ba) denotes an anticommutator an
V̂5]Ĥ0(p)/]p is the envelope velocity operator. The oper
tors Ĝ andĜ8 are defined as

Ĝ5S 1

2
g* ~ŝn! 0

0 ~ Î n!Û21
1

2
g0~ŝn!

D , ~12!

Ĝ85S a~ L̂n! iP
m0

\
@n3r#

2 iP
m0

\
@n3r# 0

D Û2 , ~13!

wheren5H/H is the unit vector directed along the extern
magnetic field, andL̂5(1/\)@r3p̂# is the envelope angula
momentum operator.

Generally, the calculation of the linear Zeeman effect
the carriers confined in a three-dimensional~3D! external
potential of arbitrary shape is a straightforward theoreti
problem. The same procedure is used for an impurity pot
tial and for a zero-dimensional quantum dot of an arbitra
shape. Using the unperturbed HamiltonianĤ0 one has to find
first the energy levelsEl and the corresponding eigen fun
2-3
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tions Cl5$Cc,Cv% of the carrier in the external confinin
potential. Then, the effect of the magnetic field can be fou
perturbatively,

DEl5mBH@^CluĜuCl&1^CluĜ8uCl&#, ~14!

where the wave functions should be normalized^CluCl&
51. SubstitutingCl into this expression we obtain

DEl5DEc1DEv1DEcoup, ~15!

where the contribution of the valence and conduction ba
to Zeeman effectDEc andDEv correspondingly are

DEc

mBH
5

1

2
^Ccug* ~ŝn!uCc&1^Cm

c ua~ L̂n!uCm
c &, ~16!

DEv

mBH
5

1

2
^Cvug0~ŝn!uCv&1^Cm

v u~ Î n!uCm
v &, ~17!

and the coupling correction is given by

DEcoup

mBH
5^Ccu i

m0P

\
Û2@n3r#uCv&

1^Ccu i
m0P

\
Û2@n3r#uCv&* . ~18!

In principle, this straightforward approach allows us to fi
the linear Zeeman splitting of the energy levels in any ar
trarily shaped heteronanostructure. However, the calculat
of the zero-field wave-functionsCl for arbitrary shape het
erostructure is a rather cumbersome procedure and, co
quently, the Zeeman splitting calculation that uses th
wave functions is very complicated. In the present pap
from hereafter, only spherical semiconductor nanocrys
are considered. The high symmetry of these quantum
allows us to calculate the Zeeman splitting of the QSLs.

III. ENERGY LEVELS OF THE ELECTRON
CONFINED

IN BARE SPHERICAL NANOCRYSTALS

A. General boundary conditions for the envelope wave
functions

We will consider bare semiconductor nanocrystals wh
surface can be modeled by an impenetrable barrier. To
unperturbed envelope wave functions that are described
the Hamiltonians of Eq.~10! in the bulk region one should
impose an appropriate boundary conditions on these fu
tions at the nanocrystal surface. For the impenetrable ba
the general boundary conditions~GBCs! have been shown in
Ref. 26 to guarantee the vanishing of the normal to the
face component of the envelope flux density matrix. In
spherical nanocrystal the normal envelope flux density m
trix Jt

lh(r) should vanish at any point of the nanocrysta
surface,
15531
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lh~r!ur 5a[t•JlbU r 5a5

1

2
@~Cl ,t•V̂Ch!

1~t•V̂Cl ,Ch!#U
r 5a

50, ~19!

where a is the nanocrystal radius andt5r/r ~in spherical
coordinatesr is defined asr[(r ,Q,w)). This general re-
quirement of Eq.~19! should be satisfied for two arbitrarily
chosen eigenfunctionsCl and Ch of the HamiltonianĤ0

defined in Eq.~10! with energiesEl and Eh , respectively.
Substituting the explicit expressions for the normal comp
nents of the envelope velocitiest•V̂5t•]Ĥ0/]p into Eq.
~19! one obtains

Jt
lh~r!U r 5a5

i\

2m0
Fa~Ch

c t•“Cl
c* 2Cl

c* t•“Ch
c !

