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Entanglement capability of a self-inverse Hamiltonian evolution
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We determine the entanglement capability of a self-inverse Hamiltonian evolution, which reduces to the
known result for the Ising Hamiltonian, and identify optimal input states for yielding the maximal entangle-
ment rate. We introduce the concept of the operator entanglement rate, and find that the maximal operator
entanglement rate gives a lower bound on the entanglement capability of a general Hamiltonian.
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Two-qubit unitary gates play a central role in quantu
information science@1#, particularly because of the capab
ity of these gates to generate and enhance the entangle
of the state of the system. In general, entanglement capab
can be enhanced by introducing ancillary states@2,3#, but for
the important and interesting case of the Ising Hamilton
H Ising5sz^ sz it is ancilla-independent@4,5# @where sz
5diag(1,21) is a Pauli matrix#. The independence of th
entanglement capability on ancillas is a consequence of
self-inverse propertyH Ising5H Ising

21 .
We generalize this result to all Hamiltonian evolutions

the type

H5XA^ XB , ~1!

such thatXi5Xi
21PHi for i P$A,B% andH5H21, with the

Ising Hamiltonian being a special case. Here, we assume
Xi is not an identity operator1i . Due to the self-inverse
property of the Hamiltonian, we have the evolution opera
(\51)

U~ t !5e2 iHt5cost1A^ 1B2 isintXA^ XB . ~2!

We employ operator entanglement@6,7# and operator en-
tanglement rate to characterize the entanglement capab
of the self-inverse Hamiltonian evolution: these approac
yield analyses that are simple to apply for determining
tanglement capabilities. We find that the maximal opera
entanglement rate always gives a lower bound on the
tanglement capability of a general Hamiltonian.

The entanglement capability of a Hamiltonian@2,4,8# is
defined relative to a specified entanglement measure. We
von Neumann entropy as our entanglement measure
pure stateuC&PHAB :

E~ uC&)52TrA~rAlog2rA!, ~3!

whererA5TrB(rAB) and rAB5uC&^Cu. The entanglemen
capability of HamiltonianH is defined as the maximum en
tanglement rate when a pure state is acted upon by the a
ciated evolution operatorU(t)5exp(2iHt). Mathematically,
the ancilla-unassisted and ancilla-assisted entanglemen
pabilities are defined as@2,4#

EH :5maxuC&PHAB
G~ t !u t→0 , ~4!
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anc:5supuC&PHA8ABB8

G~ t !u t→0 , ~5!

respectively, whereG(t)5dE@U(t)uC(0)&]/dt is the state
entanglement rate, and ancilla systemsA8 and B8 are not
acted upon by HamiltonianH. For the ancilla-assisted cas
the entanglement refers to the bipartite entanglement
tween systemsA8A andBB8.

Let us first consider the unassisted case, and the in
pure state of the system can always be Schmidt-decomp
as @9#

uC~0!&5(
n

Alnucn& ^ ufn&, ~6!

where $ucn&% and $ufn&% are orthonormal sets of state
and ln.0;n. As uC(0)& is normalized,(nln51. The
state at time t is described by the density operat
rAB(t)5U(t)rAB(0)U†(t), which satisfies ṙAB(t)5
2 i @H,rAB(t)#. Thus, the reduced density operatorrA(t) sat-
isfies

ṙA~ t !52 iTrB@H,rAB~ t !#. ~7!

From Eq.~3!, we know that the entanglement rate is@4#

G~ t !52TrA@ ṙA~ t !log2rA~ t !#. ~8!

Substituting Eq.~7! into Eq.~8!, we obtain the entanglemen
rate att50 as

G~ t !u t→05 iTrA$TrB@H,rAB~0!# log2rA~0!%, ~9!

which is general for arbitrary Hamiltonians and initial state
By varying initial states we can maximize the entanglem
rate.

