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Separability properties of three-mode Gaussian states
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We derive a necessary and sufficient condition for the separability of tripartite three-mode Gaussian states
that is easy to check for any such state. We give a classification of the separability properties of those systems
and show how to determine for any state to which class it belongs. We show that there exist genuinely tripartite
bound entangled states and point out how to construct and prepare such states.
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[. INTRODUCTION (CV’s), in particular since the experimental realization of CV
quantum teleportatiori13,14]. Quantum information with

Entanglement of composite quantum systems is central t&€V's in general is mainly concerned with the family of
both the peculiarities and promises of quantum informationGaussian states, since these comprise essentially all the ex-
Consequently, the study of entanglement of bi- and multiparperimentally realizable CV states. A practical advantage of
tite systems has been the focus of research in quantum infofV systems is the relative ease with which entangled states
mation theory. While pure state entanglement is fairly wellcan be generated in the laboratddy,15. First results on
understood, there are still many open questions related to tHg&e separability and distillability of Gaussian states were re-
general case of mixed states. The furthest progress has be@rted in[16—223. One finds striking similarities between the
made in the study of systems of two qubits: it has beersituations of two qubits and two one-mode CV systems in a
shown that a state of two qubits is separable if and only if itsGaussian state: PPT is necessary and sufficient for separabil-
partial transpose is positiv@PT property[1] and a closed ity [17,18, and all inseparable states are distillabl9].
expression for the entanglement of formation was derived>eneralizing the methods reviewed[ir] it was shown that
[2]. Moreover, it was showf3] that all entangled states of for more than two modes at either side PPT entangled states
two qubits can be distilled into maximally entangled pure€Xist[20]. In [21] a computable measure of entanglement for
states by local operations. This property of distillability is of bipartite Gaussian states was derived.
great practical importance, since only the distillable states The study of CV multipartite entanglement was initiated
are useful for certain applications such as long-distancé [23,24], where a scheme was suggested to create pure CV
quantum communication, quantum teleportation, or cryptogN-party entanglement using squeezed light &hd1l beam
raphy[4]. splitters. In fact, this discussion indicates that tripartite en-

In higher dimensions much less is known: the PPT proptanglement has already been cregtédugh not investigated
erty is no longer sufficient for separability as proved by theor detecteglin a CV quantum teleportation experimea#].
existence of PPT entangled stat®$TES’S in (o= ou sys- In this paper we provide a complete classification of tri-
tems [5]. These states were later shown to be bound enmode entanglementaccording to the schemg9]) and
tangled[6]: even if two parties(Alice and Bob share an obtain—in contrast to the finite-dimensional case—a simple,
arbitrarily large supply of such states, they cannot transfornglirectly computable criterion that allows us to determine to
(“distill” ) it into even a single pure entangled state by localwhich class a given state belongs. We show that none of
quantum operations and classical communication. Mearthese classes are empty and in particular provide examples of
Whi|e, a number of additional necessary or sufficient Condi.genuine tripartite bound entangled states, i.e., states of three
tions for inseparability have been found for finite- modesA, B, andC that are separable whenever two parties
dimensional bipartite systems, which use properties of th@re grouped together but cannot be written as a mixture of
range and kernel of the density matgand its partial trans-  tripartite product states. Finally we show how to extend these
pose p'A to establish separability[7] and references results to states of one mode eacthandB andn modes at
therein. C.

When going from two to more parties, current knowledge Before we can derive our results we need to introduce
is even more limited. Pure multipartite entanglement wa$some notation and collect a number of useful facts about our
first considered in8]. A classification ofN-partite mixed —Main object of study: Gaussian states.
states according to their separability properties has been
given [9]. But even for thre_e qubits there is curre_ntly no Il GAUSSIAN STATES
general way to decide to which of these classes a given state
belongs[10]. Results on bound entanglemdifl] and en- In quantum optics and in other scenarios described by
tanglement distillatio12] for multiparty systems have been continuous quantum variables, not all states on the infinite-
obtained. dimensional Hilbert space are equally accessible in current

Recently increasing attention was paid to infinite dimen-experiments. In fact, the set of Gaussian states comprises
sional systems, the so-called continuous quantum variablesssentially all genuinely CV states that can currently be pre-
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pared in the laboratory. This and the mathematical simplicity v is the CM of a physical state, (2.59
of these states are the reasons why CV quantum information
has so far considered almost exclusively Gaussian states, as y+Jy 1J=0, (2.5b
will the present paper. This section summarizes results on
Gaussian states that we need in the following and introduces vy—iJ=0, (2.50
some notation.

We consider systems composed bf distinguishable y=S'(D&D)S, (2.50

infinite-dimensional subsystems, each with Hilbert space ) i

—L2(R). These could be implemented quantum optically by®" Ssymplectic[27] andD=1 diagonal[28].

different modes of the electromagnetic field: hence each of FPr00f (2.53 < (2.5, se€[26]; (2.5a < (2.50, see{20];
these subsystems will be referred to as a “mode.” To each?-28 < (2.50, see[29] (proposition 4.22 _

mode belong the two canonical observablés, Py, k A.CM .corresponds to a pure state if and only(iff) D
=1,... n, with commutation relatiofX, ,P,]=i. Defining =L i-€. iff dety=1 (e.g,,[26). It is easy to see from Eq.
Re=Xy, Ry:x=Py, these relations are summarized as(2-50 that for pure states Ine@2.50 becomes an equality

[Ry,R/]=—1Jy,, using the antisymmetricr< 2n matrix and dinfker(y—iJ)]=n. It is clear from Eq.(2.5d that for
every CMy there exists a pure Chf, such thaty,<y. This

