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Separability properties of three-mode Gaussian states
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We derive a necessary and sufficient condition for the separability of tripartite three-mode Gaussian states
that is easy to check for any such state. We give a classification of the separability properties of those systems
and show how to determine for any state to which class it belongs. We show that there exist genuinely tripartite
bound entangled states and point out how to construct and prepare such states.
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I. INTRODUCTION

Entanglement of composite quantum systems is centra
both the peculiarities and promises of quantum informati
Consequently, the study of entanglement of bi- and multip
tite systems has been the focus of research in quantum in
mation theory. While pure state entanglement is fairly w
understood, there are still many open questions related to
general case of mixed states. The furthest progress has
made in the study of systems of two qubits: it has be
shown that a state of two qubits is separable if and only if
partial transpose is positive~PPT property! @1# and a closed
expression for the entanglement of formation was deri
@2#. Moreover, it was shown@3# that all entangled states o
two qubits can be distilled into maximally entangled pu
states by local operations. This property of distillability is
great practical importance, since only the distillable sta
are useful for certain applications such as long-dista
quantum communication, quantum teleportation, or crypt
raphy @4#.

In higher dimensions much less is known: the PPT pr
erty is no longer sufficient for separability as proved by t
existence of PPT entangled states~PPTES’s! in C2

^ C4 sys-
tems @5#. These states were later shown to be bound
tangled @6#: even if two parties~Alice and Bob! share an
arbitrarily large supply of such states, they cannot transfo
~‘‘distill’’ ! it into even a single pure entangled state by lo
quantum operations and classical communication. Me
while, a number of additional necessary or sufficient con
tions for inseparability have been found for finit
dimensional bipartite systems, which use properties of
range and kernel of the density matrixr and its partial trans-
pose rTA to establish separability~@7# and references
therein!.

When going from two to more parties, current knowled
is even more limited. Pure multipartite entanglement w
first considered in@8#. A classification ofN-partite mixed
states according to their separability properties has b
given @9#. But even for three qubits there is currently n
general way to decide to which of these classes a given s
belongs@10#. Results on bound entanglement@11# and en-
tanglement distillation@12# for multiparty systems have bee
obtained.

Recently increasing attention was paid to infinite dime
sional systems, the so-called continuous quantum varia
1050-2947/2001/64~5!/052303~10!/$20.00 64 0523
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~CV’s!, in particular since the experimental realization of C
quantum teleportation@13,14#. Quantum information with
CV’s in general is mainly concerned with the family o
Gaussian states, since these comprise essentially all the
perimentally realizable CV states. A practical advantage
CV systems is the relative ease with which entangled st
can be generated in the laboratory@14,15#. First results on
the separability and distillability of Gaussian states were
ported in@16–22#. One finds striking similarities between th
situations of two qubits and two one-mode CV systems i
Gaussian state: PPT is necessary and sufficient for separ
ity @17,18#, and all inseparable states are distillable@19#.
Generalizing the methods reviewed in@7# it was shown that
for more than two modes at either side PPT entangled st
exist @20#. In @21# a computable measure of entanglement
bipartite Gaussian states was derived.

The study of CV multipartite entanglement was initiat
in @23,24#, where a scheme was suggested to create pure
N-party entanglement using squeezed light andN21 beam
splitters. In fact, this discussion indicates that tripartite e
tanglement has already been created~though not investigated
or detected! in a CV quantum teleportation experiment@14#.

In this paper we provide a complete classification of t
mode entanglement~according to the scheme@9#! and
obtain—in contrast to the finite-dimensional case—a simp
directly computable criterion that allows us to determine
which class a given state belongs. We show that none
these classes are empty and in particular provide example
genuine tripartite bound entangled states, i.e., states of t
modesA, B, andC that are separable whenever two part
are grouped together but cannot be written as a mixture
tripartite product states. Finally we show how to extend th
results to states of one mode each atA andB andn modes at
C.

Before we can derive our results we need to introdu
some notation and collect a number of useful facts about
main object of study: Gaussian states.

II. GAUSSIAN STATES

In quantum optics and in other scenarios described
continuous quantum variables, not all states on the infin
dimensional Hilbert space are equally accessible in cur
experiments. In fact, the set of Gaussian states compr
essentially all genuinely CV states that can currently be p
©2001 The American Physical Society03-1
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pared in the laboratory. This and the mathematical simplic
of these states are the reasons why CV quantum informa
has so far considered almost exclusively Gaussian state
will the present paper. This section summarizes results
Gaussian states that we need in the following and introdu
some notation.

We consider systems composed ofn distinguishable
infinite-dimensional subsystems, each with Hilbert spaceH
5L2(R). These could be implemented quantum optically
different modes of the electromagnetic field: hence each
these subsystems will be referred to as a ‘‘mode.’’ To ea
mode belong the two canonical observablesXk , Pk , k
51, . . . ,n, with commutation relation@Xk ,Pk#5 i . Defining
Rk5Xk , Rn1k5Pk , these relations are summarized
@Rk ,Rl #52 iJkl , using the antisymmetric 2n32n matrix

J5S 0 21

1 0 D , ~2.1!

which plays an important role in the following calculation
@25#.

For such systems, it is convenient to describe the star
by its characteristic function

x~x!5Tr@rD~x!#. ~2.2!

Herex5(q,p), q,pPRn is a real vector, and

D~x!5expS 2 i(
k

~qkXk1pkPk! D . ~2.3!

The characteristic function contains all the information ab
the state of the system: that is, one can constructr knowing
x. Gaussian states are exactly those for whichx is a Gaussian
function of the phase space coordinatesx @26#,

x~x!5e2xTgx/42 idTx, ~2.4!

where g is a real, symmetric, strictly positive matrix, th
correlation matrix~CM!, and dPR2n is a real vector, the
displacement. Note that bothg andd are directly measurable
quantities; their elementsgkl anddk are related to the expec
tation values and variances of the operatorsRk . A Gaussian
state is completely determined byg and d. Note that the
displacement of a~known! state can always be adjusted
d50 by a sequence of unitaries applied to individual mod
This implies thatd is irrelevant for the study of nonloca
properties. Therefore we will occasionally say, e.g., that
CM is separable’’ when the Gaussian state with this CM
separable. Also, from now on in this paper ‘‘state’’ will a
ways mean ‘‘Gaussian state’’~unless stated otherwise!.