Equation~9! is solved by first obtaining the results

TrB@H,rAB~0!#5(
mn

Almln~XB!mn@XA ,ucn&^cmu#,

~10!

where (XB)mn5^fmuXBufn& and

log2rA~0!5(
n

log2lnucn&^cnu. ~11!
©2003 The American Physical Society01-1
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The entanglement rate att50 for our HamiltonianH is then
given by

G~ t !u t→05 i(
mn

Almlnlog2

lm

ln
~XA!mn~XB!mn , ~12!

where (XA)mn5^cmuXAucn&.
From Eq. ~12!, we obtain an upper bound for the e

tanglement rate

G~ t !u t→0<(
mn

AlmlnU log2

lm

ln
Uu~XA!mnuu~XB!mnu

5(
mn

~lm1ln!A lm

lm1ln

ln

lm1ln
U log2

lm

ln
U

3u~XA!mnuu~XB!mnu

<
b

2 (
mn

~lm1ln!u~XA!mnuu~XB!mnu

<
b

4 (
mn

~lm1ln!@ u~XA!mnu21u~XB!mnu2#5b,

~13!

where

b52 max
xP[0,1]

Ax~12x!log2@x/~12x!#

52Ax0~12x0!log2@x0 /~12x0!#'1.9123, ~14!

and x050.9128. The first line simply follows from the tri
angle inequality, the second and third lines from Ref.@4#, and
the fourth line from the inequality 2uabu<uau21ubu2 for any
complex numbersa andb. Finally, the last line results from
the self-inverse properties ofXA andXB . To see this, let us
examine the sum(mnlmu(XA)mnu25(mnlm(XA)mn(XA)mn*
5(mlm(n(XA)mn(XA)nm51, where the second equality re
sults from the Hermitian property ofXA , and the last equal
ity from the self-inverse propertyXA5(XA)21. We have
seen that the self-inverse property is essential to obtain
upper boundb. Another feature of Eq.~13! is that the result
is applicable to any pure state with or without ancilla
Therefore, the upper boundb is ancilla independent. Next,
we show that the upper bound can be saturated by opt
input states.

Since the self-inverse operatorsXi , i P$A,B% satisfy Xi
2

51, the eigenvalues ofXi are 61 with the corresponding
eigenstates~possibly degenerate! denoted byu6& i . Then, we
construct the optimal input states given by

uC~0!&5
Ax0

2
~ u1&A1u2&A) ^ ~ u1&B1u2&B)

1
iA12x0

2
~ u1&A2u2&A) ^ ~ u1&B2u2&B).

~15!
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This state is of Schmidt form with Schmidt number 2. Fro
Eqs. ~12! and ~14!, we obtainG(t)u t→05b. Therefore, we
can always find the optimal input states for which

EH5EH
anc5b. ~16!

Result ~16! extends results for the Ising Hamiltonian@2,4#,
and we do not restrict the dimension of Hilbert spaces up
which the self-inverse operatorsXA andXB act. The Hilbert
space can be finite dimensional or infinite dimensional.

Self-inverse Hamiltonians not only exhibit entangleme
capability but are also physically meaningful. As an exam
of a physical system with an optimal input state and a ma
mal entanglement rateb, we consider a spin-j system with a
(2 j 11)-dimensional space spanned by basis states$un& j
[u j ;n2 j &,n50,1, . . . ,2j %. We define a number operato
N5Jz1 j of the spin-j system satisfyingNun& j5nun& j .
Here, commutators forJz and ladder operatorsJ6 satisfy the
su~2! algebra@Jz ,J6#56J6 ,@J1 ,J2#52Jz . Then, using
the number operators, we construct the self-inverse inte
tion Hamiltonian

H15~21!N
^ ~21!N, ~17!

where (21)N is a parity operator of the system. This kind
Hamiltonian is realizable in physical systems@10#. From Eq.
~17!, we see that HamiltonianH1 reduces to the Ising Hamil
tonian H Ising for the case ofj 51/2. When the dimensiond
52 j 11 is even, i.e.,j is a half integer, HamiltonianH1 is
equivalent to the Ising Hamiltonian in the sense that the
erator (21)N can be written as1d/2^ sz , where1N denotes
the N3N identity matrix. For integerj, HamiltonianH1 is
not equivalent to the Ising Hamiltonian.