1
2m0P

\
~t•Ch

v Cl
c* 2t•Cl

v* Ch
c !GU

r 5a

50.

~20!

Using equationĤ0C5EC one can express the componen
of the spinor vectorCv through“Cc,

Cv5
\

2m0P S a2
m0

mc~E! D“Cc

1
i\

4m0P
@gc~E!2g* #@ŝ3“Cc#, ~21!

where the energy-dependent electron effective-massmc(E)
and g-factor gc(E) are defined in Eqs.~7! and ~3!, respec-
tively. The normal projection (tCv) can then be written as

tCv~r !5
\

2m0P S a2
m0

mc~E! D ]Cc

]r
2

\

4m0Pr
Dg~E!

3~ŝL̂!Cc, ~22!

where Dg(E)5g* 2gc(E). Substituting Eq.~22! into Eq.
~20! one obtains the general requirement for the conducti
band component of the envelope wave function at the
surface:

Jt
lh~a!5

i\

2m0
F S m0

m~El!
Ch

c
]Cl

c*

]r
2

m0

m~Eh!
Cl

c*
]Ch

c

]r D
1

1

2r
„Ch

c Dg~El!~ŝL̂!Cl
c*

2Cl
c* Dg~Eh!~ŝL̂!Ch

c
…G ur 5a50. ~23!

Equation~23! must be fulfilled at each point of the surface.
is satisfied for all arbitrary chosen energy statesl andh if
and only if the boundary conditions forCl

c as well as forCh
c

are given by
2-4
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Cc~r 5a,Q,w!5Ta0S m0

mc~E!

]Cc~r ,Q,w!

]r

1
1

2r
Dg~E!~ŝL̂ !Cc~r ,Q,w! D U

r 5a

, ~24!

whereT is a real number constant independent ofE anda0 is
the lattice constant. We assume that the surface of the n
crystal also possesses the spherical symmetry and is ch
terized by the same BCs at any point of the surface. In
case parameterT in the GBCs of Eq.~24! is independent of
anglesQ andw.

B. Electron energy levels:
The surface-induced spin-orbit splitting

Let us consider the effect of the GBCs of Eq.~24! on the
electron QSLs in the absence of a magnetic field. Using
~21! that expresses the valence-band componentCv of the
wave function through its conduction-band componentCc

one can derive the bulk Schro¨dinger equation describingCc

inside a semiconductor nanocrystal:

2
\2

2mc~E!
Û2“

2Cc~r!5ECc~r!. ~25!

One can see that each spin component ofCc is a solution of
the standard bulk Schro¨dinger equation with the energy
dependent effective-massmc(E). Equation ~25! does not
contain a spin-orbit term and its solution can always be p
sented asf l(r )Yl ,l z

(Q,w), where l and l z are the angular
momentum and angular momentum projection, correspo
ingly, Yl ,l z

(Q,w) are the spherical harmonics, and the rad

function f l(r ) satisfies to the following equation:

2
\2

2mc~E!
D l f l~r !5E fl~r !, ~26!

D l5
]2

]2r
1

2

r

]

]r
2

l ~ l 11!

r 2
.

At the same time the GBCs of Eq.~24! mixes two elec-
tron spin sublevels, and all electron states are character
now by the total angular momentumj5L1S. As a resultCc

is an eigen spinor of the operator of the total angular m
mentum,

Cc5 f l
6~r !V j ,l ,m~Q,w!, ~27!

whereV j ,l ,m(Q,w) are the spherical spinors,j andm are the
total angular momentum and its projection, respectively,
l is the angular momentum of the electron state. The
radial functionsf l

6 describe the two electron states withj
5 l 61/2 ~note that the states described byf l

2 exist only for
l>1). We use the definition of the spherical spinors as
Ref. 34

V j ,l ,m5S C1/2,1/2;l ,m21/2
j ,m Yl ,m21/2

C1/2,21/2;l ,m11/2
j ,m Yl ,m11/2

D , ~28!
15531
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wherej 5 l 61/2 andCj 1,m1; j 2,m2
j ,m are the Clebsch-Gordan co

efficients. Substituting Eq.~27! into Eq. ~24! one can write
the general boundary condition for the radial wave-functio
f l