Not all real, symmetric, positive matricesg correspond to
the CM of a physical state. There are a number of equiva
ways to characterize physical CM’s, which will all be usef
in the following. We collect them in the following lemma.

Lemma 1~correlation matrices!. For a real, symmetric
2n32n matrix g.0 the following statements are equiv
lent:
05230
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g is the CM of a physical state, ~2.5a!

g1Jg21J>0, ~2.5b!

g2 iJ>0, ~2.5c!

g5ST~D % D !S, ~2.5d!

for S symplectic@27# andD>1 diagonal@28#.
Proof. ~2.5a! ⇔ ~2.5b!, see@26#; ~2.5a! ⇔ ~2.5c!, see@20#;

~2.5a! ⇔ ~2.5d!, see@29# ~proposition 4.22!.
A CM corresponds to a pure state if and only if~iff ! D

51, i.e., iff detg51 ~e.g., @26#!. It is easy to see from Eq
~2.5d! that for pure states Ineq.~2.5b! becomes an equality
and dim@ker(g2 iJ)] 5n. It is clear from Eq.~2.5d! that for
every CMg there exists a pure CMg0 such thatg0<g. This
will allow us to restrict many proofs to pure CM’s only. Not
that for a pure 2n32n CM g it holds that Trg>2n.

A very important transformation for the study of entang
ment is partial transposition@1#. Transposition is an exampl
of a positive but not completely positive map and therefo
may reveal entanglement when applied to part of an
tangled system. On phase space, transposition correspon
the transformation that changes the sign of all thep coordi-
nates (q,p)°L(q,p)5(q,2p) @18# and leaves theq’s un-
changed. Forg andd this means (g,d)°(LgL,Ld). Using
this, the nonpositive partial transpose~NPT! criterion for in-
separability @1# translates very nicely to Gaussian state
Consider a bipartite system consisting ofm modes on Alice’s
side andn modes on Bob’s (m3n system in the following!.
Let g be the CM of a Gaussianm3n state and denote by
LA5L % 1 the partial transposition in Alice’s system onl
Then we have the following criterion for inseparability.

Theorem 1~NPT criterion!. Let g be the CM of a 13n
system, theng corresponds to an inseparable state if and o
if LAgLA is not a physical CM, i.e., if and only if

LAgLA>” iJ. ~2.6!

We say thatg ‘‘is NPT’’ if Eq. ~2.6! holds.
Proof. See@18# for N51 and@20# for the general case.
Occasionally it is convenient to apply the orthogonal o

eration LA to the right-hand side of Ineq.~2.6! and write
J̃A[LAJLA .

For states of at least two modes at both sides condi
~2.6! is still sufficient for inseparability, but no longer nece
sary as shown by Werner and Wolf, who have considere
family of 232 entangled states with positive partial tran
pose@20#. In the same paper, the following was shown.

Theorem 2~separability of Gaussian states!. A state with
CM g is separable iff there exist CM’sgA ,gB such that

g>gA% gB . ~2.7!

It is observed in@20# that if Ineq. ~2.7! can be fulfilled,
then the state with CMg can be obtained by local operation
and classical communication from the product state with C
gp5gA% gB , namely, by mixing the states (gp ,d) with the
d’s distributed according to the Gaussian distribution}exp
@2dT(g2gp)

21d#.
3-2
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SEPARABILITY PROPERTIES OF THREE-MODE . . . PHYSICAL REVIEW A 64 052303
Note that while Theorem 2 gives a necessary and su
cient condition for separability, it is not a practical criterio
since to use it, we have to prove the existence or nonex
ence of CM’sgA ,gB . Instead, a criterion would allow us t
directly calculate fromg whether the corresponding state
separable or not. Theorem 2 and its extension to the th
party situation are the starting point for the derivation
such a criterion for the case of three-mode three-party st
in the following main section of this paper.

III. TRIMODE ENTANGLEMENT

When systems that are composed ofN.2 parties are con-
sidered, there are many ‘‘types’’ of entanglement due to
many ways in which the different subsystems may be
tangled with each other. We will use the scheme introdu
in @9# to classify three-mode tripartite Gaussian states. T
important point is that from the extension of theorem 2
can derive a simple criterion that allows us to determ
which class a given state belongs to. This is in contrast to
situation for three qubits, where up until now no such cri
rion is known. In particular, we show that none of the
classes are empty and we provide an example of a gen
tripartite bound entangled state, i.e., a state of three modeA,
B, andC that is separable whenever two parties are grou
together but cannot be written as a mixture of tripartite pr
uct states and therefore cannot be prepared by local op
tions and classical communication of three separate part

A. Classification

The scheme of@9# considers all possible ways to grou
the N parties intom<N subsets, which are then themselv
considered each as a single party. Now, it has to be de
mined whether the resultingm-party state can be written as
mixture of m-party product states. The complete record
the m-party separability of all these states then character
the entanglement of theN-party state.

For tripartite systems, we need to consider fo
cases: namely, the three bipartite cases in whichAB, AC, or
BC are grouped together, respectively, and the tripartite c
in which all A, B, andC are separate. We formulate a simp
extension to theorem 2 to characterize mixtures of tripar
product states.

Theorem 28 ~three-party separability!. A Gaussian three-
party state with CMg can be written as a mixture of tripar
tite product states iff there exist one-mode correlation ma
cesgA ,gB ,gC such that

g2gA% gB% gC>0. ~3.1!

Such a state will be calledfully separable.
Proof. The proof is in complete analogy with that o

Theorem 2.7 in@20# and is therefore omitted here.
A state for which there are a one-mode CMgA and a

two-mode CMgBC such thatg2gA% gBC>0 is called an
A-BC biseparable state~and similarly for the two other bi-
partite groupings!. In total, we have the following five dif-
ferent entanglement classes.
05230
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Class 1. Fully inseparable states are those which are
separable for any grouping of the parties.

Class 2. One-mode biseparable states are those which
separable if two of the parties are grouped together, but
separable with respect to the other groupings.

Class 3. Two-mode biseparable states are separable w
respect to two of the three bipartite splits but insepara
with respect to the third.

Class 4. Three-mode biseparable states separable with
spect to all three bipartite splits but cannot be written a
mixture of tripartite product states.