0 —1 will allow us to restrict many proofs to pure CM’s only. Note
J—( ) (2.1  that for a pure 2X2n CM vy it holds that Try=2n.
A very important transformation for the study of entangle-
_ ) _ ) ) ment is partial transpositiorl]. Transposition is an example
which plays an important role in the following calculations of a positive but not completely positive map and therefore,

I 0

[25]. o ) ) may reveal entanglement when applied to part of an en-
For such systems, it is convenient to describe the gtate tangled system. On phase space, transposition corresponds to
by its characteristic function the transformation that changes the sign of all pheoordi-
nates €,p)—A(qg,p)=(q,—p) [18] and leaves the's un-
x(X)=Tr[pD(x)]. (22 changed. For andd this means ¢,d)— (A yA,Ad). Using
this, the nonpositive partial transpo@éPT) criterion for in-
Herex=(q,p), q,peR"is a real vector, and separability[1] translates very nicely to Gaussian states.

Consider a hipartite system consistingnofmodes on Alice’s
side andn modes on Bob'srix n system in the followiny
Let ¥ be the CM of a GaussiamXxn state and denote by
Ap=A®] the partial transposition in Alice’s system only.

The characteristic function contains all the information aboutThen we have the following criterion for inseparability.

D(x)=exp(—i; (QXk+ PPy |- 2.3

the state of the system: that is, one can consfstatowing Theorem 1(NPT criterion). Let y be the CM of a n

x- Gaussian states are exactly those for whicha Gaussian ~System, thery corresponds to an inseparable state if and only

function of the phase space coordinatd6], if ApyA, is not a physical CM, i.e., if and only if
X(X):e—XTyXIA—ide (2.4) AA’)’AA?U. (26)

_ . _ - _ We say thaty “is NPT" if Eq. (2.6) holds.
where y is a real, symmetric, strictly positive matrix, the  Proof. See[18] for N=1 and[20] for the general case.
correlation matrix(CM), andde R2" is a real vector, the Occasionally it is convenient to apply the orthogonal op-
displacement. Note that bothandd are directly measurable eration A, to the right-hand side of Ined2.6) and write
guantities; their elementg,, andd, are related to the expec- Ta=AnJA L.
tation values and variances of the operaffs A Gaussian For states of at least two modes at both sides condition
state is completely determined by and d. Note that the (5 g js siill sufficient for inseparability, but no longer neces-
displacement of dknown) state can always be adjusted 0 g4y a5 shown by Wermner and Wolf, who have considered a
d=0 by a sequence of unitaries applied to individual modessamily of 2x 2 entangled states with positive partial trans-
This implies thatd is irrelevant for the study of nonlocal pose[20]. In the same paper, the following was shown.
properties. Therefore we will occasionally say, e.g., that “a  Theorem Aseparability of Gaussian stajed state with

CM is separable” when the Gaussian state with this CM isqp yis separable iff there exist CM'g,, v such that
separable. Also, from now on in this paper “state” will al- '

ways mean “Gaussian statélinless stated otherwise Y= Ya® Vg (2.7
Not all real, symmetric, positive matricescorrespond to

the CM of a physical state. There are a number of equivalent It is observed in20] that if Ineq. (2.7) can be fulfilled,

ways to characterize physical CM’s, which will all be useful then the state with CM can be obtained by local operations

in the following. We collect them in the following lemma. and classical communication from the product state with CM
Lemma 1(correlation matrices For a real, symmetric y,= ya® yg, namely, by mixing the statesy(,d) with the

2nX2n matrix y>0 the following statements are equiva- d's distributed according to the Gaussian distributroaxp

lent: [—d"(y—v,) *d].
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Note that while Theorem 2 gives a necessary and suffi- Class 1 Fully inseparable states are those which are not
cient condition for separability, it is not a practical criterion, separable for any grouping of the parties.
since to use it, we have to prove the existence or nonexist- Class 2 One-mode biseparable states are those which are
ence of CM'sy,,vg. Instead, a criterion would allow us to separable if two of the parties are grouped together, but in-
directly calculate fromy whether the corresponding state is separable with respect to the other groupings.
separable or not. Theorem 2 and its extension to the three- Class 3 Two-mode biseparable states are separable with
party situation are the starting point for the derivation ofrespect to two of the three bipartite splits but inseparable
such a criterion for the case of three-mode three-party statesith respect to the third.
in the following main section of this paper. Class 4 Three-mode biseparable states separable with re-
spect to all three bipartite splits but cannot be written as a
mixture of tripartite product states.

Class 5 The fully separable states can be written as a

When systems that are composed\of 2 parties are con- Mixture of tripartite product states.
sidered, there are many “types” of entanglement due to the Examples for class (the GHZ-like states dff24]), class 2
many ways in which the different subsystems may be en{two-mode squeezed vacuum in the first two and the vacuum
tangled with each other. We will use the scheme introducedn the third modg and class Svacuum state in all three
in [9] to classify three-mode tripartite Gaussian states. Th&hodes are readily given; we will provide examples for
important point is that from the extension of theorem 2 weclasses 3 and 4 in Sec. IV below.
can derive a simple criterion that allows us to determine How can we determine to which class a given state with
which class a given state belongs to. This is in contrast to th&M y belongs? States belonging to classes 1, 2, or 3 can be
situation for three qubits, where up until now no such crite-readily identified using the NPT criteriofTheorem 1. De-
rion is known. In particular, we show that none of thesenoting the partially transposed CM b¥,=A,yA,, X
classes are empty and we provide an example of a genuirieA,B,C, we have the following equivalences.
tripartite bound entangled state, i.e., a state of three magdes ~ Lemma 2(classification:
B, andC that is separable whenever two parties are grouped