6(r ),

f l
6~a!5Ta0F m0

mc~E!
f l

68~a!1dkl
6 f l

6~a!G , ~29!

where

dkl
15

l

2a
Dg~E!, l 50,1,2, etc. ~30!

for the states withj 5 l 11/2 and

dkl
252

l 11

2a
Dg~E!, l 51,2,3, etc. ~31!

for the states withj 5 l 21/2. The conventionally used stan
dard BCs for the impenetrable barrier assume vanishing
the wave-functionCc at the nanocrystal surface, and th
correspond toTa050. In general, however, the conductio
band component of the wave function does not vanish at
surface. Furthermore, it has been shown in Ref. 26 that
boundary condition withTa050 is incorrect in cases wher
interband coupling is important. The appropriate value
Ta0 should be determined from the fitting to the experime
tal data.

The solutions of Eq.~26! can be written asf l
6(r )

5(Cl
6/a3/2) j l(f l ,n

6 r /a), where j l are spherical Bessel func
tions, Cl

6 is the normalization constant determined by t
condition *(uCcu21uCvu2)dV51, and f l ,n

6 is connected
with the energy E of the electron level, E
5\2f l ,n

62/2mc(E)a2. An equation that determinedf l ,n
6 is ob-

tained by substitution off l
6(r ) into the BCs of Eq.~29!,

j l~f l ,n
6 !@12dkl

6Ta0#5
Ta0

a

m0

mc~E!
f l ,n

6 F l

2l 11
j l 21~f l ,n

6 !

2
l 11

2l 11
j l 11~f l ,n

6 !G . ~32!

The nth solution of this equation defines the energy of t
nth electron level with the angular momentuml and the total
angular momentumj 5 l 61/2. In the case of the standar
BCsTa050, and the solutionf l ,n

6 is thenth zerof l ,n
0 of the

spherical Bessel functionsj l . The general BCs withTa0
Þ0 takes into account the effect of the surface on the e
tron energy levels that is important in small nanocrystals
large nanocrystals satisfying the conditiona
@uTa0u(m0 /mc), the solutionsf l ,n

6 are close tof l ,n
0 and the

effect of the surface on the confined electron states is ne
gible.

The electron states withj 5 l 11/2 andj 5 l 21/2 have dif-
ferent energies forl>1 as a result of the general BCs of E
~29!. This difference describes the surface induced spin-o
splitting of the excited states,Dc5El 11/22El 21/2. It can be
shown thatDc is positive if the spin-orbit splitting of the
valence bandD.0.
2-5
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Figure 1 shows the effect of the general BCs on the
ergy of the ground 1S ( l 50) and the first excited 1P ( l
51) electron states in bare CdSe nanocrystals. The surf
induced spin-orbit interaction splits the last state into t
states with the total angular momentumj 53/2 (P3/2 state!
and j 51/2 (P1/2 state! and the size dependence of this sp
ting Dc5E(1P3/2)2E(1P1/2) is shown in Fig. 1~b!. The cal-
culations have been performed for the following bulk para
eters of CdSe:Ep519.0 eV andmc(0)50.116m0 from Ref.
35, Eg51.839 eV,D50.42 eV, andgc(0)50.68 from Ref.
36, that result ina521.07 andg* 51.96. One can see tha
even a small surface parameter introduced by the GB
uTa0u50.6 Å, significantly affects both ground and excite
states in small nanocrystals. The positive~negative! value of
the surface parameterTa0.0 (Ta0,0) increases~de-

FIG. 1. The effect of general boundary conditions on the grou
1S and first excited 1P energy levels~a!, and on the spin-orbit
splitting between 1P3/2 and 1P1/2 levelsDc ~b! in bare CdSe nanoc
rystals. The size dependencies are calculated for the standard
with the surface parameterTa050 Å ~solid line!, for Ta05
20.6 Å ~dashed lines!, and forTa050.6 Å ~dotted lines!. The bulk
parameters of CdSe used in calculations are described in the t
15531
-
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creases! the energy of all states in comparison withTa0
50. The relative order of theP3/2 and P1/2 states with the
total momentumj 53/2 andj 51/2 always coincides with the
relative order of the valence-band subbands characterize
the same total momentum. The value of the spin-orbit sp
ting Dc however, remains for all excited states much sma
than the averaged energyEl5( lEl 21/21( l 11)El 11/2)/(2l
11) of the level with the orbital momentuml.