Class 5. The fully separable states can be written as
mixture of tripartite product states.

Examples for class 1~the GHZ-like states of@24#!, class 2
~two-mode squeezed vacuum in the first two and the vacu
in the third mode!, and class 5~vacuum state in all three
modes! are readily given; we will provide examples fo
classes 3 and 4 in Sec. IV below.

How can we determine to which class a given state w
CM g belongs? States belonging to classes 1, 2, or 3 ca
readily identified using the NPT criterion~Theorem 1!. De-
noting the partially transposed CM byg̃x5LxgLx , x
5A,B,C, we have the following equivalences.

Lemma 2~classification!:

g̃A>” iJ,g̃B>” iJ,g̃C>” iJ⇔class 1, ~3.2!

~* !g̃A>” iJ,g̃B>” iJ,g̃C> iJ⇔class 2, ~3.3!

~* !g̃A>” iJ,g̃B> iJ,g̃C> iJ⇔class 3, ~3.4!

g̃A> iJ,g̃B> iJ,g̃C> iJ⇔class 4 or 5, ~3.5!

where the asterisk reminds us to consider all permutation
the indicesA, B, andC.

The proof follows directly from the definitions of the dif
ferent classes and theorem 1.

What is still missing is an easy way to distinguish b
tween class 4 and class 5. Thus to complete the classifica
we now provide a criterion to determine whether a CMg
satisfying Ineqs.~3.5! is fully separable or three-mod
biseparable; that is, we have to decide whether there e
one-mode CM’sgA ,gB ,gC such that Eq.~3.1! holds, in
which caseg is fully separable. In the next subsection w
will describe a small set consisting of no more than n
CM’s among whichgA is necessarily found if the state i
separable.

B. Criterion for full separability

This subsection contains the main result of the pape
separability criterion for PPT 13131 Gaussian states, i.e
states whose CM fulfills Ineqs.~3.5!. We start from Theorem
28 and obtain in several steps a simple, directly computa
necessary and sufficient condition. The reader mainly in
ested in this result may go directly to Theorem 3, from whe
she will be guided to the necessary definitions and lemm

Since the separability condition in Theorem 28 is formu-
lated in terms of the positivity of certain matrices the follow
ing lemma will be very useful throughout the paper. We co
3-3
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sider a self-adjoint (n1m)3(n1m) matrix M that we write
in block form as

M5S A C

C† BD , ~3.6!

where A, B, and C are n3n, m3m, and n3m matrices,
respectively.

Lemma 3 ~positivity of self-adjoint matrices!. A self-
adjoint matrixM as in Eq.~3.6! with A>0,B>0 is positive
if and only if for all e.0

A2C
1

B1e1
C†>0 ~3.7!

or, equivalently, if and only if

kerB#kerC ~3.8a!

and

A2C
1

B
C†>0, ~3.8b!

where B21 is understood in the sense of a pseudoinve
~inversion on the range!.

Proof. The only difficulty in the proof arises if kerBÞ0.
Therefore we consider the matricesM e , whereB in Eq. ~3.6!
is replaced byBe5B1e1 (e.0), which avoids this problem
and which is positive; e.0 iff M>0. In a second simpli-
fying step we note thatM e>0 ; e.0 iff M e85(1
% Be

21/2)M (1% Be
21/2)>0.

Now direct calculation shows the claim that we can wr
a generalf % g as f % @(Be

21/2C†)h1h'#, where h' is or-
thogonal to the range of (Be

21/2C†). Then (f % g)†M e8( f
% g)5 f †(A2CBe

21C†) f 1( f 1h)†CBe
21C†( f 1h)1h'

† h' ,
which is clearly positive, if Eq.~3.7! holds. With the choice
h'50 andh52 f it is seen that Eq.~3.7! is also necessary

That the second condition is equivalent is seen as follo
If Ineq. ~3.7! holds, ; e.0, there cannot be vectorj
PkerB andj¹kerC since for such aj we have

jTS A2C
1

B1e1
C†D j,0

for sufficiently smalle.0, and if Eq.~3.8a! holds, then Eq.
~3.7! converges to Eq.~3.8b!. Conversely, if Eq.~3.8a! holds,
then CB21C† is well-defined and Ineq.~3.8b! implies it,
;e.0. j

As mentioned above, in this section we exclusively co
sider three-mode CM’sg that satisfy Ineqs.~3.5!. We writeg
in the form of Eq.~3.6! as

g5S A C

CT BD , ~3.9!

whereA is a 232 matrix, whereasB is a 434 matrix. We
observe that Ineqs.~3.5! impose some conditions ong that
will be useful later on:
05230
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Observation 1. Let g satisfy Ineqs.~3.5!; then,

g>S sAiJ 0 0

0 sBiJ 0

0 0 sCiJ
D , ~3.10!

wheresxP$0,61%, ;x5A,B,C.
Proof. Inequalities~3.5! say thatg6 iJ>0 and g6 i J̃x

>0 ;x. By adding these positive matrices all combinatio
of sx can be obtained.

From this it follows
Observation 2. For a PPT CMg as in Eq.~3.9!,

ker~B1 iJ !,ker~B1 i J̃ !#kerC, ~3.11!

where J̃5J% (2J) is the partially transposedJ for two
modes.

Proof. Condition ~3.11! on the kernels is an immediat
consequence of Lemma 3 applied to the matricesg20% iJ
% (6 iJ), which are positive by observation 1. j

Then the matrices

Ñ[A2C
1

B2 i J̃
CT, ~3.12a!

N[A2C
1

B2 iJ
CT ~3.12b!

are well-defined and
Observation 3. It holds that both

Tr N,tr Ñ.0. ~3.13!

Proof. Condition ~3.13! is true since, again by Lemma
and observation 1, bothN and Ñ are positive andN6 iJ,
Ñ6 iJ>0. This implies thatN,Ñ cannot be zero, which is
the only positive matrix with vanishing trace. Therefo
Tr N,Tr Ñ are strictly positive.

The remainder of this section leads in several steps to
separability criterion. First, we simplify the condition~3.1!
by reducing it to a condition which involves only one on
mode CMgA .

Lemma 4. A PPT three-mode CMg is fully separable if
and only if there exists a one-mode CMgA such that both

Ñ>gA , ~3.14a!

