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Entanglement capability of a self-inverse Hamiltonian evolution
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We determine the entanglement capability of a self-inverse Hamiltonian evolution, which reduces to the
known result for the Ising Hamiltonian, and identify optimal input states for yielding the maximal entangle-
ment rate. We introduce the concept of the operator entanglement rate, and find that the maximal operator
entanglement rate gives a lower bound on the entanglement capability of a general Hamiltonian.
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Two-qubit unitary gates play a central role in quantum- Eﬂ”"::sup%EH L T(M)]ioo, (5)
information sciencé1], particularly because of the capabil- ATABE
ity of these gates to generate and enhance the entanglemqggpectivew, wherd () =dE[U(t)|¥(0))]/dt is the state
of the state of the system. In general, entanglement capabilité(mangmmem rate, and ancilla systeAis and B' are not
can be enhanced by introducing ancillary st&&8], but for  4cted upon by HamiltoniaHl. For the ancilla-assisted case,
the important and interesting case of the Ising Hamiltoniane entanglement refers to the bipartite entanglement be-
Hising= 0,® 0, it is ancilla-independen{4,5] [where o,  tween system#’A andBB'.
=diag(1-1) is a Pauli matrix The independence of the | et ys first consider the unassisted case, and the initial
entanglement capability on ancillas is a consequence of thﬁure state of the system can always be Schmidt-decomposed

self-inverse property ging= H,;},g. as[9]
We generalize this result to all Hamiltonian evolutions of
the type
[W(0))=2 Vol ¢y i), ©)
H=XA®Xg, 1) "

1 . P where {|#,)} and {|¢,)} are orthonormal sets of states,
such thatX;=X; e, fori e{A,B} andH=H"", withthe o4\ ~0ovn. As [¥(0)) is normalized,S,\,=1. The
Ising Hamiltonian being a special case. Here, we assume th@jaie at timet is described by the density operator

X; is not an identity operatot;. Due to the self-inverse s =U(D)pas(0)UT(1), which satisfies bAB(t):

E)fgo:pi;ty of the Hamiltonian, we have the evolution operator’ii[H,pAB(t)]_ Thus, the reduced density operapa(t) sat-

isfies
U(t)=e ™M'=costl,®@lg—isintX,@Xg. ) : .
R A pa(t)=—iTrg[H,pap(t)]. (7)

We employ operator entanglemef&,7] and operator en- tl;rom Eq.(3), we know that the entanglement rate[4

tanglement rate to characterize the entanglement capabili
of the self-inverse Hamiltonian evolution: these approaches B .
yield analyses that are simple to apply for determining en- I'()==Tralpa(Dl0gpa(V)]. ®)
tanglement capabilities. We find that the maximal operatorSubstituting Eq(7) into Eq.(8), we obtain the entanglement
entanglement rate always gives a lower bound on the eMate att=0 as '
tanglement capability of a general Hamiltonian.

The entanglement capability of a Hamiltoni& 4,8 is L'(t)]¢_o=iTra{Trg[H,pas(0)]l0og,pa(0)}, 9
defined relative to a specified entanglement measure. We use
von Neumann entropy as our entanglement measure of @hich is general for arbitrary Hamiltonians and initial states.

pure statg V) e Hup: By varying initial states we can maximize the entanglement
rate.
E(|W))=—Tra(palogzpa), () Equation(9) is solved by first obtaining the results

where pp=Trg(pag) and pag=|¥){¥|. The entanglement

capability of HamiltoniarH is d|efi%1<ed|as the maximum en- TrB[vaAB(O)]:% VAN G(XB) med Xa s [ n){ &l 1,
tanglement rate when a pure state is acted upon by the asso- (10)
ciated evolution operatdd (t) = exp(—iHt). Mathematically,

the ancilla-unassisted and ancilla-assisted entanglement cghere Xg) mn={ dml Xg| ¢n) and

pabilities are defined d2,4]

Ep=maxy) <5, T (D0, (4) |092PA(0):; l0g2\ | )l - (11)
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The entanglement rate & 0 for our HamiltonianH is then
given by