Ill. TRIMODE ENTANGLEMENT

together but cannot be written as a mixture of tripartite prod- Ya#id, ye#id, yc#FiJ=class 1, (3.2

uct states and therefore cannot be prepared by local opera- e e .

tions and classical communication of three separate parties. (*)7a#1d.78#1J, yc=iJ=class 2, 33
(") ya#id,yg=id,yc.=iJ<class 3, (3.9

A. Classification

The scheme of9] considers all possible ways to group Ya=1d,78=1J,7c=1Jclass 4 or 5, (3.9

the N parties intom=N subsets, which are then themselves
considered each as a single party. Now, it has to be dete

m!ned whether the resulting-party state can be written as a The proof follows directly from the definitions of the dif-
mixture of m-party product states. The complete record of
ferent classes and theorem 1.

the m-party separability of all these states then characterizes What is still missing is an easy way to distinguish be-

the entan_glem_ent of thii-party state. . tween class 4 and class 5. Thus to complete the classification
For tripartite systems, we need to consider four : oo .
) L . ! we now provide a criterion to determine whether a GM
cases: namely, the three bipartite cases in WABhAC, or o .
satisfying Inegs.(3.5 is fully separable or three-mode

.BC are grouped together, respectively, and the triparti_te Casgiseparable' that is, we have to decide whether there exist
in which all A, B, andC are separate. We formulate a simple one-mode CM'Sya,7s,7c such that Eq.(3.1) holds, in

extension to theorem 2 to characterize mixtures of tripartite hich is full bl h b ,

product states. w_”|c casey is fu y”separa e. Int efnext su secr:ltlon we
Theorem 2 (three-party separability A Gaussian three- Z;V'M'ge:f]gae a;::nha Siit ncgcnesslzgrrli? ?ounr?d r:;otrheetsfar:eni'ge

party state with CMy can be written as a mixture of tripar- separable 9 YA y

tite product states iff there exist one-mode correlation matri- P '

CeSya, Y Yc Such that

where the asterisk reminds us to consider all permutations of
fhe indicesA, B, andC.

B. Criterion for full separability

Y= Ya® 89 vc=0. (3.1 This subsection contains the main result of the paper: a

separability criterion for PPT X1X1 Gaussian states, i.e.,

Such a state will be calleflilly separable states whose CM fulfills Ineg$3.5). We start from Theorem
Proof. The proof is in complete analogy with that of 2’ and obtain in several steps a simple, directly computable
Theorem 2.7 i[20] and is therefore omitted here. necessary and sufficient condition. The reader mainly inter-

A state for which there are a one-mode Cj] and a ested in this result may go directly to Theorem 3, from where
two-mode CM ygc such thaty— y,® ygc=0 is called an she will be guided to the necessary definitions and lemmas.

A-BC biseparable stateand similarly for the two other bi- Since the separability condition in Theorerhig formu-
partite groupings In total, we have the following five dif- lated in terms of the positivity of certain matrices the follow-
ferent entanglement classes. ing lemma will be very useful throughout the paper. We con-
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sider a self-adjointr{+ m) X (n+m) matrix M that we write
in block form as

M= (3.6

ct B

A C>,

where A, B, and C are nXn, mxXm, and nXm matrices,
respectively.

Lemma 3(positivity of self-adjoint matrices A self-
adjoint matrixM as in Eq.(3.6) with A=0,B=0 is positive
if and only if for all e>0

PHYSICAL REVIEW 44 052303

Observation 1Let vy satisfy Ineqs(3.5); then,

oald 0 0
y=| 0 ogid 0
0 0

: (3.10

(Tc|J

whereo, e {0,£1}, Vx=A,B,C.

Proof. Inequalities(3.5) say thaty=iJ=0 and y*iJ,
=0 Vx. By adding these positive matrices all combinations
of o can be obtained.

From this it follows

Observation 2For a PPT CMy as in Eq.(3.9),

A_CB+51LCTZO (3.7 B
kenB+iJ),kerB+iJ)CkerC, (3.11
or, equivalently, if and only if _
where J=J®(—J) is the partially transposed for two
kerBCkerC (3.89 modes.
Proof. Condition (3.11) on the kernels is an immediate
and consequence of Lemma 3 applied to the matriges)a®iJ
1 @ (£iJ), which are positive by observation 1. |
A—C§CT>0, (3.8b Then the matrices
where B~! is understood in the sense of a pseudoinverse NEA—CLCT, (3.123
(inversion on the range B—iJ
Proof. The only difficulty in the proof arises if k& + 0.
Therefore we consider the matrickls., whereB in Eq. (3.6) 1
is replaced byB,=B+ €l (e>0), which avoids this problem NEA—CﬁCT (3.12b
and which is positiveV >0 iff M=0. In a second simpli-
fying step we note thatM,=0 V >0 iff M.=(1 are well-defined and
®B. 1/2)'\/_'(1@ B, 1/2)2_0- _ ~ Observation 3t holds that both
Now direct calculation shows the claim that we can write
a generalf@g as fo[(B,Y*C"h+h,], whereh, is or- TrNr >0, (3.13

thogonal to the range ofB(_ Y°C"). Then (f@g)"M.(f
ag)=f(A-CB_Chf+(f+h)'cB 'C(f+h)+hTh ,

Proof. Condition(3.13 is true since, again by Lemma 3

which is clearly positive, if Eq(3.7) holds. With the choice g observation 1, botN and N are positive andN+iJ,

h, =0 andh=—f it is seen that Eq(3.7) is also necessary.
That the second condition is equivalent is seen as follow:

If Ineq. (3.7) holds, V >0, there cannot be vecto¢
e kerB and ¢ ¢ kerC since for such & we have

A-C

gT

! Cc'l¢<0
B+ el 3

for sufficiently smalle>0, and if Eq.(3.89 holds, then Eq.