N>gA , ~3.14b!

hold, whereN,Ñ were defined in Eqs.~3.12!. Without loss of
generality we requiregA to be a pure state CM, i.e., detgA
51.

Proof. By Theorem 28 full separability ofg is equivalent
to the existence of one-mode CMsgA ,gB ,gC> iJ such that
g2gA% gB% gC>0. Let gx stand forgA,B,C .

By Lemma 3 this is equivalent to'gx such that
3-4
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Xe[B2CT
1

Ae2gA
C>gB% gC , ;e.0,

whereAe[A1e1. But iff there exist suchgx , then~Lemma
3! the inequality also holds fore50 and the kernels fulfill
Eq. ~3.8a!. This is true iff the matrixX[X08 is a CM belong-

ing to a separable state, i.e.,~Theorem 1!, iff X8> i J̃,iJ.
UsingB> i J̃,iJ @which holds sinceg fulfills Ineqs.~3.5!# we
obtain thatg is separable iff there existsgA> iJ such that

S A2gA C

CT Bk8
D>0, k51,2, ~3.15!

where B185B2 iJ and B285B2 i J̃. Since condition~3.8a!
holds, this is~Lemma 3! equivalent to Ineqs.~3.14!. That we
can always choose detgA51 follows directly from Eq.~2.5d!
and the remark after Lemma 1. j

While we can always find agA fulfilling Ineq. ~3.14b!,
sinceg belongs to a PPT state~and there exists a two-mod
CM gBC> iJ such thatgA% gBC is smaller thang!, it may
well happen that Ineq.~3.14a! cannot be satisfied at all, o
that it is impossible to have both Ineqs.~3.14! fulfilled for
onegA simultaneously. Note that due to Ineqs.~3.5!, N and
Ñ as above are always positive. From Ineqs.~3.14! we ob-
serve the following.

Observation 4. For the CMg of a separable state it i
necessary to have

Tr N,Tr Ñ>2, ~3.16a!

detN,detÑ.0, ~3.16b!

whereg as in Eq.~3.9! andN,Ñ as in Eqs.~3.12!.
Proof. A self-adjoint 232 matrix is positive iff its trace

and determinant are positive. Since the Trace of the rig
hand side~RHS! of both Ineqs.~3.14! is >2 ~remark after
Lemma 1!, the same is necessary for the LHS. Also, sin
detgA51, which implies thatgA has full rank, any matrix
>gA must also have full rank@30# and thus a strictly positive
determinant. j

For a self-adjoint positive 232 matrix

R5S a b

b* cD , ~3.17!

we show the following.
Lemma 5. There exists a CMgA<R if and only if there

exist (y,z)PR2 such that

tr R>2A11y21z2, ~3.18a!

detR111LTS y
zD>tr RA11y21z2, ~3.18b!

where
05230
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Proof. As noted in Lemma 4 we need only look forgA
with detgA51. We parametrize

gA5S x1y z

z x2yD , ~3.20!

with real parametersx,y,z and x2511y21z2 for purity.
This is a CM iff gA2 iJ>0 ~Lemma 1!, that is, iff TrgA
52x>0 @where we use that positivity of the 232 matrix is
equivalent to the positivity of its trace and determinant a
det(gA2iJ)50 by construction#. By the same argument,R
2gA>0 leads to the two conditions~3.18!. j

The Ineqs.~3.18! have a simple geometrical interpretatio
that will be useful for the proof of the promised criterio
Inequality~3.18a! restricts~y,z! to a circular diskC8 of radius
A(Tr R)2/421 around the origin, while Ineq.~3.18b! de-
scribes a~potentially degenerate! ellipse E ~see Fig. 2!,
whose elements are calculated below, and the existence
joint solution to Ineqs.~3.18! is therefore equivalent to a
nonempty intersection ofC8 andE.

Applying this now to the matrices~3.12! we find that in
order to simultaneously satisfy both conditions in Lemma
the intersection between the two ellipsesE,Ẽ and the smaller
of the two concentric circlesC8,C̃8 ~which we denote in the
following by C! must be nonempty. This condition leads
three inequalities in the coefficients of the matricesÑ,N
which can be satisfied simultaneously if and only if the P
trimode state is separable. Thus we can reformulate the
dition for separability~Lemma 4! as follows.

Lemma 6~reformulated separability condition!. A three-
mode state with CMg satisfying Ineqs.~3.5! is fully sepa-
rable if and only if there exists a point (y,z)PR2 fulfilling
the following inequalities:

min$Tr N,Tr Ñ%>2A11y21z2, ~3.21a!

detN111LTS y
zD>Tr NA11y21z2, ~3.21b!

detÑ111L̃TS y
zD>Tr ÑA11y21z2. ~3.21c!

Proof. According to Lemma 4g belongs to a separabl
state iff we can findgA smaller thanÑ and smaller thanN.
According to Lemma 5 we can find such agA iff we can find
~y,z! such that Ineqs.~3.18! are satisfied for bothN andÑ. j

In the following paragraphs we have a closer look at
setsE, Ẽ, andC. The goal of this discussion is to identify
few special points—directly computable fromg—among
which a solution to Ineqs.~3.21! will be found iff the state
under consideration is separable. This will then lead to
final practical form of the separability criterion which
stated at the end of this section.

By squaring Ineq.~3.21b! we obtain
3-5
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F S y
zD2mL GT

KF S y
zD2mL G<m, ~3.22!

where m5(detN11)/k1, m5(k2 /k1)@(detN11)22k1#, and
the matrixK is @31#

K5k1PL1k2PL',

with the orthogonal projectorsPL ,PL' on L,L' and

k154@det N1~ Im b!2#,

K25~Tr N!2.

Due to Ineqs.~3.16!, k1 andk2 are strictly positive,m,m are
well defined, andK is a positive matrix of rank 2. Let us now
distinguish the casesm,0 andm>0. Form,0, Ineq.~3.22!
can never be fulfilled sinceK is a positive matrix. In the cas
m>0, Ineq.~3.22! describes an ellipseE which is centered a
me5mL with major axisL and minor axisL' of lengths
Am/k1>Am/k2, respectively. From Ineq.~3.21c! we obtain
the same equations for the tilded quantities derived fromÑ.