Let us consider the SU~2! entangled coherent state~ECS!
@11# uh&ECS as an input state,

uh&ECS5Ax0uh& ^ uh&1 iA12x0u2h& ^ u2h&, ~18!

whereuh&5exp(hJ12h*J2)u0&j is the SU~2! or spin coher-
ent state~SCS! @12# and h is complex with unit modulus.
From Eq. ~12! and the identity (21)Nuh&5u2h&, it is
straightforward to show that the SU~2! ECS is the optimal
input state which yields the maximal entanglement rateb.

The above analysis is restricted to finite equ
dimensional composite systems, but this limitation is con
nient, not essential. Consider the harmonic oscillator with
infinite-dimensional Hilbert space. The operatora†a is the
number operator, wherea†(a) is the creation~annihilation!
operator. We can have the HamiltoniansH2

5(21)N^ (21)a†a and H35(21)a†a
^ (21)a†a. By not-

ing that the SCS can be realized in the Fock space as
binomial state@13#, the optimal input states for Hamiltonian
H2 and H3 are directly obtained by appropriately replacin
SCS with the binomial state in the SU~2! ECS ~18!.

Although, in general, one cannot expect an entangled s
to be generated by a Hamiltonian evolution from a prod
state, in this spin system the optimal input stateuh&ECS can
be generated by the Hamiltonian2H1 from the product state
uh& ^ uh&. Mathematically, uh&ECS5exp(iH1t)uh&^uh& with
x05cos2t. This fact and the ancilla independence of the se
1-2
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inverse Hamiltonian entanglement capability suggest that
entanglement capability depends more on the Hamilton
and the associated unitary operator. Next, we demons
this character by introducing the entanglement rate for
eratorU(t), and give the result that the entanglement ca
bility of Hamiltonian H1 is equal to the maximal operato
entanglement rate for the associated unitary operator.

We review operator entanglement introduced in Ref.@6#.
Note that the linear operators overHd ~finite d) also form a
d2-dimensional Hilbert space denoted byH d2

HS, and the cor-
responding scalar product between two operatorsX andY is
given by the Hilbert-Schmidt product^X,Y&ªTr(X†Y), and
uuXuuHS5^X,X&. Then, the operator acting onHd1

^ Hd2
can

be considered as a state on the composite Hilbert sp
Hd

1
2

HS
^ Hd

2
2

HS
, and the operator entanglement can be define

the entanglement of that state.
Any unitary operatorV acting on Hd1

^ Hd2
may be

Schmidt decomposed as Ref.@7# V5(nsnAn^ Bn , where
sn.0;n andAn andBn are orthonormal operator bases f
systems 1 and 2. From the Schmidt form, the entanglem
of a unitary operatorV is determined to beE(V)5
2( lsl

2/(d1d2)log2@sl
2/(d1d2)#, where the factor 1/(d1d2)

arises from normalization of the unitary operator. We c
think of the operator entanglement as a strength measu
the operator@7#.

If we consider the unitary operatorU(t), the operator
entanglementE@U(t)# becomes a time-dependent functio
Analogous to the definition of the state entanglement r
@2#, it is natural to define the operator entanglement rate
certain time of interaction and the maximal entanglem
rate

R~ t !ªdE@U~ t !#/dt, Rmaxªmax
t

R~ t !, ~19!

respectively, where the maximization is over all timet. At
certain times, the entanglement rate becomes maximal.

The operator entanglement of an arbitrary unitary ope
tor V is equal to the entanglement of the stateV(uF&A8A
^ uF&BB8) @7#,

E~V!5E@V~ uF&A8A^ uF&BB8)], ~20!

where

uF&A8A5 (
n50

d121

un&A8^ un&APHd1
^ Hd1

, ~21!

uF&BB85 (
n50

d221

un&B^ un&B8PHd2
^ Hd2

~22!

are maximally entangled states. Equation~20! shows a direct
relation between operator entanglement and state enta
ment. Note that here dimensiond1 can differ from dimension
d2. From Eq.~20!, we immediately have a relation betwee
the operator entanglement rate and the state entangle
rate, given by
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R~ t !5G~ t !5Ė@U~ t !~ uF&A8A^ uF&BB8)]. ~23!

From Eq.~23!, we find that the maximal operator entangl
ment rate gives a lower bound for the entanglement capa
ity of a general Hamiltonian, which is the infinitesimal ve
sion of the one that the operator entanglement gives a
lower bound of the entanglement capability of a unitary o
erator@7#.