(3.7) converges to E(3.8b). Conversely, if Eq(3.83 holds,
then CB*C" is well-defined and Ineq(3.8b implies it,
Ye>0. [ |

~

N=iJ=0. This implies thatN,N cannot be zero, which is
the only positive matrix with vanishing trace. Therefore

TrN,TrN are strictly positive.
The remainder of this section leads in several steps to the
separability criterion. First, we simplify the conditigB.1)
by reducing it to a condition which involves only one one-
mode CMy,.
Lemma 4 A PPT three-mode CM is fully separable if
and only if there exists a one-mode C{) such that both

N=ya, (3.14a

As mentioned above, in this section we exclusively con-

sider three-mode CM’y that satisfy Ineqs.3.5). We write y
in the form of Eq.(3.6) as

A C
’y:

o Bl (3.9

whereA is a 2X 2 matrix, wherea® is a 4x4 matrix. We
observe that Ineqg3.5 impose some conditions op that
will be useful later on:

N=y,, (3.14h
hold, whereN,N were defined in Eq$3.12. Without loss of
generality we requirey, to be a pure state CM, i.e., dgt
=1.

Proof. By Theorem 2 full separability ofy is equivalent

to the existence of one-mode CM4 , yg,yc=i1J such that

Y '}’A@ '}/B@ 'yC; O Let Vx Stand fOI’yA’B'C .
By Lemma 3 this is equivalent td vy, such that
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X.=B-CT C=y® vyc, Ve>0,

Ae_ YA

whereA _=A+ el. But iff there exist suchy,, then(Lemma
3) the inequality also holds foe=0 and the kernels fulfill
Eqg. (3.8a. This is true iff the matrixX=X{, is a CM belong-
ing to a separable state, i.¢Theorem 1, iff X'=iJ,iJ.
Using B=iJ,iJ [which holds sincey fulfills Inegs. (3.5 ] we
obtain thaty is separable iff there existg,=iJ such that

A=va
CT

C

1,2
Bli 169

)20, k= (3.15

where B;=B—iJ and B,=B—iJ. Since condition(3.89
holds, this islLemma 3 equivalent to Ineqq3.14). That we
can always choose degt=1 follows directly from Eq.(2.5d
and the remark after Lemma 1. |
While we can always find g, fulfiling Ineq. (3.14b,
sincey belongs to a PPT statand there exists a two-mode
CM ygc=iJ such thaty,® ygc is smaller tharny), it may
well happen that Ineq(3.14a cannot be satisfied at all, or
that it is impossible to have both Ineg&.14 fulfilled for
one y, simultaneously. Note that due to Ineq3.5), N and

N as above are always positive. From Inet&14 we ob-
serve the following.

Observation 4 For the CM vy of a separable state it is
necessary to have

TrN, TrN=2, (3.163

detN,detN>0, (3.16h

wherey as in Eq.(3.9) andN,N as in Egs(3.12.
Proof. A self-adjoint 2<2 matrix is positive iff its trace

and determinant are positive. Since the Trace of the right-

hand side(RHS) of both Ineqs.(3.14) is =2 (remark after

PHYSICAL REVIEW A 64 052303

L=(a—c,2Reb). (3.19

Proof. As noted in Lemma 4 we need only look fotn
with dety,=1. We parametrize

X+y z

, X_y), (3.20

Ya=

with real parameters,y,z and x>=1+y?+z2 for purity.
This is a CM iff y4—iJ=0 (Lemma 2, that is, iff Try,
=2x=0 [where we use that positivity of thex22 matrix is
equivalent to the positivity of its trace and determinant and
det(ya—iJ)=0 by constructioh By the same argumenR
— ya=0 leads to the two condition8.18). |

The Ineqs(3.18 have a simple geometrical interpretation
that will be useful for the proof of the promised criterion:
Inequality(3.183 restricts(y,2 to a circular diskC’ of radius
J(TrR)%/4—1 around the origin, while Ineq(3.180 de-
scribes a(potentially degenerateellipse £ (see Fig. 2,
whose elements are calculated below, and the existence of a
joint solution to Ineqgs.(3.18 is therefore equivalent to a
nonempty intersection af’ andé&.

Applying this now to the matrice€3.12 we find that in
order to simultaneously satisfy both conditions in Lemma 4,

the intersection between the two ellips&§ and the smaller

of the two concentric circle€’,C’ (which we denote in the
following by C) must be nonempty. This condition leads to

three inequalities in the coefficients of the matridésN
which can be satisfied simultaneously if and only if the PPT
trimode state is separable. Thus we can reformulate the con-
dition for separabilitylLemma 4 as follows.