The final argument for the derivation of the separabil
criterion is as follows. By Lemma 6 the state is separabl
and only if the three sets described by Ineqs.~3.21a!–~3.21c!
have a common intersection, i.e., iffI[Eù ẼùCÞB. The
border of I is contained in the union of the borders of th
ellipses and circle:]I #]Eø] Ẽø]C. Now we can distin-
guish two cases, both of which allow one to calculate a d
nite solution to the Ineqs.~3.21! if the state is separable
Either]I has nonempty intersections with the borders of t
of the setsE, Ẽ, C, or ]I coincides with the border of one o
the three. In the latter case this whole set is contained inI. In
the former case, at least one of the points at which the
ders intersect must be inI and thus a solution. If no solution
is found this way, the state is inseparable. This argumen
made more precise in the final theorem. Formulas for
nine candidate solutions—the centersmc ,me ,mẽ and the in-
tersections pointsi eẽ

6 ,i ce
6 ,i cẽ

6 —are given in the Appendix.
Theorem 3~criterion for full separability!. A three-mode

state corresponding to the CMg satisfying Ineq.~3.5! is fully
separable if and only if Ineq.~3.16b! holds and there exists
point jsol,

jsolP$mc ,me ,mẽ ,i eẽ
6 ,i ce

6 ,i cẽ
6 %, ~3.23!

fulfilling the Ineqs.~3.21!.
Proof. We already saw~observation 4! that detN,detÑ

.0 are necessary for separability. If this holds, the quanti
used in Eqs.~3.21! and ~3.23! and in their derivation are al
well-defined.

According to Lemma 6,g is fully separable iff there exists
a point (y,z)T such that the Ineqs.~3.21! are fulfilled. There-
fore, if one of the points~3.23! satisfies Ineqs.~3.21!, then it
determines agA fulfilling Ineqs. ~3.14! thus proving that the
state is separable. To complete the proof, we show that if
state is separable, then we find a solution to Ineqs.~3.21!
among the points~3.23!.
05230
if

-

r-

is
e

s

e

As pointed out before, the condition that Ineqs.~3.21! can
simultaneously be satisfied has the geometrical interpreta
that the circleC and the two ellipsesE,Ẽ have a nonempty
intersection, i.e.,I[Eù ẼùCÞB.

Thus it remains to prove that ifI is nonempty then one o
the nine points in~3.23! lies in I. But if IÞB there are only
the following two possibilities: since all the sets consider
are convex and closed, either the border ofI coincides with
that of one of the setsC,E,Ẽ ~which means that one of thes
sets, call itS, is contained in both others! or at least two of
the borders]C,]E,] Ẽ contribute to]I , in which case the
points at which these two intersect belong to]I and thus toI.

In the former case, the center ofS is a solution and given
by one of the Eqs.~A1!; in the latter, one can find a solutio
among the intersections of the borders of the setsE,Ẽ,C. That
these are given by thei x

6 is shown in Appendix A. j

If a CM g belongs to a separable state according to
above theorem then the pointjsol provides us with a pure
one-mode CMgA such thatN,Ñ>gA . By constructiong8
5B2C(A2gA)21CT is a separable 232 CM and by re-
peating a similar procedure as above withg8 we can calcu-
late a pure product-state decomposition of the original s
with CM g.

IV. EXAMPLES OF BOUND ENTANGLED STATES

In this section we construct states belonging to Classe
and 4. Our construction makes use of ideas that were
applied in finite dimensional quantum systems to find P
entangled states~PPTES! @5# and then generalized in@32# to
construct so-called edge states, i.e. states on the border o
convex set of states with positive partial transpose. Simila
one can define ‘‘edge CMs’’ as those that lie on the borde
the convex set of PPT CMs~they are called ‘‘minimal PPT
CMs’’ in @20#!.

This section is divided into three subsections. In the fi
one we define ‘‘edge CMs’’ and characterize them. In t
second and third subsections we present two different fa
lies of CMs which contain edge CMs. We also show th
within those families we have CMs belonging to all class

A. Edge CM’s

In the following we will consider CM’sg corresponding
to PPT states, i.e., fulfilling

g2 i J̃x>0, for all x50,A,B,C, ~4.1!

whereJ̃0[J.
Definition 1 ~edge correlation matrices!. A CM g is an

edge CM if it corresponds to a nonseparable state, fulfills
~4.1!, and g8[g2P does not fulfill Eq.~4.1! for all real
operatorsP with 0ÞP>0.

Note that a state with an edge CM automatically belon
to class 4~i.e., edge CM’s correspond to three-mode bise
rable states!. In order to fully characterize them, we will nee
the following definition. Let us consider the complex vect
spaceV#C6 of dimensiond spanned by the vectors belong
3-6
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ing to the kernels of allg2 i J̃x (x50,A,B,C). We will de-
fine K(g) as a real vector space which is spanned by the
parts and imaginary parts of all the vectors belonging toV.
More specifically, let us denote byB5$ f R

k 1 i f I
k%k51

d a basis
of V, such thatf R

k and f I
k are real. We define

K~g!5H(
k

lkf R
k 1mkf I

k ,lk ,mkPJ #R6, ~4.2!

that is, the real span of the vectorsf R
k and f I

k . Note that this
definition does not depend on the chosen basisB. @As is
pointed out in Appendix B,K(g) coincides with the rea
vector space spanned by all the vectors in the kernels og

1 J̃xg
21J̃x .# We then have the following theorem.

Theorem 4~characterization of 13131 edge CM’s!. A
CM g fulfilling Eq. ~4.1! is an edge CM if and only if there
exist no CM’sgA ,gB ,gC such thatg5gA% gB% gC and K
5R6.