If udkl
6Ta0u!1, the averaged energiesEl and corre-

sponding wave numbersf l ,n can be found from the simpli-
fied BCs given by Eqs.~29! and ~32! with dkl

650. The
energy correctionsDEl

6 coming from the smalldkl
6Þ0 can

be found perturbatively. In the Appendix we obtain the fo
lowing energy corrections:

DEl
65

\2

2m0
u f l

6~a!u2a2dkl
6

5
\2

4m0
E @Dg~E!Cc* ~ŝL̂ !Cc#

1

r
dS, ~33!

where dS5r 2sin(Q)dQdw. Note that althoughf l ,n
1 5f l ,n

2

5f l ,n , the normalization constantsCl
1ÞCl

2 . However, in
the considered approximation they can be replaced with h
accuracy by the averaged constantCl5Cl

15Cl
2 that is de-

termined by the approximate normalization condition,

E
0

a

u f l u2r 2dr1E
0

a

uF l u2r 2dr51, ~34!

uF l u25
\2

2m0Ep
S a2

m0

mc~E! D
2S u f l8u

21
l ~ l 11!

r 2
u f l u2D ,

that neglects the second term in Eq.~21!. Thus, if
udkl

6Ta0u!1, Dc,El , the energy levels of the excite
statesEl

6 with j 5 l 61/2 are the eigen energies of the effe

tive HamiltonianĤ l ,

Ĥ lV l 61/2,l ,m5El
6V l 61/2,l ,m ,

Ĥ l5ElÛ21
1

2l 11
Dc~El !~ L̂ŝ!, ~35!

where the energy-dependent spin-orbit splittingDc(El) is
given by

Dc~El !5S l 1
1

2D \2

2m0a2
Ssur~El !, ~36!

Ssur~El !5Dg~El !a
3u f l~a!u25Dg~El !Cl

2 j l
2~f l ,n!.

~37!

The approximate expressions of Eqs.~36! and ~37! describe
the exact splittingDc(E1) of the 1P states in CdSe nanoc
rystals shown in Fig. 1~b! with high accuracy~the largest
error in the smallest nanocrystals is about 2% forTa05
20.6 Å). It is important to note here that while the matr

d

Cs

t.
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EFFECT OF THE SURFACE ON THE ELECTRON . . . PHYSICAL REVIEW B67, 155312 ~2003!
elements of the spin-orbit operator (L̂ŝ) are nonzero only
for l>1, Eq.~37! defines also the surface parameterSsur for
the l 50 S symmetry states.

The dimensionless parameterSsur is proportional to the
spin-orbit splitting in the valence-bandD and to the square
of the wave function at the surface. It describes the surfa
induced spin-orbit coupling of the conduction electron QS
in bare semiconductor nanocrystals. In bulk semiconduc
the integration in Eq.~33! results in zero spin-orbit splitting
of the conduction-band states because it must be carried
at the remote bounding surface where the wave functio
vanishing. Ssur50 if one assumes the vanishing of th
conduction-band component wave function at the surfac
spherical nanocrystals. This assumption is never justifie
the coupling between conduction-band and valence-b
components is significant. Thus, the spin-orbit splitting of
electron QSLs is caused by the admixture of the valen
band states near the surface.