Lemma 6(reformulated separability conditipnA three-
mode state with CMy satisfying Ineqs(3.5) is fully sepa-
rable if and only if there exists a poiny(z) € R? fulfilling
the following inequalities:

min{TrN, TrN}=2\1+y?+ 7%,

(3.213

Lemma 1, the same is necessary for the LHS. Also, since

dety,=1, which implies thaty, has full rank, any matrix

=y, must also have full rank30] and thus a strictly positive

determinant. [ ]
For a self-adjoint positive 2 matrix

a b
b* ¢/’
we show the following.
Lemma 5 There exists a CMy,<R if and only if there
exist (y,z) e R? such that

trR=21+y?+27°

R= (3.17)

(3.183

detR+1+ LT()Z/)ZtrR\/1+y2+22, (3.180

where

detN+1+ LT< 32') =TrNV1+y2+7%,  (3.21b

detN+ 1+ET( 32/) =TrNV1+y2+Z2  (3.210

Proof. According to Lemma 4y belongs to a separable

state iff we can findy, smaller thanN and smaller thai.
According to Lemma 5 we can find suchya iff we can find

(y,2 such that Ineqs3.18 are satisfied for both andN. W
In the following paragraphs we have a closer look at the

sets€, €, andC. The goal of this discussion is to identify a
few special points—directly computable from—among
which a solution to Ineqs3.22) will be found iff the state
under consideration is separable. This will then lead to the
final practical form of the separability criterion which is
stated at the end of this section.

By squaring Ineq(3.21bh we obtain
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e

where u= (detN+1)/k;, m=(k,/k;)[(detN+1)?>—k;], and
the matrixK is [31]

T
K

(3.22

K=k{P +ksP 1,
with the orthogonal projectorB, ,P,. onL,L* and
ky=4[detN+(Imb)?],
Ko=(TrN)2.

Due to Ineqs(3.16), k; andk, are strictly positive,u,m are

well defined, anK is a positive matrix of rank 2. Let us now

distinguish the casea<0 andm=0. Form<0, Ineq.(3.22

can never be fulfilled sincK is a positive matrix. In the case

m=0, Ineq.(3.22 describes an ellips€ which is centered at
me=uL with major axisL and minor axisL* of lengths
m/k,=m/k,, respectively. From Ineq3.219 we obtain

the same equations for the tilded quantities derived fdém

PHYSICAL REVIEW 44 052303

As pointed out before, the condition that Ine¢&21) can
simultaneously be satisfied has the geometrical interpretation
that the circleC and the two ellipses,& have a nonempty
intersection, i.e.| =ENENC#D.

Thus it remains to prove that ifis nonempty then one of
the nine points in3.23 lies in|. But if | #J there are only
the following two possibilities: since all the sets considered
are convex and closed, either the bordet abincides with
that of one of the set§,&,€ (which means that one of these
sets, call itS, is contained in both othersr at least two of
the bordersdC,d€,d€ contribute todl, in which case the
points at which these two intersect belongitaand thus td.

In the former case, the center 8fis a solution and given
by one of the Eqs(Al); in the latter, one can find a solution
among the intersections of the borders of the §efC. That
these are given by thig is shown in Appendix A. [ |

If a CM v belongs to a separable state according to the
above theorem then the poigt, provides us with a pure

one-mode CMy, such thatN,N=1y,. By constructiony’
=B—C(A—1vy,) CT is a separable 22 CM and by re-
peating a similar procedure as above wjthwe can calcu-

_The final argument for the derivation of the separability|ate a pure product-state decomposition of the original state
criterion is as follows. By Lemma 6 the state is separable ifyith CM v.

and only if the three sets described by Ind@s219—(3.219
have a common intersection, i.e., fEENENC#T. The

IV. EXAMPLES OF BOUND ENTANGLED STATES

border ofl is contained in the union of the borders of the

ellipses and circledl CaEUJEUIC. Now we can distin- In this section we construct states belonging to Classes 3
guish two cases, both of which allow one to calculate a defi@dnd 4. Our construction makes use of ideas that were first
nite solution to the Inegs(3.2)) if the state is separable: applied in finite dimensional quantum systems to find PPT

Eitherdl has nonempty intersections with the borders of twoeNtangled state§>PTES [5] and then generalized {i82] to
of the sets?. Z. C. or dl coincides with the border of one of construct so-called edge states, i.e. states on the border of the

the three. In the latter case this whole set is containédlim

the former case, at least one of the points at which the bo
ders intersect must be inand thus a solution. If no solution

is found this way, the state is inseparable. This argument is
made more precise in the final theorem. Formulas for the

nine candidate solutions—the centens, m,,mg and the in-
tersections pointSé,ife,ié—are given in the Appendix.

Theorem 3(criterion for full separability. A three-mode
state corresponding to the Chsatisfying Ineq(3.5) is fully

separable if and only if Ineq3.160 holds and there exists a

pOint gsola
(3.23

L
gsole{mc1me-rr}év|e"é'|ce'|c'é}’

fulfilling the Ineqgs.(3.21).
Proof. We already saw(observation # that detN,detN

r-

convex set of states with positive partial transpose. Similarly,
one can define “edge CMs” as those that lie on the border of
the convex set of PPT CMghey are called “minimal PPT

.CMs" in [20]).

This section is divided into three subsections. In the first
one we define “edge CMs” and characterize them. In the
second and third subsections we present two different fami-
lies of CMs which contain edge CMs. We also show that
within those families we have CMs belonging to all classes.

A. Edge CM’s

In the following we will consider CM’sy corresponding
to PPT states, i.e., fulfilling
7—ijx> 0,

for all x=0A,B,C, 4.1

>0 are necessary for separability. If this holds, the quantitiesvhereJ,=J.

used in Egs(3.21) and(3.23 and in their derivation are all
well-defined.