Proof. We will use the fact@31# that, given two positive
matricesA,BÞ0, there exists somee.0 such thatA2eB
>0 iff ran(B)#ran(A). According to Definition 1 we canno
subtract any real positive matrix fromg without violating the
conditions~4.1!. This is equivalent to imposing that there b
no real vector in the intersection of the ranges of the matr
g2 i J̃x . This is again equivalent to saying that there is
real vector orthogonal to all the ker(g2 i J̃x), which in turn is
equivalent toK5R6, since that vector should be orthogon
to all the real and imaginary parts of the vectors spanned
those kernels. Now, ifg corresponds to an entangled state
is clear thatgÞgA% gB% gC . Conversely, if gÞgA% gB
% gC was separable, then there must exist some real pos
P such thatg2P5gA% gB% gC is separable, and therefor
fulfills Eq. ~4.1!, which is not possible. j

Note that this theorem generalizes easily to the case
more than three parties and more than one mode at each

In the construction of the following two examples of tr
partite bound entangled states we are going to use this t
rem. The idea is to take a CMg0 of a pure entangled stat
@which, of course, does not fulfill Eq.~4.1!# and add real
positive matrices until the conditions~4.1! as well asK
5R6 are fulfilled. If the resulting CM is not of the form
gA% gB% gC , then Theorem 4 implies that it is an edge CM
In fact, we can add more real positive matrices keeping
state entangled@and fulfilling Eq. ~4.1!#. In order to see how
much we can add, we can use the criterion derived in
previous section.

This method of constructing CM’s belonging to class
also indicates how the corresponding states may be prep
experimentally. Adding a positive matrixP to the CM g0
corresponds to the following preparation process: start w
an ensemble of states with CMg0 , and displace them ran
domly by d according to the Gaussian probability distrib
tion with covariance matrix given by the inverse ofP. This is
a local operation~that potentially needs to be supplement
by classical communication! on each individual mode. The
state produced by this randomization has CMg1P @20#.
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B. Example 1

In the first example we start out with an entangled st
between the two parties Alice and Bob and the vacuum s
in Charlie and add two projectors to the corresponding C
More specifically, we consider CM’s of the formga1 ,a2

5g

1a1P11a2P2 , where

g5gAB% 1C ~4.3!

and

gAB5S a 0 c 0

0 a 0 2c

c 0 a 0

0 2c 0 a

D , ~4.4!

with a5A11c2 and c can take any value different from
zero. Here, P15 p̃1p̃1

T and P25 p̃1p̃1
T , where p̃1

5(0,1,0,1,1,2)T and p̃25(1,0,21,0,0,1)T.
In order to explain why the CMga1 ,a2

achieves our pur-
poses, let us first consider the two-mode case in which
correlation matrix isgAB . We denote now byp5p11 ip2
@wherep15(0,1,0,1)T andp25(1,0,21,0)T# the eigenvector
corresponding to the negative eigenvalue ofgAB2 i J̃A @25#.
Since (2 i J̃A)* 52 i J̃B , we have that the eigenvector corr
sponding to the negative eigenvalue ofgAB2 i J̃B is p* 5p1
2 ip2 . By adding a sufficiently large multiple of the projec
tors onto those vectors, we obtain a CM whose partial tra
poses are positive. Note that in this case~just two modes!
this would already make the state separable.

In the case of three modes with a correlation matrixg the
same argumentation applies, namely, that by adding s
projectors we can make the partial transposes with respe
A and B positive. However, we have to involveC and
thereby smear out the initial entanglement betweenA andB
among all three parties. This is exactly what is achieved
adding the projectorsP1 and P2 . If we choose now, for
instance,c50.3, a151, anda2'0.553 109 5, then one ca
show that the setK(ga1 ,a2

) defined as in Eq.~4.2! spansR6.

FIG. 1. The entanglement classes ofga1 ,a2
.

3-7
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As mentioned at the end of the previous subsection, since
resulting CM is not of the formgA% gB% gC it corresponds
to an edge CM.

In Fig. 1 we illustrate to which classga1 ,a2
belongs as a

function of the parametersa1,2. In order to determine this
we have used the criterion derived in the previous section
is worth noting thatga1 ,a2

never becomes separable. Th

follows from Theorem 3 and the fact that bothm5m̃50 for
all values ofa1,2, as can be easily verified. This implies th
the two ellipses@cf. Ineq. ~3.22!# are just two points@which
coincide with the centers given in Eq.~A1!#. Thus, the only
possibility that the circle and the two ellipses intersect is t
the centers of the ellipses are the same and lie inside
circle. It is easy to show that for all values ofa1 anda2 the
centers of the two ellipses are never the same. Thus the
corresponding to the CMga1 ,a2

is never separable and is

PPTES for all values ofa1 ,a2 for which the partial trans-
poses are positive.

C. Example 2

Here we present a family of states which belong eithe
class 1, 4, or 5. The states of this family are obtained from
pure GHZ-like state@24# by adding a multiple of the identity
i.e.,

ga5g1a1, ~4.5!

where

g5S a 0 c 0 c 0

0 b 0 2c 0 2c

c 0 a 0 c 0

0 2c 0 b 0 2c

c 0 c 0 a 0

0 2c 0 2c 0 b

D , ~4.6!

with a.1 and

b5
1

4
~5a2A9a228!, ~4.7!

c5
1

4
~a2A9a228!. ~4.8!

For the following discussion, we picka51.2. It is clear
that fora50 the state is fully inseparable: i.e., it belongs
class 1, whereas fora>1 the state will be fully separabl
~class 5!. We will show now that fora0<a<a1 , where
a0'0.297 56 anda1'0.313 55, the state is biseparable a
belongs therefore to class 4.

The CM ga is symmetric with respect to permutation
between the parties, and therefore the negative eigenva
of the matricesg2 i J̃x , x5A,B,C, are the same. We deno
its absolute value bya0'0.297 56. It is easy to determin
the real and imaginary parts of the corresponding eigenv
tors. One finds that all those vectors are linearly independ
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If we add nowa01 to g, then all those vectors belong t
K(ga0

) which immediately implies thatK(ga0
)5R6. Since

ga0
ÞgA% gB% gC , we have that it is an edge CM.

Let us now use Theorem 3 in order to determinea1 . First
of all, we show, independently of the discussion above, t
ga0

belongs to class 4. In particular, we find thatm5m̃50
@cf. Eq. ~3.22!#, which implies that there exists a solution
Ineqs.~3.21! only if the centers of the two ellipses are th
same and lie within the circle. Here one can also show t
the two centers are not the same and so the state corresp
ing to the CMga0

is a PPTES. Let us determine the valu
of a for which it is still the case that there exists no inte
section of the two ellipses and the circle given by Ine
~3.21!. It is easy to show that ifa.a0 , then TrN<Tr Ñ,
which implies that the circle that has to be considered
radius r c5A(Tr N)2/421. One can also easily verify tha
the two ellipses never intersect the border of the circ
which simplifies the problem. The ellipses must always
inside the circle~since if they were outside it would never b
possible to obtain a separable state even fora.1!. Thus, the
problem reduces to check at which point the ellipses inters
each other. This occurs whena5a1'0.313 55. Thus the
CM ga , where a0<a,a1 corresponds to a PPTES
whereas fora>a1 , the corresponding state is fully sep
rable. In Fig. 2 we have plotted the circle and the two
lipses, which are almost circles in this case, for~a! a,a1
and ~b! a.a1 .