IV. THE FINE STRUCTURE OF ELECTRON QSLS
IN A MAGNETIC FIELD

A. Surface-induced magnetic moment of the confined electrons

Let us consider now the energy of the electron QSLs,El
6 ,

in a weak magnetic field. Substituting the zero-field wav
functions C5$Cc,Cv% given by Eqs.~27! and ~21! into
Eqs. ~16! and ~18!, we obtain for the energy correctionDE
'DEc1DEcoup,

DE5mBHF1

2
^Ccugc~E!~ŝn!uCc&

1^Ccu
m0

mc~E!
~ L̂n!uCc&G1DEsur , ~38!

where we neglectDEv corrections of Eq.~17! as being
smaller by the factorEl /(El1Eg). The second term of Eq
~38! describes the unexpected surface contribution to
electron magnetic energy,

DEsur5
mBH

4 E dS
1

r
Dg~El !~Cc* @r3@ŝ3r##Cc!.

~39!

The effective Hamiltonian describing the fine structure of
electron state with the orbital momentuml in a magnetic
field can be written asĤ l1ĤH , whereĤ l is defined by Eq.
~35! and the effect of a weak magnetic field is described

ĤH5
1

2
mBḡs~El !~ŝH!1mBḡl~El !~ L̂H!

1
1

4
mBSsur~El !„@t3~ŝ3t!#H…. ~40!

Here the weighted spinḡs and orbitalḡl g factors are given
by
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ḡs5E
0

a

gc~El !r
2dru f l~r !u2, ~41!

ḡl5E
0

a

m0 /mc~El !r
2dru f l~r !u2, ~42!

respectively. The first two terms in Eq.~40! describe the
averaged volume energy of the spinmS52mBḡs(El)S and
orbital mL52mBḡl(El)L̂ magnetic moments in an extern
magnetic field, and the last term describes the energy of
surface-induced magnetic momentmsur(El) given by

msur52
mB

4
Ssur~El !@t3~ŝ3t!#. ~43!

This magnetic moment arises from the surface-induced s
orbital term of Eq.~35!, which is modified by the Larmor
precession of the electron in an external magnetic field.
deed, the surface energy termDEsur52(msurH) can be ob-
tained directly by replacing2 i“→2 i“1(e/c\)A in the
spin-orbit perturbation term (L̂ŝ)52 i (@r3“#ŝ) of Eq.
~35!. The origin of the surface-induced electron magne
moment is similar to those of an additional relativistic ma
netic moment of the electron in atoms, and their values
derived in a similar way~see, for example, Refs. 21,27,28!.
It is necessary to note that the surface-induced magnetic
mentmsur does not vanish for the states withl 50 even when
it arises from the spin-orbit coupling term (L̂ŝ).

B. Size dependence of the ground-state electron g factor

All electron states that haveSsymmetry are Kramers dou
blets that are degenerate with respect to its spin project
The external magnetic field lifts this degeneracy and sp
these states into two levels with energy,

E0~H !5E06
1

2
mBgs~E0!H, ~44!

where the6 signs correspond to the electron states w
spins parallel and antiparallel to the magnetic-field directi
The spin effectiveg factor can be obtained from Eq.~40! as

gs~E0!5ḡs~E0!1
1

3
Ssur . ~45!

The effective electrong factor for theS electron states in
spherical heterostructures,gs(E0), was first obtained in Ref
24 where the standard BCs at the heterointerface were
to describe the size dependence of the electrong factor. In
the case of the bare semiconductor nanocrystals the stan
BC at the surface@ f 0(a)50# would lead to zero surface
contribution to the effective electrong factor. We have ex-
amined here the effect of the general BC of Eq.~29! on the
electron effective g factor in CdSe nanocrystals. Th
weightedg factor of the states withS symmetry in Eq.~45!
can be written as

ḡs~E!5g01E
0

a

r 2dru f l~r !u2@gc~E!2g0#, ~46!

where the correctionsDEv of Eq. ~17! to the ḡs of Eq. ~41!
have been added. Figure 2 shows the size dependence o
2-7
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ground-state electrong factor, gs(E0), calculated using the
standard BC withuTa0u50 and the general BC withuTa0u
50.6 Å. One can see that the experimental size depend
of the electrong-factor taken from Ref. 13 is described ve
well by the general BC with the negative parameterTa05
20.6, while the use of the positive parameter brings
theoretical curve far away from the data.