Definition 1 (edge correlation matricesA CM vy is an
edge CM if it corresponds to a nonseparable state, fulfills Eq.

According to Lemma 6y is fully separable iff there exists (4.1), and v'=y—P does not fulfill Eq.(4.2) for all real

a point (y,z) " such that the Ineq$3.21) are fulfilled. There-
fore, if one of the point$3.23 satisfies Ineqs.3.21), then it
determines ay, fulfilling Inegs. (3.14) thus proving that the

operatorsP with 0# P=0.
Note that a state with an edge CM automatically belongs
to class 4(i.e., edge CM'’s correspond to three-mode bisepa-

state is separable. To complete the proof, we show that if theable states In order to fully characterize them, we will need

state is separable, then we find a solution to In€§21)
among the point$3.23.

the following definition. Let us consider the complex vector
spaceV C (8 of dimensiond spanned by the vectors belong-
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ing to the kernels of aly—iJ, (x=0A,B,C). We will de- 1 : 18638888866882888488888888¢Q
fine K(y) as a real vector space which is spanned by the real L 3§§§ §§§ §§§§ §§° 1333333338
parts and imaginary parts of all the vectors belonginyto : §§ §§§§§§§§ :: g %%%%%
ifi —[fK 4 ifkd i H Z8LLBLLELIELILELILLBELELLELLE
More specn‘lcall?(/, let Ui denote @ {fRdl'_Ifl}kzl a basis 0.75 x 088888888888888860888888888¢
of V, such thatf; andf| are real. We define i 00888888 8888888LLLLILRLE
Oy} ittt
0.5 §i:
K(9)=1 2 Nt i o pues [ CRS, (4.2 CRans 3
0254253222
that is, the real span of the vectdi§ and f¥. Note that this é::*%%%%%fyﬁ
definition does not depend on the chosen b#&si$As is . sttt It L I
pointed out in Appendix BK(y) coincides with the real 0 * * o
; 0.25 05 Q, 075 1
vector space spanned by all the vectors in the kernelg of 1
< .
+J,y "Jy.] We then h_ave_ the following theorem. FIG. 1. The entanglement classesqgf ...
Theorem 4(characterization of X1xX1 edge CM's. A 172
CM v fulfilling Eq. (4.1) is an edge CM if and only if there B. Example 1
exist Nno CM'sya, ¥g,Yc such thaty= y,® yg® yc andK , .
—RS. LA YT YATYBEYC In the first example we start out with an entangled state

Proof We will use the fac{31] that, given two positive between the two parties Alice and Bob and the vacuum state
matricesA, B0, there exists some>0 such thatA— B in Charlie and add two projectors to the corresponding CM.

=0 iff ran(B) Cran(A). According to Definition 1 we cannot More specifically, we consider CM's of the form,, a,=y
subtract any real positive matrix frogwithout violating the ~ +ai1P1+a;P,, where
conditions(4.1). This is equivalent to imposing that there be

no real vector in the intersection of the ranges of the matrices r=7as®lc

y—iJd,. This is again equivalent to saying that there is NOand

real vector orthogonal to all the ker(-iJ,), which in turn is
equivalent tok =R®, since that vector should be orthogonal
to all the real and imaginary parts of the vectors spanned by
those kernels. Now, ify corresponds to an entangled state, it
is clear thaty# y,® yg® yc. Conversely, if y# ya® yg

® yc was separable, then there must exist some real positive
P such thaty— P=y,® yg® 7y is separable, and therefore
fulfills Eqg. (4.1), which is not possible. B with a=1+c? andc can take any value different from

Note that this theorem generalizes easily to the cases Gfero. Here, P;= plpl and P,= plpl, where P;
more than three parties and more than one mode at each site(0,1,0,1,1,2J andp,=(1,0~1,0,0,1Y.

In the construction of the following two examples of tri- |y order to explain why the CMa, .2, achieves our pur-
partite bognd e_ntangled states we are going fo use this theBoses let us first consider the two- mode case in which the
rem. The idea is to take a CM, pf a pure entangled state correlation matrix isy,s. We denote now byp=p,+ip,
[Wh!qh, of course, dqes not fulfl!I_EqA.l)] and add real [wherep, = (0,1,0,1] andp,= (1,0, 1,0)'] the eigenvector
positive matrices until the conditiongt.1l) as well asK ) . . o~
=R® are fulfilled. If the resulting CM is not of the form corresponding to trle negative eigenvalueyag—iJa [25]

Ya® v8® yc, then Theorem 4 implies that it is an edge CM. Since (- iJa)* =—iJg, we have that the eigenvector corre-
In fact, we can add more real positive matrices keeping theponding to the negative eigenvaluegfz—iJg is p* =p;
state entanglefhnd fulfilling Eq.(4.2)]. In order to see how —ip,. By adding a sufficiently large multiple of the projec-
much we can add, we can use the criterion derived in théors onto those vectors, we obtain a CM whose patrtial trans-
previous section. poses are positive. Note that in this cdfiest two modep

This method of constructing CM’s belonging to class 4this would already make the state separable.
also indicates how the corresponding states may be prepared In the case of three modes with a correlation majrihe
experimentally. Adding a positive matriR to the CM y,  same argumentation applies, namely, that by adding some
corresponds to the following preparation process: start witlprojectors we can make the partial transposes with respect to
an ensemble of states with CM,, and displace them ran- A and B positive. However, we have to involv€ and
domly by d according to the Gaussian probability distribu- thereby smear out the initial entanglement betwAeand B
tion with covariance matrix given by the inverseRfThisis  among all three parties. This is exactly what is achieved by
a local operatior(that potentially needs to be supplementedadding the projector$; and P,. If we choose now, for
by classical communicatigron each individual mode. The instancec=0.3,a;=1, anda,~0.553 1095, then one can
state produced by this randomization has GM P [20]. show that the SGK(?’al,az) defined as in Eq(4.2) spansR®.