V. CONCLUSIONS

We have discussed nonlocal properties of Gaussian s
of three tripartite modes. We have distinguished five clas
with different separability properties and given a simple n
essary and sufficient criterion that allows us to determ
which of these classes a given Gaussian state belongs to
first three classes contain only NPT states and positivity o
state under the three partial transpositions suffices to de
mine to which of those it belongs. The separability criterio
which allows us to distinguish PPT entangled states fr
separable states, is the main result of this paper. For the
of three qubits such a criterion is still missing. Last, we ha
constructed examples for all the classes and in particular
tripartite entangled states with positive partial transpose.

It is interesting to note that the results presented ab
can be extended to cover the case ofn modes at locationC
by using the separability criterion for multimode biparti

FIG. 2. ~a! The circle and the two ellipses do not have a jo
intersection: therefore the state corresponding toga is a PPTES.~b!
The circle and the two ellipses have a joint intersection: theref
the state corresponding toga is separable.
3-8
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SEPARABILITY PROPERTIES OF THREE-MODE . . . PHYSICAL REVIEW A 64 052303
Gaussian states@22#. Nothing changes in the argumentatio
to distinguish three-party biseparable from fully separa
states@the additional modes are taken care of automatic
in Eqs.~3.12!#. However, the separability criterion of@22# is
now necessary to determine the properties under bipa
splitting, since forAB-C we deal with a 23n state and PPT
is then no longer sufficient for biseparability@20#.

It is worth pointing out that the separability criterion ca
be checked experimentally. The CMg can be measured, an
thus the criterion is entirely formulated in terms of quantit
that are measurable with current technology.

Gaussian CV states promise to be a fruitful testing grou
for quantum nonlocality: Pure entanglement is comparativ
easy to create in quantum optical experiments, as descr
in @24#. Likewise, tripartite bound entangled states are
perimentally accessible: the states discussed in the exam
Secs. IV B and IV C can be obtained by mixing different
displaced pure Gaussian states.

The study of the entanglement of multiparty Gauss
states is still in a very early stage. For example, no work h
to our knowledge, been done on the interesting cases of m
parties and modes. But even for the simple three-mode
there are important open questions. In particular nothing
known about the distillability of tripartite states. As in Re
@9# for qubits, it is easy to see that Gaussian states in cla
3 and 4 cannot be distilled at all and are therefore bo
entangled. For this, we considerN copies of a class 3 stater,
and apply an arbitrary local quantum operationPlocc consist-
ing of a classically correlated sequence of operations of
form P5PA^ PB^ PC . Sincer is in class 3, we can write
r ^ N as a mixture ofAB-C product statesSkpkrAB,k

(N)
^ rC,k

(N)

and as a mixture ofAC-B product statesSkpk8rAC,k
(N)

^ rB,k
(N) .

After applying an operation such asP the resulting stater̃
5P(r ^ N) will still be separable along these cuts, and
sequence of operationsP can change this. Thusr is bound
entangled.

Whether all states in class 2 may be distilled to maxima
entangled states between the two nonseparable parties
open question. If this were shown, it would follow that a
states in class 1 could be distilled into arbitrary tripart
entangled states.
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APPENDIX A: POINTS OF INTERSECTION

As shown in Theorem 3 a state is separable iff solutions
Ineqs.~3.21! are found among the points of intersection
the curves described by theequalities~3.21! or the centers of
the three sets. Here we give the formulas to directly calcu
these points fromg.

The centers of circle and the ellipses have already b
shown to be

mc5~0,0!T,

me5
detN11

k1
L,

mẽ5
detÑ11

k̃1

L̃, ~A1!

whereN,Ñ were defined in Eq.~3.12!, L in Eq. ~3.19!, and
k1 ,k̃1 after Eq. ~3.22!. The intersections of the borders o
C,E,Ẽ are calculated as follows. Consider first the two
lipses, whose borders are defined by the equalities~3.21b!
and~3.21c!. Dividing by TrN, respectively, by TrÑ and sub-
tracting the two equalities we find that a point on both]E and
] Ẽ must lie on the straight lineGeẽ defined by

~detN111LTj!/Tr N5~detÑ111L̃Tj!/Tr Ñ, ~A2!

wherej5(y,z). Geẽ can be parametrized withsPR as geẽ
1s feẽ, where

geẽ5S detN11

Tr N
2

detÑ11

Tr Ñ
D L8/iL8i2, ~A3!

whereL85L̃/Tr Ñ2L/Tr N @33# and f eẽ is a vector orthogo-
nal to L8.

InsertingGeẽ in Eq. ~3.21b! for ]E we obtain a quadratic
polynomial in s, whose rootsseẽ

6 ~if they are real! give the
intersection points. For the intersection of]C with the el-
lipses we proceed similarly. In summary, we get for the
tersection points

i eẽ
6 5geẽ1seẽ

6 f eẽ, ~A4!

i ce
6 5gce1sce

6 f ce , ~A5!

i cẽ
6 5gcẽ1scẽ

6 f cẽ , ~A6!

where the vectorsgx , x5ce,cẽ are

gce5~Tr NAr c
2112detN21!L/iLi2, ~A7!

f ce is a vector orthogonal toL, and r c is the smaller of the
two radii:

r c5min$A~Tr N!2/421,A~Tr Ñ!2/421%. ~A8!

gcẽ , f eẽ are defined likewise for tilded quantities. And, fi
nally, by seẽ

6 ,sx
6 we denote the real roots of the quadra

polynomials:
3-9
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Peẽ~s!5~LT~geẽ1s feẽ!1detN11!2

2~Tr N!2~11igeẽ1s feẽi2!, ~A9a!

Px~s!5r c
22igx1s fxi2, x5ce,cẽ. ~A9b!

Thus all nine candidates are given in terms ofN,Ñ which
can be directly obtained fromg.