The size dependence of the bulklike energy-dependeg
factor, gc(E0), calculated with the help of Eq.~3! for Ta0
50 is also shown in Fig. 2. One can see that the b
g-factorgc fails to describe the experimental data even in
largest dots. At the same time, the difference between twgs
curves calculated withTa0520.6 Å andTa050 is not very
large. This is because the general BCs affects the electrg
factor in two ways: indirectly, through the change of t
zero-field energyE0 decreasing or increasing the electrong
factor, and directly, through the surface contributi
1/3Ssur(1S), that is always positive. In the case of the neg
tive Ta0,0 the GBCs decreases the energy of the gro
electron state decreasing the electrong factor, and these two
effects partly compensate for each other. However, the
face contribution 1/3Ssur(1S) calculated with Ta05
20.6 Å is significant in small nanocrystals~see Fig. 3!.

C. Symmetry of the confined electron excited states
in an external magnetic field

The fine structure of the excited electron states in an
ternal magnetic field is very sensitive to the relation betwe
Dc(El) and the energy of the orbital magnetic mome
ḡlmBH. In the low-field regime, when the magnetic energy i
smaller than the separation between the electron states
j 5 l 61/2, the external magnetic field satisfying the con

FIG. 2. The size dependence of the ground 1S state electrong
factor in bare CdSe nanocrystals calculated for the standard
with the surface parameterTa050 ~solid line!, for Ta0520.6 Å
~dashed line!, and forTa050.6 Å ~dotted line!. The empty squares
show the experimental data from Ref. 13. For comparison we
show the energy dependence of the bulk electron g-factorgc(E)
calculated at the energy of the 1S electron level~dash-dotted line!
and bulk value of the electrong factor ~short dash-dotted line!.
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tion ḡlmBH!Dc splits the levels according to projectionm
of the full momentumj on the magnetic field as

Ej ,m
1 5El1Dc~El !

l

2l 11
1mBgj

1~El !mH ~47!

for j 5 l 11/2 and

Ej ,m
2 5El2Dc~El !

l 11

2l 11
1mBgj

2~El !mH ~48!

for j 5 l 21/2. The effective electrong factors

gj
15

1

2 j
ḡs~El !1

2 j 21

2 j
ḡl~El !1

2 j 11

8 j ~ j 11!
Ssur , ~49!

gj
25

21

2~ j 11!
ḡs~El !1

2 j 13

2~ j 11!
ḡl~El !2

2 j 11

8 j ~ j 11!
Ssur

~50!

are the analogs of the Lande factors for electrons in atom
the case of the ‘‘anomalous’’ Zeeman effect.21 The surface
contributions to the electrong factors (}Ssur) are similar to
the relativistic corrections in Refs. 27,28.

When the zero-field fine structure splitting becom
smaller than the energy of the orbital magnetic moment,
magnetic-field Zeeman term mixes the states with differ
j 5 l 61/2. In this case the projections of the spin moment
sz and orbital momentuml z on the direction of the magneti
field are a more convenient notation for describing the el
tron state fine structure. The spin-orbit termLS and the ad-
ditional surface momentmsurH may, however, mix the state
with different values of theszl z product.

Let us consider the matrix elements of the surface m
netic moment operatormsur on the eigen functions of one
angular momentuml. Assuming that the states with differen
l are not mixed, one can find

Cs

o

FIG. 3. The size dependence of the dimensionless surface
rameterSsur of Eq. ~37! for the ground 1S ( l 50) and first excited
1P ( l 51) states in bare CdSe nanocrystals. The dashed and d
curves are calculated with the surface parametersTa0520.6 Å
andTa050.6 Å, respectively.
2-8
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r i r j

r 2
Yl ,m~Q,w!5S 2l 2112l 2

~2l 13!~2l 21!
d i j

2
2

~2l 13!~2l 21!
$LiL j% DYl ,m~Q,w!,

~51!

where i , j 5x,y,z and d i j is the Kronecker delta symbo
Substituting Eq.~51! into „H@t3(ŝ3t)#…5(Hŝ)2(Ht)
3(tŝ), we rewrite the magnetic-field HamiltonianĤH of
Eq. ~40! as

ĤH5mBgs~El !~SH!1mBḡl~El !~LH !