4.3

, (4.4

0
a
YaB— 0

O 0o O W
o 9 O O

—C a
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As mentioned at the end of the previous subsection, since the
resulting CM is not of the formy,® yg® vc it corresponds
to an edge CM.
In Fig. 1 we illustrate to which clasg, ,, belongs as a &)

function of the parameters; ,. In order to determine this,
we have used the criterion derived in the previous section. It
is worth noting thatyal'az never becomes separable. This FIG. 2. (a) The circle and the two ellipses do not have a joint
follows from Theorem 3 and the fact that bath=mM=0 for  intersection: therefore the state corresponding,tis a PPTES(b)
all values ofa, ,, as can be easily verified. This implies that The circle and the two ellipses have a joint intersection: therefore
the two ellipseqcf. Ineq.(3.22] are just two point§which  the state corresponding tp, is separable.
coincide with the centers given in EGAL1)]. Thus, the only

ossibility that the circle and the two ellipses intersect is tha
Fhe cent()a/rs of the ellipses are the sar?\e and lie inside th‘lé we add _novyaol tq N _mb6 Qi

: ) (7...) which immediately implies tha (v, )=R®. Since
circle. It is easy to show that for all values af anda, the 0 . 0
centers of the two ellipses are never the same. Thus the stateo” ¥A® 8@ Yc, We have that itis an edge CM.
corresponding to the CMy, o, is never separable and is a _ Letus now use Theorem 3 in order to determine First
PPTES for all values of; ,a, for which the partial trans- of all, we show, independently of the discussion agove, that
poses are positive. Ve belongs to class 4. In particular, we find thatm=0
[cf. Eq.(3.22], which implies that there exists a solution to
Inegs.(3.21) only if the centers of the two ellipses are the
same and lie within the circle. Here one can also show that

Here we present a family of states which belong either tahe two centers are not the same and so the state correspond-
class 1, 4, or 5. The states of this family are obtained from gng to the CMy,, is a PPTES. Let us determine the values
) . g : . o

pure GHZ-like stat¢24] by adding a multiple of the identity, ¢, tor which it is still the case that there exists no inter-

then all those vectors belong to

C. Example 2

€., section of the two ellipses and the circle given by Inegs.
Yo=7y+al, (4.5 (3.21. It is easy to show that itk>ag, then TIN<TrN,
which implies that the circle that has to be considered has
where radius r,=\/(TrN)?/4—1. One can also easily verify that
the two ellipses never intersect the border of the circle,
a c 0 ¢ O which simplifies the problem. The ellipses must always lie
0O b 0 —-c 0 -c inside the circlgsince if they were outside it would never be
. a 0 ¢ 0 possible to obtain a separable state everforl). Thus, the
y= (4.6 problem reduces to check at which point the ellipses intersect
0 -c 0 b 0 - ' each other. This occurs whew= a;~0.31355. Thus the
c 0 ¢c 0 a CM vy,, where ap<a<a; corresponds to a PPTES,
whereas fora=«;, the corresponding state is fully sepa-
0 ¢ 0 —c 0 b rable. In Fig. 2 we have plotted the circle and the two el-
with a>1 and gaze(z) \;\l/rli?l 'are almost circles in this case, far a<a;
1
b=7(5a=y9a"~8), (4.7 V. CONCLUSIONS

1 We have discussed nonlocal properties of Gaussian states
c=-(a—9a2-8). (4.8  of three tripartite modes. We have distinguished five classes
4 with different separability properties and given a simple nec-
. ) . ) . essary and sufficient criterion that allows us to determine
For the following discussion, we pica=1.2. It is clear  \yhich of these classes a given Gaussian state belongs to. The
that for«=0 the state is fully inseparable: i.e., it belongs 10 st three classes contain only NPT states and positivity of a
class 1, whereas for=1 the state will be fully separable giate under the three partial transpositions suffices to deter-
(class 5. We will show now that forap<a<a;, where  mine 1o which of those it belongs. The separability criterion,
a~0.297 56 andr;~0.313 55, the state is biseparable andyhjch allows us to distinguish PPT entangled states from
belongs therefore to class 4. _ separable states, is the main result of this paper. For the case
The CM vy, is symmetric with respect to permutations of three qubits such a criterion is still missing. Last, we have
between the parties, and therefore the negative eigenvaluggnstructed examples for all the classes and in particular for
of the matricesy—iJ,, x=A,B,C, are the same. We denote tripartite entangled states with positive partial transpose.
its absolute value byrg~0.297 56. It is easy to determine It is interesting to note that the results presented above
the real and imaginary parts of the corresponding eigenve@an be extended to cover the casenahodes at locatiorC
tors. One finds that all those vectors are linearly independenby using the separability criterion for multimode bipartite
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Gaussian statg®2]. Nothing changes in the argumentation APPENDIX A: POINTS OF INTERSECTION
to distinguish three-party biseparable from fully separable

stateg/the additional modes are taken care of automaticallxneqs (3.21) are found among the points of intersection of

in Egs.(3.12]. However, thg separability criterion (22] i,s _the curves described by tlegualities(3.21) or the centers of

now necessary to determine the_ properties under bipartitgq three sets. Here we give the formulas to directly calculate

splitting, since forAB-C we deal with a 2n state and PPT  {fese points fromy.