Am
F(O-0=12 Amhnlogz 3= (Xa)mr Xe)mn, (12

where Q(A)mn:<¢m|XA|¢n>-
From Eq.(12), we obtain an upper bound for the en-

tanglement rate

|(XA)mn||(XB)mn|

F(t)ltﬂosgn N

| M
00, N,

[ Am Mg
S WD WY

m n m n

| Am
00, n,

:2 (Am+X\p)
X |(XA)mn| |(XB)mn|

sg > O Al Xl X

sg % ()\m+)\n)[|(XA)mn|2+|(XB)mn|2]:,B1

(13
where
B=2 max yX(1—x)log,[x/(1—x)]
xe[0,1]
=2Xo(1—xp)logy[ Xo/(1—Xg)]=1.9123, (14)

and xy,=0.9128. The first line simply follows from the tri-
angle inequality, the second and third lines from RR&f, and
the fourth line from the inequality|2b|<|a|?+|b|? for any
complex numbers andb. Finally, the last line results from
the self-inverse properties of, andXg. To see this, let us
examine the Sumzmn)\m|(XA)mn|2:Emn)\m(XA)mn(XA)an

=2 A m2n(Xa) mn(Xa)nm= 1, where the second equality re-
sults from the Hermitian property of,, and the last equal-
ity from the self-inverse propert)X,=(X,) 1. We have
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This state is of Schmidt form with Schmidt number 2. From
Egs. (12 and (14), we obtainI'(t)|;_o= 8. Therefore, we
can always find the optimal input states for which
Eq=E{'"=8. (16)

Result(16) extends results for the Ising Hamiltoniga,4],
and we do not restrict the dimension of Hilbert spaces upon
which the self-inverse operatoks, andXg act. The Hilbert
space can be finite dimensional or infinite dimensional.

Self-inverse Hamiltonians not only exhibit entanglement
capability but are also physically meaningful. As an example
of a physical system with an optimal input state and a maxi-
mal entanglement rat@, we consider a spif-system with a
(2j+1)-dimensional space spanned by basis stéte
=|j;n—j),n=0,1,...,3}. We define a number operator
N=1J,+] of the spinj system satisfying\|n);=n|n);.
Here, commutators fa¥, and ladder operatork. satisfy the
su2) algebra[J,,J.]==*J.,[J,,J_]=2J,. Then, using
the number operators, we construct the self-inverse interac-
tion Hamiltonian

Hi=(-Deo (- 1%, (17)

where (- 1) is a parity operator of the system. This kind of
Hamiltonian is realizable in physical systefdi®)]. From Eg.
(17), we see that HamiltoniaH ; reduces to the Ising Hamil-
tonian Hgj,q for the case of =1/2. When the dimensiod
=2j+1 is even, i.e.j is a half integer, Hamiltoniai; is
equivalent to the Ising Hamiltonian in the sense that the op-
erator (—1)" can be written ady;,® o,, wherely denotes
the NXN identity matrix. For integej, HamiltonianH is
not equivalent to the Ising Hamiltonian.

Let us consider the S@Q) entangled coherent statECS
[11] | 7)ecs @s an input state,

| 7)ecs= VXol 1)@ | 7) +iN1—Xo| — m)®|— ),

where| 7)=exp(J. — 7*J_)|0); is the SU2) or spin coher-
ent state(SCS [12] and » is complex with unit modulus.
From Eq. (12) and the identity ¢ 1)V n)=|—7), it is

straightforward to show that the $2) ECS is the optimal

(18

seen that the self-inverse property is essential to obtain th{gPUt State which yields the maximal entanglement fate

upper bounds. Another feature of Eq(13) is that the result

is applicable to any pure state with or without ancillas.

Therefore, the upper boun@ is ancilla independentNext,
we show that the upper bound can be saturated by optim
input states.