APPENDIX B: CHARACTERIZATION OF K

Here we show thatK(g) as defined in Eq.~4.2! coincides
with the~real! span of the vectors belonging to the kernels
ev
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g1 J̃xg
21J̃x . This fact automatically follows from the fol-

lowing.
Lemma 7 @characterization ofK(g)#. Let f 5 f R1 i f I ,

where f R and f I are real. Thenf Pker(g2 i J̃x) iff f I

5g21J̃xf R and both f R and f I belong to the kernel ofg
1 J̃xg

21J̃x .
Proof. Taking the real and imaginary parts of the equati

(g2 i J̃x) f 50 we find g f R1 J̃xf I50 and g f I2 J̃xf R50.
Sinceg must be invertible, we obtain from the second equ
tion that f I5g21J̃xf R . Using now the first equation we find
that (g1 J̃xg

21J̃x) f R50. Analogously, (g1 J̃xg
21J̃x) f I50.

The same argumentation holds for the other direction of
proof.
int

x

-
that
ey
ian

ev.

und

ies

ys.

ot
for
@1# A. Peres, Phys. Rev. Lett.77, 1413 ~1996!; M. Horodecki, P.
Horodecki, and R. Horodecki, Phys. Lett. A223, 1 ~1996!.

@2# W. K. Wootters, Phys. Rev. Lett.80, 2245~1998!.
@3# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. R

Lett. 78, 574 ~1997!.
@4# H.-J. Briegel, W. Du¨r, J. I. Cirac, and P. Zoller, Phys. Rev. Let

81, 5932 ~1998!; C. H. Bennett, G. Brassard, C. Crepeau,
Jozsa, A. Peres, and W. K. Wootters,ibid. 70, 1895~1993!; A.
Ekert, ibid. 67, 661 ~1991!.

@5# P. Horodecki, Phys. Lett. A232, 333 ~1997!.
@6# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. R

Lett. 80, 5239~1998!.
@7# M. Lewenstein, D. Bruss, J. I. Cirac, B. Kraus, M. Kus´, J.

Samsonowicz, A. Sanpera, and R. Tarrach, J. Mod. Opt.47,
2481 ~2000!.

@8# D. M. Greenberger, M. A. Horne, A. Shimony, and A
Zeilinger, Am. J. Phys.58, 1131~1990!.

@9# W. Dür, J. I. Cirac, and R. Tarrach, Phys. Rev. Lett.83, 3562
~1999!; W. Dür and J. I. Cirac, Phys. Rev. A61, 042314
~2000!.

@10# See, however, A. Acin, D. Bruss, M. Lewenstein, and A. Sa
pera, Phys. Rev. Lett. 87, 040401 ~2001!; e-print
quant-ph/0103025; and Ref.@9#.

@11# C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A
Smolin, and B. M. Terhal, Phys. Rev. Lett.82, 5385~1999!.

@12# W. Dür and J. I. Cirac, Phys. Rev. A62, 022302~2000!; e-print
quant-ph/0002028; P. W. Shor, J. A. Smolin, and A. V. Tha
liyal, e-print quant-ph/0005117.

@13# L. Vaidman, Phys. Rev. A49, 1473 ~1994!; S. L. Braunstein
and H. J. Kimble, Phys. Rev. Lett.80, 869 ~1998!.

@14# A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuc
H. J. Kimble, and E. S. Polzik, Science282, 706 ~1998!.

@15# Ch. Silberhorn, P. K. Lam, O. Weiss, F. Ko¨nig, N. Korolkova,
and G. Leuchs, Phys. Rev. Lett.86, 4267 ~2001!; e-print
quant-ph/0103002.

@16# M. D. Reid, Phys. Rev. A40, 913 ~1989!.
@17# L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. R

Lett. 84, 2722~2000!.
@18# R. Simon, Phys. Rev. Lett.84, 2726~2000!.
@19# G. Giedke, L.-M. Duan, J. I. Cirac, and P. Zoller, Quant. In

Comp.~to be published!; e-print quant-ph/0104072.
.

.

.

-

-

s,

.

@20# R. F. Werner and M. M. Wolf, Phys. Rev. Lett.86, 3658
~2001!; e-print quant-ph/0009118.

@21# G. Vidal and R. F. Werner, e-print quant-ph/0102117.
@22# G. Giedke, B. Fraus, M. Lewenstein, and J. I. Cirac, e-pr

quant-ph/0104050.
@23# P. van Loock and S. L. Braunstein, Phys. Rev. Lett.84, 3482

~2000!.
@24# P. van Loock and S. L. Braunstein, Phys. Rev. A63, 022106

~2001!.
@25# To be precise, we should defineJ with an indexn to keep track

of the dimension of the spaceR2n on which it acts. But sincen
will always be clear from the context we will omit this inde
and just useJ to make the expressions more readable.

@26# J. Manuceau and A. Verbeure, Commun. Math. Phys.9, 293
~1968!.

@27# A linear transformationSon phase space is calledsymplecticif
it preservesJ, i.e., if SJST5J holds. The symplectic transfor
mations contain those physical operations on CV states
can currently be routinely realized in the laboratory. Th
comprise all unitary operations generated by a Hamilton
quadratic in the canonical operatorsXk , Pk , i.e., in quantum
optical terms, beam splitter, phase shifter, and squeezer.

@28# In the following, it is convenient to use the notationA% B for
block-diagonal matrices: ifA andB aren3n andm3m square
matrices, respectively, thenA% B is the (n1m)3(n1m)
square matrix (0 B

A 0).
@29# G. B. Folland,Harmonic Analysis in Phase Space~Princeton

University Press, Princeton, 1989!.
@30# B. Kraus, J. I. Cirac, S. Karnas, and M. Lewenstein, Phys. R

A 61, 062302~2000!.
@31# The following definitions assume thatL,L̃Þ0. @If one of them

is 0, the corresponding ellipse degenerates into a circle aro
~0,0! and we can take an arbitraryLÞ0 to make sense ofPL .#
The criterion is not affected by this assumption, since it rel
on Ineqs.~3.21!.

@32# M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Ph
Rev. A62, 052310~2000!; e-print quant-ph/0005014.

@33# In the caseL850 the borders of the ellipses either do n
intersect at all or coincide. In both cases we have to look
solutions among the remaining seven candidates.
3-10