1mBSsur~El !
~SH!L̂21$~SL!~LH !%

~2l 13!~2l 21!
. ~52!

Here the spin electrong factor is given by

gs~El !5ḡs~El !2
1

~2l 13!~2l 21!
Ssur~El !. ~53!

The matrix elements of the last term in Eq.~52! are zero for
l 50. If Ssur(El)!ḡl(El) one can neglect the off diagona
elements of the operator$(SL)(LH )% and replace them with
(SH)(Ln)2. This is the case for the first excited 1P state in
CdSe nanocrystals~for comparison, see the correspondi
curves in Figs. 3 and 4!. In this case the last term of Eq.~52!
describes the surface contribution to the spin splitting of
electron levels that depends on the projection of the orb
momentum on the magnetic field.37

In thestrong field regime~similar to the case of the ‘‘qua
sinormal’’ Zeeman effect or ‘‘complete’’ Paschen-Back effe

FIG. 4. The size dependence of the orbitalg factor, ḡl(1P), for
the first excited state in bare CdSe nanocrystals calculated fo
standard BCs with surface parameterTa050 ~solid line!, for Ta0

520.6 Å ~dashed lines!, and for Ta050.6 Å ~dotted lines!. For
comparison we also show the bulk energy dependence of the
orbital g factor m0 /mc(E) calculated at the energy of the 1P elec-
tron level~dash-dotted line! and its value at the bottom of the con
duction band~short dash-dotted line!.
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for the electrons in atoms21! one can additionally neglect th
off-diagonal elements of the spin-orbit operatorLS. The fine
structure of the electron level with orbital momentuml is
described by

El ,l z ,sz
5El1

2szl z

2l 11
Dc~El !1mBszgs~El ,l z!H

1mBl zḡl~El !H, ~54!

where l z52 l , . . . 0, . . . ,l andsz561/2 are the projection
of the electron angular momentum and spin on the magne
field direction and

gs~El ,l z!5ḡs~El !1
l 21 l 1 l z

221

~2l 13!~2l 21!
Ssur~El !. ~55!

Thus the structures of the excited QSLs withl>1 may be
different in weak and strong magnetic fields and undert
the anticrossing in the intermediate magnetic field~similar to
those known for atoms21!. In nanocrystals the weak, interme
diate, and strong field regimes depend strongly on the na
crystal size as well as on its surface conditions.

V. DISCUSSION AND CONCLUSION

We have studied the effect of general boundary conditi
~the surface effect! on the electron QSLs and their Zeema
splitting in spherical bare semiconductor nanocrystals. T
above consideration that has been carried on in the ei
band effective-mass model can be easily extended to
scribe spherically layered heterostructures and wide
semiconductor nanocrystals, which are better described
the fourteen-band model~see, for example, Ref. 38!.

Comparing the results of our theoretical calculation w
the experimental size dependence of the electrong factor, we
have determined the surface parameterTa0520.660.05 Å
in bare CdSe nanocrystals. Fitting the experimental data,
used Ep519.0 eV, that has been obtained independen
from bulk measurements35 and that describes better the e
perimental data thanEp517.5 eV, previously used for CdS
in Refs. 4,5. The surface parameterTa0 characterizes the
electronic properties of the surface and should be consid
as the additional one to the set of parameters that desc
the bulk properties of semiconductors. In CdSe nanocrys
prepared by a different techniqueTa0 can be different.