is then no longer sufficient for biseparabilg0]. The centers of circle and the ellipses have already been
It is worth pointing out that the separability criterion can shown to be

be checked experimentally. The Cilcan be measured, and

As shown in Theona 3 a state is separable iff solutions to

thus the criterion is entirely formulated in terms of quantities m.=(0,0,
that are measurable with current technology. detN+ 1
Gaussian CV states promise to be a fruitful testing ground Me=——L,
for quantum nonlocality: Pure entanglement is comparatively Ky
easy to create in quantum optical experiments, as described -
in [24]. Likewise, tripartite bound entangled states are ex- m:detN+ 1T_ (A1)
perimentally accessible: the states discussed in the examples € & '
Secs. IVB and IV C can be obtained by mixing differently !
displaced pure Gaussian states. whereN,N were defined in Eq(3.12, L in Eq. (3.19, and

The study of the entanglement of multiparty Gaussian, . after Eq.(3.22. The intersections of the borders of

states is stil in a very early stage. For example, no work hase &€ are calculated as follows. Consider first the two el-

to our knowledge, been done on the interesting cases of MOi® ces whose borders are defined by the equalitealh
i .B for the simple three- ' -~
parties and modes. But even for the simple three-mode cas hd(3.219. Dividing by TrN, respectively, by TN and sub-

there are important open questions. In particular nothing i ) 7 . ; I
known about the distillability of tripartite states. As in Ref. r:actlng the two equalities we find that a point on barand

[9] for qubits, it is easy to see that Gaussian states in classd§ Must lie on the straight ling defined by

3 and 4 cannot be distilled at all and are therefore bound (detN+1+LT&)/TrN=(detN+1+TT&)/TrN, (A2)

entangled. For this, we considdrcopies of a class 3 statg

and apply an arbitrary local quantum operati@p.. consist- whereé=(y,z). G can be parametrized withe R as gez

ing of a classically correlated sequence of operations of the-sfg, where

form P=P,®Pg®Pc. Sincep is in class 3, we can write ~

p®N as a mixture ofAB-C product state& ypipiy @ pdh [ detN+1 detN+1

and as a mixture oAC-B product state€ pjp4e @ py . 97| Trn N

After applying an operation such &%the resulting stat®

=P(p®N) will still be separable along these cuts, and nowhereL’=L/TrN—L/TrN [33] andf s is a vector orthogo-

sequence of operatior8 can change this. Thysis bound naltoL’.

entangled. InsertingGgz in Eq. (3.21b for d€ we obtain a quadratic
Whether all states in class 2 may be distilled to maximallypolynomial ins, whose rootssgé (if they are regl give the

entangled states between the two nonseparable parties is @ersection points. For the intersection &f with the el-

open question. If this were shown, it would follow that all lipses we proceed similarly. In summary, we get for the in-

states in class 1 could be distilled into arbitrary tripartitetersection points

entangled states.

)L’/lll-’llz, (A3)

i =gt S e (A4)
ACKNOWLEDGMENTS o™ Goe S e (AS)
G.G. acknowledges financial support by the Friedrich- Ie=0cet Seef cz. (AB)

Naumann-Stiftung. B.K. and J.I.C. thank the University of yhere the vectorg, , x=ce,ce are

Hannover for hospitality. M.L., B.K., and J.I.C. acknowledge

the hospitality of the Erwin Schdinger Institute. This work Jee= (TrNrs+1—detN—-1)L/||L|?, (AT)
was supported by the Austrian Science Foundation under th]g is a vector orthoconal tb. andr.. is the smaller of the
SFB “Control and Measurement of Coherent Quantum Sys;[v‘i/% radii 9 ' ¢

tems” (Project 1), the European Union under the TMR net- '

work ERB-FMRX-CT96-0087 and the project EQU@Bpn- rc=min{\/m,\/m}- (A8)
tract No. [ST-1999-11053 the European Science

Foundation, the Institute for Quantum Information GmbH, 9¢z,fee are defined likewise for tilded quantities. And, fi-
Innsbruck, and the Deutsche Forschungsgemeins¢B&8  nally, by se{e,sxi we denote the real roots of the quadratic
407 and Schwerpunkt “Quanteninformationsverarbeitung” polynomials:

052303-9



G. GIEDKE, B. KRAUS, M. LEWENSTEIN, AND J. I. CIRAC PHYSICAL REVIEW 44 052303

Pea(S)=(LT(gget Sfeo) +detN+1)2 y+3,y 1., This fact automatically follows from the fol-
lowing.
—(TrN)%(1+|lgee+ sfed ). (A9a) ° Le%ma 7[characterization ofK(y)]. Let f=fg+if,,
where fr and f, are real. Thenfeker(y—iJy) iff f
Ps)=r¢—lgctstd? x=cece (A9b) = =13 f, and bothfg and f, belong to the kernel ofy
—I—jxy*ljx.
Thus all nine candidates are given in termshNgN which Prgof. Taking the real and iNmaginary parts ofEhe equation
can be directly obtained frony. (y—id)f=0 we find yfr+J,f;=0 and yf,—J,fr=0.

Sincey must be invertible, we obtain from the second equa-
tion thatf,=y~%J,fx. Using now the first equation we find
that (y+J,y 1J,)fr=0. Analogously, ¢+J,y 13, )f,=0.

Here we show thaK(y) as defined in Eg4.2) coincides  The same argumentation holds for the other direction of the
with the (rea) span of the vectors belonging to the kernels ofproof.
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