Since the self-inverse operataXs, i e {A,B} satisfy X2
=1, the eigenvalues oX; are =1 with the corresponding
eigenstategpossibly degeneratelenoted by =+ );. Then, we
construct the optimal input states given by

|‘I’(0)>:§(|+>A+|—>A)®(|+>B+|—>B)
e
+ 220+ am [ S) e +a | e).

(19

The above analysis is restricted to finite equal-
dimensional composite systems, but this limitation is conve-
nient, not essential. Consider the harmonic oscillator with an

gpfinite-dimensional Hilbert space. The opera&m is the

number operator, whera'(a) is the creationannihilation
operator. We can have the HamiltoniansH,
=(—1)V®(-1)2"a and Hy=(—1)2"2(—1)2"2. By not-

ing that the SCS can be realized in the Fock space as the
binomial statd 13], the optimal input states for Hamiltonians
H, andH; are directly obtained by appropriately replacing
SCS with the binomial state in the &) ECS(18).

Although, in general, one cannot expect an entangled state
to be generated by a Hamiltonian evolution from a product
state, in this spin system the optimal input stai@zcs can
be generated by the HamiltonianH; from the product state
|7)®|75). Mathematically, | 7)gcs=expHt)| 7)®|7) with
Xo=cost. This fact and the ancilla independence of the self-
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inverse Hamiltonian entanglement capability suggest that the R()=T()=E[U(t)(|P)a n® | P )gg)]- (23
entanglement capability depends more on the Hamiltonian

and the associated unitary operator. Next, we demonstratrom Eq.(23), we find that the maximal operator entangle-
this character by introducing the entanglement rate for opment rate gives a lower bound for the entanglement capabil-
eratorU(t), and give the result that the entanglement capaity of a general Hamiltonian, which is the infinitesimal ver-
bility of Hamiltonian H, is equal to the maximal operator sion of the one that the operator entanglement gives at a

entanglement rate for the associated unitary operator. lower bound of the entanglement capability of a unitary op-
We review operator entanglement introduced in RR&f.  erator[7].
Note that the linear operators ovAfy (finite d) also form a Having defined the operator entanglement rate, let us

d?-dimensional Hilbert space denoted h%'zs and the cor- study the maximal operator entanglement rRig,, of the
responding scalar product between two operaxoesidY is  evolution operator associated with Hamiltonigp with di-
given by the Hilbert-Schmidt produ¢k,Y) :=Tr(X'Y), and mensiond=2j+1, an even numbef14]. The associated
[IX|[4s= (X,X). Then, the operator acting drlg, ® Hg, Can unitary operator is in the Schmidt form

beHSconsHigered as a state on the composite HiIberF space U, (t)=costly® 14— isint(— 1)Ve (- 1)V, (24)
de ®Hd§ , and the operator entanglement can be defined as

From the above equation, the operator entanglement and op-

the entanglement of that state. x
erator entanglement rate are given by

Any unitary operatorV acting on Hq,®Hq, mMay be

Schmidt decomposed as Réf] V=2>,5,A,®B,, where U (t)]= —cot log,cost —sirtt log,sir’t,  (25)
s,>0Vn andA, andB,, are orthonormal operator bases for
systems 1 and 2. From the Schmidt form, the entanglement R(t)=R[U4(t)]=sin(2t)log,(cot’t), (26)

of a unitary operatorV is determined to be&(V)= _ _
—E|s|2/(d1d 2)|092[5‘2/(d1d2)]' where the factor 14d,) respectively. The_above equation shows th_at the operator en-
arises from normalization of the unitary operator. We cantanglement rate is a periodic function of tiniehence, we
think of the operator entanglement as a strength measure §&1 maximize over one period. It is straightforward to find
the operatof7]. that_at tlmet=0._2932, the entanglement rate reaches its
If we consider the unitary operatdd(t), the operator Maximum value, i.e.,
entanglement[U(t)] becomes a time-dependent function. R..=f 27)
Analogous to the definition of the state entanglement rate max- =