The extracted absolute value and the negative sign
Ta0520.6 Å is consistent with our theoretical expectatio
for Ta0 in studied CdSe nanocrystals. Its value is very clo
to the theoretical value of the surface parameter for semic
ductors with a symmetrical band structure26 u(Ta0)su[a*
5A\2/2Epm0'0.45 Å. It can also be shown within th
eight-band effective-mass model, that the negative sign
the surface parameter does not allow the existence of
surface localized states withE,0 ~gap states! ~one can find
similar consideration in Ref. 26!. Indeed, the CdSe sample
studied in Refs. 12,13 show very high PL quantum efficien
and do not show deep gap transitions. The negative par
eterTa0 leads also to an additional nonparabolicity, bowi
the size dependence of the electron energy levels~see Fig. 1!
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and therefore may describe the unexplained experime
size dependence of the 1S electron level in small CdSe
nanocrystals.5

Using the GBCs we have found also the direct surfa
contribution to the spin-orbit effects in zero and weak ext
nal magnetic fields. The surface contribution to the zero-fi
spin-orbit splitting is similar to the interface contribution o
tained in Refs. 39,40 for 2D electrons in planar quant
wells by using the spin-dependent boundary conditions
has been pointed out in Ref. 39 that the interface contribu
to the Rashba spin-orbit term in the 2D Hamiltonian41 is
related to discontinuity of the band parameters at the se
conductor heterointerface and that this contribution is an
ditional one to those connected with the space charge an
the external electric field. The importance of the effects
scribed by the Rashba term for the 2D electrons confi
near the curved surface42,43 and cylindrical semiconducto
quantum dots44 has been emphasized recently. The Ras
spin-orbit term in our spherical dots is a direct conseque
of the GBCs for the envelope function. The same consid
ation can be made for cylindrical dots or any other na
structure geometry~the results will be published elsewhere!.
The GBCs provide an important connection between
constant that describes the magnitude of the spin-orbit t
and surface conditions in nanostructures.

In conclusion, we have shown an important influence
the semiconductor surface on the electron energy structu
bare spherical nanocrystals. The effect of the surface
been modeled through the choice of the boundary condi
parameter that describes the nonzero value of the enve
function at the nanocrystal surface. The additional nonpa
bolicity of the quantum size energy levels, the spin-or
splitting of the electron quantum size levels, and the ad
tional magnetic moment of the electrons have been show
be induced by the surface. The effects are significant in sm
nanocrystals and their considerations require a multiband
fective mass-approach because interband coupling is im
tant there. The analysis of the experimental data allows u
determine the appropriate parameter of the boundary co
tions that characterize the surface in studied bare CdSe s
conductor nanocrystals.
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APPENDIX: EFFECT OF THE SMALL SURFACE
PERTURBATION ON THE QUANTUM SIZE LEVEL

ENERGY IN SPHERICAL NANOCRYSTALS

We are interested in deriving a variation of the electr
level energyE caused by a small variation of the paramete§
that characterizes the surface BC for the bulk wave-funct
f (r ,§). The GBCs at the spherical surface of the nanocry
with radiusr 5a can be written as

f 8~a,§!5 f ~a,§!A~§!, ~A1!

whereA(§) is the real number constant. The functionf (r ,§)
is the solution of bulk Schro¨dinger equationDk̂2f (r ,§)
5E(§) f (r ,§), where the constantD is independent of§.
Taking a derivative of the Schro¨dinger equation on§, mul-
tiplying both parts of the resulting equation byf * and inte-
grating it over the sphere volume, one can obtain as

]E

]§
5Da2S ] f

]§
f 8*2

] f 8

]§
f * D U

r 5a

. ~A2!

Taking a derivative of Eq. ~A1! and substituting
] f 8(a,§)/]§5]A(§)/]§ f (a,§)1A(§)] f (a,§)/]§ into Eq.
~A2! one arrives at the final expression for the energy va
tion as

]E

]§
52D

]A~§!

]§
u f ~a!u2a2. ~A3!

Substituting D5\2/2mc(El) and A(§)5mc(El)/
m0@1/(Ta0)1§# with §52dkl

6(El) into this equation we
obtain Eq.~33! for the energy correctionDEl

6 to the aver-
aged energy of the electron level with the orbital moment
l caused by the small perturbation of the boundary conditi
of Eq. ~29!.
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