Having defined the operator entanglement rate, let
study the maximal operator entanglement rateRmax of the
evolution operator associated with HamiltonianH1 with di-
mensiond52 j 11, an even number@14#. The associated
unitary operator is in the Schmidt form

U1~ t !5cost1d^ 1d2 isint~21!N
^ ~21!N. ~24!

From the above equation, the operator entanglement and
erator entanglement rate are given by

E@U1~ t !#52cos2t log2cos2t2sin2t log2sin2t, ~25!

R~ t !5R@U1~ t !#5sin~2t !log2~cot2t !, ~26!

respectively. The above equation shows that the operator
tanglement rate is a periodic function of timet; hence, we
can maximize over one period. It is straightforward to fi
that at time t50.2932, the entanglement rate reaches
maximum value, i.e.,

Rmax5b. ~27!

Comparing Eqs.~16! and ~27!, we conclude that the en
tanglement capability of HamiltonianH1 is equal to the
maximum operator entanglement rate of the associated
tary operator exp(2iH1t). Therefore, the entanglement cap
bility of the self-inverse Hamiltonian is inherent in the ev
lution operator in the sense that it can be solely determi
by the evolution operator, irrespective of states.

More generally, there is interest in the entanglement
pability of quantum operators, not just Hamiltonians@3,15–
21#. Here, we analyze the entanglement capability of the u
tary operator generated by the self-inverse HamiltonianH
~2!. We quantify the entanglement capability of a unita
operatorU by the maximum entanglement which a unita
operator can create, given an initial product state@3#:

EU5supug&,ud&E~Uug& ^ ud&), ~28!

whereug&PHA8A andud&PHBB8 , namely, we include ancil-
las. For unitary operatorU(t), we immediately obtain

EU(t)5supug&,ud&E@U~ t !ug& ^ ud&] 5supug&,ud&E@ uC~ t !&],
~29!

uC~ t !&5costug& ^ ud&2 i sintuḡ&ud̄&, ~30!

with normalized statesuḡ&5XAug& and ud̄&5XBud&.
State~30! belongs to a class of bipartite entangled sta

discussed in Ref.@22#. To quantify the entanglement of thi
state, we can use the standard entanglement mea
namely, the entropy of entanglement. However, for con
1-3
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nience, we use the concept of the concurrenceC @23# to
quantify the entanglement, since the state can be viewed
state of two pseudoqubits@24#. Using the results of Ref.@24#,
the concurrence of stateuC(t)& is obtained as

C@ uC~ t !&] 5usin~2t !uA~12u^guḡ&u2!~12u^dud̄&u2!.
~31!

From the above equation, it is easy to find thatEU(t)
5usin(2t)u, which is the maximal entanglement which th
operatorU(t) can generate from an arbitrary product sta
As the statesug&PHA8A and ud&PHBB8 , the entanglemen
capabilityEU(t) is ancilla independent.

The unitary operarorU1(t) ~24! is in fact a special case o
U(t) ~2!. Assuming thatU1(t) acts onHd^ Hd with evend,
we find that the optimal input state for generating maxim
entanglement isuh& ^ uh&, and from Eq.~24! we find that

E@U1~ t !#5C@U1~ t !#5EU1(t)5usin~2t !u. ~32!
-
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Therefore, the operator entanglement ofU1 is equal to the
entanglement capability of the unitary operator.

In conclusion, we have determined the entanglement
pability of a self-inverse Hamiltonian evolution. The se
inverse Hamiltonians studied here are physically relevan
their own right, and reduce to the important Ising Ham
tonian that is central to quantum-information science. Th
Hamiltonians go beyond the two-qubit cases; namely, th
can act on ad13d2 composite system, where the dimensi
of the subsystem can be either finite or infinite. We intr
duced the concept of operator entanglement rate whic
well defined for composite finite systems, and for certa
self-inverse Hamiltonians the maximal operator entang
ment rate is equal to the entanglement capability. For a g
eral Hamiltonian, the maximal operator entanglement r
always gives a lower bound on the Hamiltonian entang
ment capability.
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