[2], it is natural to define the operator entanglement rate at ®omparing Eqs(16) and (27), we conclude that the en-
certain time of interaction and the maximal entangIemengangbment capability of Har’niltoniaml is equal to the

rate maximum operator entanglement rate of the associated uni-
R(O=dUM]/dL  Rype=maxR(t) (19 ta_try operator exp(iHlt). Thergforg, th_e entanglement capa-
) max =M ' bility of the self-inverse Hamiltonian is inherent in the evo-

lution operator in the sense that it can be solely determined

respectively, where the maximization is over all timeat ~ PY the evolution operator, irrespective of states.
certain times, the entanglement rate becomes maximal. More generally, there is interest in the entanglement ca-

The operator entanglement of an arbitrary unitary operaP@Pility of quantum operators, not just Hamiltonigi8515—

tor V is equal to the entanglement of the Statd®)a 21]. Here, we analyze the entangleme_nt capability Qf th_e uni-
2|®)ag) [7], tary operator generated by the self-inverse Hamiltoriin

(2). We quantify the entanglement capability of a unitary
EV)=E[V(|®)pra® | P)es)] (20) operatorU by the maximum entanglement which a unitary
’ operator can create, given an initial product sf&ie

Ey=sup,»E(U|y)®[5)), (28)

where|y) € Ha s and| 8) e Hgg , Namely, we include ancil-
las. For unitary operatdd (t), we immediately obtain

where

-1
|P)ara= ngo IMar®[Nac My, @Hq,, (21)

dp—1 EU(t):SU9y>,|a>E[U(t)|7’>®|5>]ISURw,\a)E[W’(t))](,Zg)
[P)ee= 2 IMee|n)e eHe,0Ma, (22
|W(t))=cost|y)®|8)—i sint| y)| &), (30

are maximally entangled states. Equat{@f) shows a direct . o
relation between operator entanglement and state entangleith normalized statefy)=X,|y) and|d) = Xg| ).
ment. Note that here dimensidn can differ from dimension State(30) belongs to a class of bipartite entangled states
d,. From Eq.(20), we immediately have a relation between discussed in Ref.22]. To quantify the entanglement of this
the operator entanglement rate and the state entanglemesiate, we can use the standard entanglement measure,
rate, given by namely, the entropy of entanglement. However, for conve-
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nience, we use the concept of the concurre@cg23] to  Therefore, the operator entanglementlf is equal to the
guantify the entanglement, since the state can be viewed aseatanglement capability of the unitary operator.
state of two pseudoqubifg4]. Using the results of Ref24], In conclusion, we have determined the entanglement ca-
the concurrence of statd’(t)) is obtained as pability of a self-inverse Hamiltonian evolution. The self-
inverse Hamiltonians studied here are physically relevant in
_ _ their own right, and reduce to the important Ising Hamil-
Cl|W(t))]=|sin(2t)] V(- [y 7)) (1= (8] 8)]?). tonian that is central to quantum-information science. These
3 Hamiltonians go beyond the two-qubit cases; namely, they
can act on al; X d, composite system, where the dimension
. L ) of the subsystem can be either finite or infinite. We intro-
From the above equation, it is easy to find 8l  guced the concept of operator entanglement rate which is
=|[sin(2)|, which is the maximal entanglement which the \ye|| defined for composite finite systems, and for certain
operatorU(t) can generate from an arbitrary product stategef.jnverse Hamiltonians the maximal operator entangle-
As the stategy) e Hara and|8) e Hge: . the entanglement  ment rate is equal to the entanglement capability. For a gen-
capability ;) is ancilla independent. eral Hamiltonian, the maximal operator entanglement rate

The unitary operarod(t) (24) is in fact a special case of gways gives a lower bound on the Hamiltonian entangle-
U(t) (2). Assuming thatJ,(t) acts onHy® Hy with evend,  ment capability.
we find that the optimal input state for generating maximal
entanglement i$»)®|#n), and from Eq.(24) we find that The authors acknowledge helpful discussions with Paolo
Zanardi, Dominic Berry, Stephen Bartlett, and Gerard Mil-

. burn. This project has been supported by a large grant from
fU1(0]=ClUL(]=Ey,m=[sin2t)]. (32 the Australian Research Council.
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